Journal of Productivity Analysis, 11, 149-168 (1998)
© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Using Simulation and Data Envelopment Analysis to
Compare Assembly Line Balancing Solutions

PATRICK R. MCMULLEN patmc@maine.maine.edu
University of Maine, Maine Business School, Orono, ME 04469-5723

GREGORY V. FRAZIER frazier@uta.edu
The University of Texas at Arlington, Information Systems and Management Sciences Dept., College of Business
Administration, Arlington, TX 76019-0437

Abstract

This paper presents a technique for comparing the results of different assembly line balanc-
ing strategies by using Data Envelopment Analysis (DEA). Initially, several heuristics—
which can be thought of as assembly line balancing strategies—were used to solve seven
line-balancing problems. The resulting line balance solutions provided two pieces of in-
formation that were of particular interest: the number of workers needed and the amount
of equipment needed. These two items were considered inputs for DEA. The different
line balance solutions were then used as layouts for simulated production runs. From the
simulation experiments, several output performance measures were obtained which were
of particular interest and were used as outputs for DEA. The analysis shows that DEA is
effective in suggesting which line balancing heuristics are most promising.
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1. Introduction

Assembly line balancing has been a topic of research for several decades now. Generally,
line balancing is the process of organizing the tasks required to produce a product into
subgroups and assigning each subgroup to its own work cell. Most commonly, previous
line balancing approaches have exploited one of two objectives. One objective (generally
referred to as the Type | problem) is to minimize the amount of workers required on the
assembly line, given a specified cycle time. The other objective (generally referred to as the
Type Il problem) is to minimize the cycle time, given a specified number of workers. With
either typecycle timeis the average amount of time that elapses between two consecutive
units being completed on the assembly line.

Another issue in line balancing problems is the number of workers allowed to perform a
particular task. Most frequently, the problem addressed allows each task to be performed
by only one worker. The alternative strategy of allowing multiple workers to each perform
the same set of tasks is referred to as paralleling, or the use of parallel work-stations in a
work cell. Paralleling is necessary in the case where the duration of any individual task
is greater than the desired cycle time. With high-volume production, it is not unusual for
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at least one task to have a task time that exceeds the desired cycle time. Relatively little
research has been published on line balancing with parallel workers.

The number of different products that are assembled on the line can further categorize
line-balancing problems. The large majority of research has addressed the single product
line-balancing problem. When multiple products have been addressed, it has usually been
assumed that they would be produced in batches, with the line being re-balanced for each
producttype. The line balancing problem for multiple products and no re-balancing allowed
is significantly more difficult to solve. Due to the widespread adoption of Just-in-Time (JIT)
production, assembly and production lines with multiple products sequenced in mixed-
model fashion have become much more common.

Yet another factor that distinguishes different line balancing problems is the uncertainty
of task times. The large majority of research addresses line balancing with deterministic
task times. The more difficult problem is when some or all of the task times are stochastic.
The research presented here addresses the Type | assembly line balancing problem with
parallel processing, stochastic task times, and both single and mixed-model production.

In much of the literature addressing the Type | line balancing problem, the desirability of
a solution rests solely on the number of workers required to attain the specified cycle time.
While using as few workers as possible is a major concern of the line balancing problem, it
should not be the only performance measure that is examined, especially with today’s time-
based competition. Evaluating the production performance of a layout attained by assembly
line balancing is not a common practice in related research—although the current availability
of simulation software makes this type of evaluation practical. Analyzing layouts in this
way allows many performance measures to be considered, such as average work-in-process
(WIP) inventory level, average amount of time a unit spends in-process (flow-time), number
of units produced (throughput), average unit labor cost, system utilization, and the actual
cycle times attained.

In a JIT setting, one of the most important performance measures is the ability of the
production line to adhere to the schedule, especially when task times are somewhat uncer-
tain. The average cycle time actually achieved, compared with the desired cycle time, is an
effective way to measure a production line’s ability to adhere to a schedule. Through using
simulation to analyze the production performance of different line balancing solutions, this
cycle time performance of the line balances can be compared and is used as a DEA output
measure in this research. Anotherimportant attribute of an assembly line layout is its ability
to move units through each individual work station in a timely fashion. This attribute is
analogous to on-time completion and is used as another DEA output measure.

The cost of implementing a particular line balance solution is another important perfor-
mance characteristic. Two parts of this cost are most important, labor cost and equipment
cost. Since different line balances will require varying numbers of workers and pieces of
equipment (when paralleling is allowed), this information must be evaluated along with
output performance. Therefore, the number of workers and amount of equipment required
will be used as input performance measures in comparing line balancing approaches.

Data Envelopment Analysis (DEA) is a useful tool for comparing several alternatives when
multiple performance measures are important, particularly when both input and output
performance measures exist (Boussafiane, et al. (1991), Charnes, et al. (1978), Doyle



USING SIMULATION AND DATA ENVELOPMENT 151

Several System
Solutions i Inputs
Input Apply Line L Production Perform Perform
Parameters[”] Balancing Simulations [ DEA ™ Sensitivity - Interpretation
Heuristics (System Outputs) Analysis

Figure 1. Overview of research.

and Green (1991)). In the problem addressed here, DEA is used to compare different
line balancing heuristics using two output performance measures (cycle time performance
and percentage of on-time completions within cells) and two input performance measures
(number of workers and amount of equipment).

To overview this research, assembly line balancing problems are solved by using twenty-
three alternative strategies, or heuristics. These twenty-three heuristics can be thought of
decision-making units (DMU’s) for DEA. Once a problem is solved with each of these
twenty-three heuristics, the number of workers (crew size) and equipment requirement
are recorded as inputs and the resulting layouts are used for simulated production runs.
From these simulations, cycle time performance and percentage of on-time completions
through each work center are recorded as the outputs for the layout associated with each
line balancing rule. To measure cycle time performance, a ratio of desired cycle time to
average cycle time actually achieved in the simulations is computed. This cycle time ratio
is referred to as CTR. To measure percentage of on-time completions (POT), the number
of parts produced within the desired cycle time in each work cell is divided by the total
number of parts produced in each cell and an average is computed for all cells. Given these
inputs and outputs, DEA is then used to determine the relative efficiency of the twenty-three
different heuristics.

The primary purpose of this paper is to demonstrate how simulation and Data Envelopment
Analysis can be used together to evaluate different line balancing approaches, particularly
in a JIT environment. The following sections present the research methodology, discuss
the experimental results, and offer conclusions.

2. Methodology

Figure 1 provides an overview of the research methodology used. The different line bal-
ancing heuristics, simulation design, and details of the Data Envelopment Analysis are each
discussed in the following subsections.



152 MCMULLEN AND FRAZER

2.1. Line Balancing Heuristics

Table 1 provides a brief description of each of the twenty-three heuristics used in this
research. The heuristic used to solve several of the line balancing problems for this research
is a modification of Gaither’'s Incremental Utilization Heuristic (1996). This heuristic
permits paralleling of workers within work centers. Permitting paralleling to occur enables
the manager to place multiple workers in work centers, and also enables the manager
to establish a cycle time that is less than the duration of the longest task (Pinto (1975),
Pinto, Dannenbring, and Khumawala (1975, 1981)). One efficiency-oriented feature of
this heuristic is that it will not permit the addition of a task and its respective workers
to a particular work center unless the utilization of that work center increases as a result
of adding the task (and an additional worker if necessary). The Modified Incremental
Utilization Heuristic heuristics are labeled 1-8 and 11-17 in Table 1. These different
heuristics basically function as task selection rules—strategies for selecting tasks to enter
the work centers. For detailed descriptions of these heuristics, refer to McMullen (1995),
McMullen and Frazier (1997), and Baybars (1986).

Six of the heuristics used in this research are Simulated-Annealing (SA) based. Simu-
lated Annealing is a heuristic technique used to solve combinatorial optimization problems
given some type of objective function. The first SA based heuristic (label 18) uses a SA
search objective that seeks to minimize the design cost (the sum of labor and equipment re-
guirement). Heuristic 19 seeks to minimize the smoothness index across work centers—the
amount of inconsistency in terms of work load across the work centers (Moodie and Young
(1965)). Heuristic 20 seeks to minimize the probability of late completion of activities
across work centers. Heuristics 21 through 23 seek to minimize different combinations of
design cost and lateness cost. For Heuristic 21, design cost and lateness are each weighted
so that they make an equal contribution to a composite objective function. For Heuristic 22,
lateness is weighted so that it makes three times the contribution to the objective function as
design cost. Heuristic 23 is weighted so that design cost makes three times the contribution
as lateness. For more information on Simulated Annealing and these particular heuristics,
refer to McMullen and Frazier (1998).

Heuristics 9 and 10 utilize neither the Incremental Utilization Heuristic nor the Simulated
Annealing strategy. Heuristic 9 places all tasks into a single “mega” work center and will
always result in all of the equipment being replicated many times. For example, in the
Appendix it can be seen that for the 11-task problem Heuristic 9 required 9 workers, each
performing all tasks in parallel, in order to achieve the desired cycle time. This resulted
in 99 pieces of equipment required. Heuristic 10, on the other hand, places each task
into its own individual work center. Additional workers are added to a work center with
Heuristic 10 only if a task time is greater than the cycle time. For example, as can be
seen in the Appendix, Heuristic 10 required 14 workers for the 11-task problem. The three
additional workers were necessary because in three work cells the task time exceeded the
desired cycle time, and each additional worker works in parallel with the original worker
in a cell. Heuristic 10, therefore, will always result in the same number of workers and
machines.

Since the primary purpose of this paper is to demonstrate how simulation and DEA
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Label Heuristic Incremental
Utilization
1 Select task providing maximum incremental utilization Used
2 Select task randomly (Arcus (1966)) Used
3 Select task with longest duration Used
4 Select task with shortest duration Used
5 Select task providing minimum incremental utilization Used
6 Select task providing minimum probability for lateness within
work center
7 Select task with best composite of 5 and 6 Used
8 Select task according to lexicographic attributes Used
9 Single Mega work-center Not Used
10 Individual work center for each task Not Used
11 Select task having fewest followers Used
12 Select task having fewest immediate followers Used
13 Select task which is first to become available Used
14 Select task which is last to become available Used
15 Select task having most followers Used
16 Select task having most immediate followers Used
17 Select task with highest Ranked Positional Weight (Helgeson akt$ed
Birnie, 1961)
18 Simulated Annealing: Minimize Design Cost Not Used
19 Simulated Annealing: Minimize Smoothness Index Not Used
20 Simulated Annealing: Minimize Overall System Lateness Not Used
21 Simulated Annealing: Minimize Composite Function 1 Not Used
22 Simulated Annealing: Minimize Composite Function 2 Not Used
23 Simulated Annealing: Minimize Composite Function 3 Not Used

can be used together to evaluate different line balancing strategies, details of the Modified
Incremental Utilization (MIU) heuristic are not presented here but can be found in McMullen
(1995) and McMullen and Frazier (1997). The general approach of using simulation in
conjunction with DEA is the focus of this paper and can be applied wmnyget of line
balancing heuristics.

Some general assumptions of assembly line balancing problems are listed below.

e A task will not be assigned to a work center until all of its predecessors have been
assigned.

e Atask is assigned to exactly one work center.
e All workers on the assembly line possess the same level of skill.
e The durations of all tasks are independent of each other.

o Changeover times between different products are negligible.
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Table 2.Description of seven different line balancing problems.

Tasks Different Products Product-Mix Weights Simulated Buildup
Time (minutes)
11 1 wp=1 500
21 1 wyp =1 1,000
25 1 wp=1 1,000
29 2 wi=2,wy=1 3,000
40 3 wi=3,wx=2,wz=1 3,000
45 2 wr=2,wy=1 3,000
74 4 wi=4wr=2,wz=1,ws=1 3,000

2.2. Simulation Design

As previously mentioned, the twenty-three different heuristics are the decision making units
(DMU'’s) for the Data Envelopment Analysis. Seven example line balancing problems were
used for this study, each consisting of a number of products, a number of tasks, a precedence
network, a desired cycle time, expected task durations, and a distribution for each task
duration. Each of the seven problems was solved with each of the twenty-three heuristics,
resulting in twenty-three layouts per problem. For each layout, the number of workers and
amount of equipment required were recorded. Table 2 provides information about each of
the seven problems used.

For each of the seven problems, the desired cycle time was specified to be 10 minutes
between completed units. The durations for the tasks were created via a random number
generator. For each task, there was a 75% probability the task duration would be uniformly
distributed between 2 and 10 minutes, and a 25% probability the task duration would be
uniformly distributed between 10 and 15 minutes. The precedence diagram for the: 11-task
problem is from Mariotti (1970); the 21-task problem is from Tonge (1965); the 29-task
problemis from Buxey (1974); for the 45-task problem is from Kilbridge and Wester (1961).
The 25-, 40-, and 74-task problems were arbitrarily generated for this research.

It should be noted that four of the seven problems described in Table 2 have multiple
products made simultaneously during the production run. These multiple-product prob-
lems assume mixed-model sequencing, which reflects a common situation in the design of
assembly lines in JIT systems. The simulated production runs for these problems imple-
ment mixed-model sequencing. The product-mix weights are simply a representation of
the relative number of products to be made for each of these mixed-model problem types.
For example, the 29-task problem will have two units of product one made for each unit of
product two. For more information on mixed-model systems and their sequencing, refer to
Ding and Cheng (1993).

The twenty-three solutions for each of the seven problems were used as layouts for
simulated production runs. SLAMSYSTEM v4.6 with FORTRAN v5.1 user-written inserts
was used on a Pentium-75 personal computer to model these 161 different layouts. For
each layout, the simulation was run until steady-state conditions were attained (refer to
Table 2). Statistics were then reset, and each simulation run was continued long enough so
that reasonable estimates of means of all outputs could be obtained. For each of the 161
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Figure 2. Example of paralleling and equipment required in work center 2.

different layouts, 25 simulation run replications were made. This resulted in a database of
4,025 observations.

2.3. Data Envelopment Analysis

As mentioned earlier, the inputs for the DEA were number of workers required and the
amount of equipment required. The number of workers was provided directly from the line
balance layouts. For simplicity, it was assumed that each task required a different piece
of equipment (or machine). The amount of equipment required in each work center then
was equal to the number of workers required (the amount of paralleling) multiplied by the
number of tasks assigned to that work center. Figure 2 provides a graphic example. Each
worker in work center 2 would perform tasks 3, 5, 6, and 9 in parallel. This results in a
total of 12 pieces of equipment (3 worket 4 taskgworker).

A tradeoff exists between the number of workers required and the amount of equipment
required. Typically, fewer workers are required as more paralleling is used. The extreme
case would have every worker performing every task in parallel, in one large work center
(Heuristic 9). In this way, the desired cycle time can be met with the minimum number of
workers. However, this solution would require the maximum amount of equipment. This
scenario illustrates the need to consider both the number of employees and the amount
of equipment, as well as the actual cycle time achieved, when evaluating line balancing
approaches.

Data Envelopment Analysis involves solving a set of mathematical programming models
to determine a “technical efficiency” of a decision making unit when one or more outputs
and inputs are involved (Charnes, Cooper, Lewin and Seiford (1994)).

The DEA envelopment surface used for this research is variable returns to scale (VRS).
The reason for this is because the authors could not assume that a constant returns to scale
(CRS) is appropriate. In other words, if the inputs of crew and equipment were doubled, it
cannot be assumed that the outputs of percentage of on-time completions (POT) and cycle
time ratio (CTR) would also double for the associated production layout. As a result, a
VRS was deemed most appropriate for this research (Banker, Charnes and Cooper (1984)).

For this research, both input-oriented models and output-oriented models were used for
each of the seven problems. The reason for this is so that inefficient DMUs could be
further examined to determine what could be done to make them efficient. In other words,
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inefficient units are classified as inefficient due to “too much input,
or some combination of both.

The DEA models used in this research each have two outputs (CTR and POT) and two
inputs (crew requirement and equipment requirement). Because each model has both two
inputs and two outputs, it is quite possible to find various DMUs to be relatively efficient
when various weights take on negligible (or zero) values. This possibility does not reflect
a realistic situation (Wong and Beasley (1990)). For example, a certain DMU could be
found efficient when the weight for the equipment requirement receives a zero weight.
This of course implies that the only resource needed is labor, and not equipment. Another
example might find that a DMU is efficient when the weight pertaining to POT is zero.
This implies that the output measure of on-time completion is ignored for this particular
DMU. To prevent these occurrences and to reflect as realistic a situation as possible, weight
restrictions are incorporated into these DEA models.

Consider the following variables

not enough output,”

u;j = POT weight for DMUi Q)
Uy = CTR weight for DMUi (2)
vy = Crew requirement for DMU 3)
vy = Equipment requirement for DMU 4

The constantr is chosen by the modeler to represent the minimum contribution each
output is permitted to make to the virtual output value. Since there are only two outputs
used, two important things are noteworthy. First; & is then the maximum contribution
each output is permitted to make to the virtual output value. Secondly, it is also important
to note that specifying the upper limit of one of the virtual outputs implies specification of
the lower limit of the other virtual output, and vice versa. Mathematically, this is expressed
as follows:

POT uy
o < ' <l-a )
POTiuy + CTRuUy

oy < CTRuy <1
~ POTiju; + CTRuyz —

For this research, a value of .35 was usedfoil his value was arbitrarily chosen to allow
one measure to reflect at most nearly twice the importance of the other measure.

Imposing weight restrictions on the outputs of POT and CTR is fairly straightforward due
to the fact that their measures are between 0 and 1 (with slight, rare exceptions), which is
simple to address. The same scenario does not apply when considering the necessary weight
restrictions for the inputs. The inputs of crew size (CREW) and equipment requirement
(EQUIP) can take on a variety of values, which makes reasonable application of weight
restrictions more difficult than for the outputs. As a result, the following weight restriction
was imposed on the inputs:

-« (6)

25< 2 — 40 @)
1%
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In other words, neither input is permitted to take on a weight more than four times that of
the other input. This four-to-one ratio also was arbitrarily selected for this research.

The restrictions on the weights then define “assurance regions” (Thompson et al. (1990))
which prevent “undesirable” heuristics from being classified as DEA-efficient.

3. Analysis and Results

While the input measures of crew requirement and equipment requirement are easy to accept
as important performance measures, the authors would like to comment on the selection of
cycle time ratio (CTR) and on-time completions (POT) as performance measures. CTR pro-
vides a macro-type measure of the schedule-meeting performance of the overall production
line, when stochastic task times are considered. It was also found to be highly correlated
(r = —.966 and = —.965, respectively) with WIP inventory levels and average part flow
time, two other common production line performance measures. POT provides a more
micro-type measure of within-cell, schedule-meeting performance. Since the correlation
between CTR and POT was not deemed to be unreasonablyrhigh@17), both output
performance measures were included in the analyses.

Separate input-oriented and output-oriented DEA's were performed for each of the seven
problems to determine the efficiency of each of the twenty-three heuristics. Table 3 provides
a summary of the DEA results. There are two lines to interpret in the table for each
heuristic—the firstline is the DEA-efficiency for the input-oriented model, while the second
(italicized) line is the DEA-efficiency for the output-oriented model. A detailed explanation
of the input-oriented models is presented first, followed by a detailed explanation of the
output-oriented models.

For each problem associated with the input-oriented models, the efficiency is provided. An
efficiency of 1.0000 means that the heuristic of interest is efficient—the DMU exists on the
efficiency frontier. For example, Heuristic 1 for the 40-task problem yields a DEA-efficient
result. When the efficiency is less than 1.0000, the heuristic is considered inefficient—the
DMU does not exist on the efficiency frontier. If weight restrictions were not used, or if they
were non-binding, the efficiency value would describe the proportional reduction of inputs
necessary to make the heuristic of interest DEA-efficient. For example, Heuristic 8 for the
45-task problem is an example of a heuristic that is not DEA efficient. If none of the weight
restrictions were binding, then the inputs for this heuristic must be reduced to 85.28% of their
current levels for it to become DEA-efficient. However, in the large majority of cases in this
research a weight restriction was binding. Therefore, since Allen et al. (1997) concluded
that under such binding weight restrictions this common interpretation of efficiency values
may be invalid, caution must be exercised in interpreting efficiency values for the inefficient
DMUs in Table 3.

The last column of the table is reserved for a subjective remark regarding the general per-
formance of each heuristic. These remarks are basically self-explanatory with the possible
exception of “excessive,” which simply means there is a clear pattern that the heuristic of
interest requires an excessive amount of inputs—crew and equipment. These remarks are
subjective of course, but the authors believe they are reasonable.

Table 3 also presents the DEA efficiency summary for the 23 heuristics for each of the
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seven problems when the output-oriented models are examined. These efficiency measures
are italicized. An efficiency measure of 1.0000 means that a certain heuristic was found to
be DEA-efficient (Heuristic 1 for 40-task problem, for example). Any efficiency measure
greater than 1.0000 describes a situation when the heuristic of interest is found to be DEA-
inefficient. If weight restrictions were not used, or if they were non-binding, the efficiency
value would reflect the enhancement of outputs necessary for this heuristic to become DEA-
efficient. Heuristic 8 for the 45-task problem, for example, is found to be inefficient. If none
of the weight restrictions were binding, and the outputs were enhanced to 8.16% above their
current levels, the heuristic would then become DEA-efficient. However, as noted earlier, a
weight restriction was binding in the large majority of cases, so caution must be exercised
in interpreting efficiency values for the inefficient DMUs.

The last column of the table is reserved for a subjective remark regarding the general
output-oriented performance of each heuristic. Asis the case for the input-oriented models,
all but one remark is basically self-explanatory—-deficient.” In this context, “deficient”
simply reflects a situation where a heuristic performs poorly with respect to the output
measures of POT and CTR. The subjectivity of these assessments should also be considered.

3.1. Sensitivity Analysis

The outputs of POT and CTR are attained via a simulation model, which means they are
stochastic. This means that the decision-maker must consider the uncertainty associated
with these outputs when determining which heuristic to consider for adoption. A sensitivity
analysis was conducted to determine which of the DEA-efficient heuristics are the most
robust—Ileast sensitive to unfavorable changes in the DEA models. The more robust a DEA-
efficient heuristic is, the more confidence the decision-maker can have in its successful
implementation. The first part of this sensitivity analysis was to determine which of the
DEA-efficient heuristics were found to be “extreme efficient.” A DEA-efficient heuristic
(heuristicj) was found to be extreme efficient if and only if:

hj(w) > hx(w) forallk # j

where:

POT; CT . o
hj(w) = iU+ CTR U, , i =1,...nheuristics.
CREW,EQUIP, v;

whereus, Uy, v1, andv, are the multipliers associated with the heuristic being tested for
extreme-efficiency (Thompson et al. (1994), Thrall (1996)).

The second part of the sensitivity analysis was to determine which of the DEA-efficient
heuristics were robust enough to withstand unfavorable changes in the DEA models. In
this context, an unfavorable change means a decrease of x percent in output for all DEA-
efficient heuristics and a simultaneous increase of x percent in output for all DEA-inefficient
heuristics. In other words, a change generally means that DEA-efficient heuristics are made
to appear less desirable while DEA-inefficient heuristics are made to appear more favorable.
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Heuristic 11 Task 21Task 25Task 29Task 40Task 45Task 74Task Remark
1 .8858 .9794 .9990 .9277 1.0000 1.0000 1.0000 Good
1.1867 1.0191 1.0517 1.1367 1.0000 1.0000 1.0000  Fair
2 1.0000 .9304 .8821 .9655 .9931 .8401 9083  Weak
1.0000 1.0934 1.2094 1.1005 1.0162 1.1221 1.1172  Deficient
3 .9887 .9616 .9537 .9415 .9651 .8729 9603  Weak
1.0847 1.0393 1.0562 1.1008 1.0490 1.1316 1.1379  Deficient
4 1.0000 .9811 .8340 .8107 .8661 .9215 .8077  Fair
1.0000 1.0517 1.0702 1.1887 1.1292 1.0562 1.1571  Deficient
5 .8488 .7800 .8444 .6782 .7058 7326 6926  Weak
1.0534 1.1290 1.0673 1.2905 1.2025 1.1589 1.2192  Deficient
6 .8488 .7800 .8444 .7910 .8706 .6903 .6444  Weak
1.0534 1.1290 1.0673 1.1111 1.1047 1.1979 1.1819  Deficient
7 .8488 .7800 .8444 .8317 .8706 7790 6493  Excessive
1.0534 1.1290 1.0673 1.1390 1.1047 1.1096 1.1188 Deficient
8 .9828 .9728 .9410 .8237 .9074 .8528 9235  Fair
1.0160 1.0231 1.0796 1.1129 1.1132 1.0816 1.1350  Deficient
9 4732 1.0000 .2815 .2463 .2006 .1826 1754  Excessive
1.0278 1.0000 1.0426 1.0773 1.0519 1.0371 1.4343  Fair
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  Strong
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  Strong
11 .7105 .9881 .9531 .8470 .9557 .8380 1.0000 Fair
1.0198 1.0095 1.0868 1.1528 1.0327 1.1553 1.0000 Fair
12 .8642 .9417 .9289 .8457 .9361 .9124 .8918  Fair
1.0198 1.0571 1.0845 1.1872 1.0768 1.0881 1.0839  Fair
13 1.0000 .9242 .9868 .9425 .9032 .9639 .8918  Fair
1.0000 1.0773 1.0255 1.0762 1.0760 1.0339 1.0839  Fair
14 .8442 .9634 1.0000 .9580 .9488 .8827 .9484  Fair
1.0197 1.0359 1.0000 1.1879 1.0390 1.1583 1.0757  Fair
15 1.0000 1.0000 .7193 7976 9611 .9651 9170  Fair
1.0000 1.0000 1.0481 1.2739 1.0287 1.0240 1.1156  Fair
16 .8642 .9548 1.0000 1.0000 .9163 .9013 1.0000 Good
1.0197 1.0320 1.0000 1.0000 1.0648 1.0823 1.0000 Good
17 .9784 1.0000 .8850 1.0000 .9315 .9342 9170  Fair
1.1100 1.0000 1.0524 1.0000 1.0522 1.0635 1.1156  Fair
18 .9998 1.0000 .9785 1.0000 1.0000 .9518 1.0000 Strong
1.0045 1.0000 1.1004 1.0000 1.0000 1.0760 1.0000 Good
19 .9995 .6543 .6635 7239 .3655 .6494 4427 Excessive
1.0086 1.0657 1.1263 1.1459 1.2133 1.1604 1.1946  Deficient
20 1.0000 1.0000 1.0000 1.0000 .7323 .9287 1.0000  Strong
1.0000 1.0000 1.0000 1.0000 1.0053 1.0133 1.0000 Good
21 .9730 .6255 .9890 .9632 .9820 1.0000 9185  Fair
1.0005 1.0221 1.0015 1.0062 1.0135 1.0000 1.0255 Good
22 .9730 .6249 .9670 .9632 1.0000 .9327 .9364  Fair
1.0005 1.0228 1.0039 1.0062 1.0000 1.0173 1.0204  Good
23 1.0000 7974 1.0000 .9632 .9764 .8940 .8583  Fair
1.0000 1.0067 1.0000 1.0062 1.0134 1.0354 1.0451  Good
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Table 4.Sensitivity analysis for line balancing problems.

Problem Efficiency Set Extreme Efficient Set  Efficient Set Efficient Set

Efficient Set (1%) (2.5%) (5%)
11 Tasks 2, 4,10, 13, 13, 15, 20, 4,10,13,15, 4,10,13,15, 4,10,13,15,
15, 20, 23 23 18, 21, 22 18, 21, 22 18,21, 22
21 Tasks 9,10,15,17, 9,10,15,17, 9,10,11,15, 1,10,11,16, 1,10,11,16,
18, 20 18, 20 17, 18, 20, 18,23 18, 23
23
25Task 10, 14, 16, 10, 14, 16, 10, 14, 16, 10, 13, 14, 1,10,13,21
20, 23 20, 23 20,21 16,21
29 Task 10, 16, 17, 10, 16, 17, 10, 16, 17, 10, 16, 17, 2,10,13,16,
18, 20 18, 20 18, 20, 21, 18, 20, 21, 17, 18, 20,
22,23 22,23 21, 22,23

40 Task 1,10,18,22 1,10,18,22 1, 2,10, 18]}, 2, 10,18, 1, 2, 10, 11,
20, 21, 22, 20,21,23 15, 18, 20,

23 21,23
45Tasks 1,10,21 1,10,21 1,10,20,211,10,13,15, 1,10,13,15,
22 20, 22 20, 22
74 Tasks 1,10,11,16, 1,18, 20 1,10,11,16, 1,10,11,16, 1,10,11,14,
18, 20 18, 20, 21, 18, 20, 21, 16, 18, 21,
22 22 22

Forthis research, three differentlevels of change were explored: 1%, 2.5%, and 5% (roughly
1o, 30, and @, respectively). It is important to note that this analysis does not contain
any input changes because the inputs of crew and equipment needed are not stochastic.
Table 4 shows the results of the sensitivity analyses in terms of extreme efficient points and
robustness to change in output (Thompson et al, 1994).

Table 4 shows that almost all heuristics found to be DEA-efficient are also found to be
extreme-efficient (corner points). The exceptions to this are heuristics 2, 4, and 10 for the
11-task problem and heuristics 10, 11, and 16 for the 74-task problem—these heuristics are
initially found to be DEA-efficient, but not extreme efficient. Table 4 also shows that with
“changes” to the original set of DEA-efficient heuristics, a certain amount of robustness
exists. Forthe most part, heuristics that are part of the original set of DEA-efficient heuristics
remain DEA-efficient despite having their outputs reduced while DEA-inefficient heuristics
simultaneously have their outputs enhanced. Asthe degree of this “change” increases, more
heuristics that were initially DEA-inefficient join the set of DEA-efficient heuristics, but
fewer heuristics initially found to be DEA-efficient leave the set of DEA-efficient heuristics.
This issue is elaborated upon further in the next section. Due to the general presence
of robustness, finding DEA solutions which seek the Strong Complementary Slackness
Condition (which generally results in robust solutions, (Thrall (1996), Gonzalez-Lima et al.
(1996), and Thompson et al. (1996))) is not explored.
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4. Discussion of Results

As previously mentioned, this research is dedicated to helping the decision-maker determine
the heuristics best suited for their needs. The following paragraphs present arguments on
which of the 23 heuristics are the best and worst performing in terms of DEA.

From inspection of the efficiency measures in Table 3 and the sensitivity analysis infor-
mation in Table 4, two things become immediately clear. The first is that Heuristic 10 is
the strongest performer in terms of DEA efficiency—it is found to be efficient for all seven
problems, and demonstrates robustness to the degree that it remains DEA-efficient even
with 5% changes for all problems. The second is that Heuristic 9 is a very poor performer.
It was found to be efficient only for the 21-task problem, and lacks robustness for this
problem as it departs the set of DEA-efficient heuristics with a 2.5% change of outputs.
The reason for such differing results can be explained.

Generally, both Heuristics 9 and 10 show reasonably good performance in terms of the
output measures, with the exception of Heuristic 9's performance for the 74-task problem
(see Appendix). The reason for the difference in efficiency between these two heuristics
lies in their input requirements (see Table 3 and Appendix). Each heuristic sacrifices greatly
in performance on one input resource in order to minimize use of the other resource. For
each problem, Heuristic 9 requires the fewest workers but the most equipment of all the
heuristics, and Heuristic 10 requires the least amount of equipment but the most workers.
In the experiment, Heuristic 10 generally required roughly 50% more workers than most
heuristics and roughly 50% less equipment. Heuristic 9 generally required slightly fewer
workers, but excessively more equipment (several hundred percent more).

Because of equal crew and equipment requirements with Heuristic 10, the weight restric-
tions placed on the inputs will most likely never be binding, giving the heuristic relatively
more freedom to have its input weights find values resulting in robust DEA-efficient solu-
tions. For heuristic 9, the equipment requirement far exceeds the crew requirement. This
will most likely cause the input weight restrictions to be binding, which limits the DEA
model’s ability to find weights resulting in DEA-efficient solutions. In short, Heuristic 9 is
“input-excessive,” while Heuristic 10 is not, despite both heuristics resulting in generally
favorable levels of output.

The next group of heuristics addressed includes those that use simple task selection rules
for assembly line balancing (2, 8, and 11-16). These heuristics work by placing tasks into
work centers according to the rules described in Table 1. The attribute which makes these
heuristics similar to each other is that these rules never consider the duration of the task at
hand, but instead explore precedence relationships (e.g., most followers [Heuristic 15]) or
randomly select tasks for membership in work centers (Heuristic 2). It is worth noting that
these heuristics have been in the assembly line balancing literature since the 1960's. With
the exception of Heuristic 16, which selects tasks based upon most immediate followers,
these heuristics do not perform particularly well. These heuristics typically exhibit “fair”
performance with regard to both the input and output-oriented DEA models. This is not
terribly surprising due to the fact that since these heuristics either select tasks randomly or
explore precedence relationships, no specific line balancing strategy exists. Rule 16 is the
exception that generally demonstrates a good performance. It is found to be DEA-efficient
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for the 25, 29, and 74-task problems and shows robustness up to 2.5% changes for 25-task
problem and, 5% for the 29-task problem.

The next group of heuristics discussed has the common attribute of exploring the duration
of the task at hand to make task selection decisions (Heuristics 1, 3-7, and 17). In general,
these heuristics were designed to require as few workers as possible. Furthermore, the
production performance when these layouts are used is quite poor as exhibited by the
number of heuristics in this category noted as “output-deficient” in Table 3. One possible
exception is Heuristic 1. Table 3 suggests that Heuristic 1 requires a reasonable amount
of inputs, and also shows a fair performance in terms of the production output measures.
Also, Table 4 shows that Heuristic 1's efficiency is robust, displaying robustness through
5% changes for these problems.

The last group of heuristics discussed includes the Simulated Annealing based techniques
(Heuristics 18—-23). These heuristics attained good achievement of their search objective
functions for the line balancing problem. Because of this, specific goal-oriented results
can be obtained, which is basically what occurred. Heuristic 18, which focuses only on
design cost, provided favorable results in terms of the input-oriented DEA model, which
shouldn’t be surprising, since the objective function is dedicated to minimizing the total cost
of crewing and equipment. It also provided solutions that generated somewhat favorable
performance with regard to the output-oriented DEA models. Heuristic 19 performed
poorly. It was determined to be “input-excessive” as well as being “output-deficient. This
heuristic utilizes an objective function dedicated to making the workload across all work
centers equal. This strategy showed no benefits. Heuristic 20 utilizes an objective function
dedicated to minimizing the probability of units being completed late. This strategy was
designed to generate layouts that would perform well with respect to the output-oriented
DEA models, which it did. The surprising result of this heuristic, however, was that it
also showed favorable performance in terms of the input-oriented DEA models. The last
three heuristics use composite functions with two components: design cost and probability
of lateness (Heuristic 21 gives equal weight to each component, 22 give more weight to
lateness, while 23 gives more weight to design cost). These are multiobjective heuristics.
Generally, these three heuristics provided layouts that perform reasonably well on the DEA
output-oriented models, but only fair on the DEA input-oriented models.

4.1. Summary of Discussion

Table 5 provides the decision-maker with some guidelines in selecting from these line
balancing heuristics, based on this research. For each heuristic, two pieces of information
are given. The first is the number of times a heuristic was found to be DEA efficient in this
experiment (seven is the maximum, since seven problems were examined). The second is
a brief listing of situations when a manager might consider using this heuristic.

From inspection of Tables 3 and 4, it becomes clear that several of these line balanc-
ing heuristics need not be considered for implementation due to their excessive resource
consumption angbr their poor performance in terms of the output measures. These tables
also provide information on which heuristics appear most promising. The authors’ short
list of preferred heuristics includes Heuristics 1, 10, 16, 18, and 20. Exactly which one to
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Table 5.Performance summary of each heuristic.

Heuristic Times When to Consider

Efficient

1 3 When there are no delivery pressymelen resources are expensive

2 1 Never

3 0 Never

4 1 When resources are inexpengivaen there are no delivery pressures

5 0 Never

6 0 Never

7 0 Never

8 0 When there are no delivery pressures

9 1 Never
10 7 When there are: delivery pressures, expensive equip., inexpensive labor
11 1 When resources are inexpengivben there are no delivery pressures
12 0 When resources are inexpengivaen there are no delivery pressures
13 1 When resources are inexpengiveen there are no delivery pressures
14 1 When resources are inexpengiveen there are no delivery pressures
15 2 When resources are inexpengivaen there are no delivery pressures
16 3 When resources are expengivaen there are delivery pressures
17 2 When resources are expengiveen there are no delivery pressures
18 4 When resources are expengiveen there are no delivery pressures
19 0 Never
20 5 When resources are expengivaen there are delivery pressures
21 1 When resources are inexpengiveen there are no delivery pressures
22 1 When resources are inexpengivaen there are no delivery pressures
23 2 When resources are inexpengiveen there are no delivery pressures

Note: in this tableresourcesmplies both labor and equipment.

select would depend on which performance objectives are most important in a particular
environment.

Heuristic 10 provided the best overall performance in terms of the DEA models. As pre-
viously noted, however, while this heuristic provides the minimum equipment requirement,
it also requires more workers than the other heuristics (see Appendix). Because of these
labor demands, the manager should be aware that when the specific assembly line applica-
tion has an expensive hourly labor component, adoption of Heuristic 10 should probably be
discouraged. Instead, one of the other heuristics showing promise should be considered—
perhaps Heuristic 20, since it specifically addresses (and achieves) layouts which excel at
requiring reasonable amounts of labor and equipment while simultaneously providing the
layouts with the ability to show a strong performance in terms of output measures.

5. Conclusions

A technique has been presented that uses simulation and Data Envelopment Analysis to
assist management in deciding which assembly line balancing heuristics would best suit
their needs. For the heuristics that were not found to be DEA-efficient, the DEA models
inform the decision-maker as to why a certain heuristic is not efficient and what changes
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could be made to either the inputs or outputs so that the heuristic could become DEA-
efficient. For the heuristics that were found to be DEA-efficient, the sensitivity analyses

provided some insight as to how “robust” these heuristics are to unfavorable changes.
Generally, a reasonable amount of robustness was found for the better heuristics.

This methodology used two output performance measures, reflecting a production layout’s
ability to achieve the desired cycle time and its ability to complete parts on time within
each cell. Labor and equipment requirements were considered as well. Weight restrictions
were imposed on these inputs and outputs so that all of the performance measures were
given reasonable consideration. For a particular line balancing application, the decision-
maker would want to weight the inputs and outputs to best reflect the current situation—
e.g., if equipment cost is quite high relative to labor cost, the weights should be allocated
accordingly.

Line balancing is only one type of layout, or production design procedure. Other pro-
cedures are also concerned with resource requirements as well as production performance.
These other procedures, such as cellular manufacturing design and laying out job shops,
may be good candidates for evaluation of multiple solution approaches using DEA.
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Appendix. Data Used for DEA Models

11-Task Problem

Heuristic

O©CoOo~NOUh WNPE

POT (11)

0.5944
0.9547
0.8067
0.7566
0.8878
0.8878
0.8878
0.9206
0.9193
0.9908
0.9413
0.9413
0.8797
0.9413
0.8797
0.9413
0.7399
0.9444
0.9331
0.9966
0.9953
0.9953
0.9942

25-Task Problem

Heuristic

©CoOo~NOUThWNE

POT (25)

0.6948
0.5804
0.7946
0.8585
0.8356
0.8356
0.8356
0.7757
0.8757
0.9388
0.7069
0.7257
0.8181
0.889

0.8844
0.7928
0.8630
0.6491
0.7342
0.9939
0.9695
0.9637
0.9637

CTR (11)

0.9752
1.0012
0.9627
0.9449
0.9808
0.9808
0.9808
0.9999
1.0001
1.0000
1.0000
1.0000
0.9885
1.0002
0.9885
1.0002
0.9708
1.0000
0.9999
1.0000
1.0000
1.0000
1.0012

CTR (25)

0.9307
0.9349
0.9404
0.9629
0.9773
0.9773
0.9773
0.9332
1.0009
0.9995
0.9491
0.9664
0.9324
0.9531
0.9884
0.9453
0.9768
0.9300
0.9677
0.9999
0.9999
1.0004
1.0004

Crew
(11)

10
10

9

9
10
10
10
10

9
14
14
10
10
10
10
10
10
10
10
11
11
11
11

Crew

Equip
(11

31
24
28
27
35
35
35
25
99
14
34
34
23
34
23
34
25
24
24
28
28
28
25

Equip
(25)

64
83
71
98
96
96
96
73
475
32
71
75
67
65
134
64
90
71
141
96
89
90
88

21-Task Problem

POT (21)

0.7758
0.6996
0.7897
0.6943
0.7475
0.7475
0.7475
0.8100
1.0000
0.9686
0.8453
0.8183
0.8066
0.7907
0.9077
0.9271
0.9457
0.7662
0.8749
0.9970
0.9344
0.9344
0.9700

0.6881
0.6608
0.7121
0.6183
0.7997
0.7740
0.6716
0.7684
0.6910
0.8853
0.7230
0.7219
0.7779
0.6601
0.6884
0.7395
0.6773
0.6893
0.7360
0.9498
0.8431
0.8431
0.8431

CTR (21)

0.9371
0.9331
0.9329
0.9291
0.9461
0.9461
0.9461
0.9535
1.0001
0.9995
0.9717
0.9427
0.9332
0.9369
0.9845
0.9635
0.9985
0.9372
0.9700
1.0005
1.0001
1.0001
0.9997

29-Task Problem

POT (29) CTR (29)

0.7952
0.772

0.8004
0.8535
0.5435
0.8876
0.8795
0.8795
0.9979
0.9468
0.8457
0.8108
0.8777
0.5834
0.7571
0.7876
0.8643
0.6484
0.8779
0.9999
1.0007
1.0007
1.0007

Crew
(21)

17
16
17
16
16
16
16
16
16
26
18
18
17
17
18
17
18
17
16
19
18
18
19

Crew
(29)

25
24
25
24
25
25

Equip
(21)
43

52
46
46
71
71
71
51
336
26
45
a7
52
46
48
59
53
40
115
108
127
127
91

Equip
(29)

165
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40-Task Problem 45-Task Problem
Heuristic  POT (40) CTR(40) Crew Equip POT(45) CTR((45) Crew Equip
(40)  (40) (45)  (45)

1 0.7598 0.8061 36 83 0.7294 0.8081 35 79
2 0.6995 0.8209 34 92 0.6479 0.8667 34 131
3 0.7011 0.8045 34 98 0.7747 0.7603 35 118
4 0.6623 0.8297 33 129 0.7351 0.8257 35 104
5 0.6800 0.8753 35 193 0.6602 0.8832 34 179
6 0.7221 0.8289 34 126 0.6981 0.8325 34 185
7 0.7221 0.8289 34 126 0.7918 0.8748 35 177
8 0.6893 0.7900 34 112 0.7508 0.8873 35 147
9 0.7787 1.0000 32 1280 0.7252 1.0016 32 1440
10 0.8612 0.8212 49 49 0.8967 0.8861 53 53
11 0.7528 0.8183 35 100 0.7479 0.7759 36 119
12 0.6703 0.8139 34 105 0.7199 0.7856 35 100
13 0.7465 0.8315 36 113 0.7620 0.7860 37 85
14 0.8097 0.8639 36 119 0.7344 0.7052 35 108
15 0.7587 0.8307 35 103 0.7414 0.8395 37 90
16 0.7466 0.8337 35 114 0.7678 0.8092 36 109
17 0.7727 0.8281 35 112 0.7747 0.7081 37 88
18 0.6849 0.6340 35 79 0.6572 0.7968 33 98
19 0.6384 0.8852 32 507 0.6726 0.8831 33 226
20 0.9172 0.9992 38 259 0.8331 0.9804 41 168
21 0.9119 0.9712 38 146 0.9305 0.9509 40 161
22 0.9287 0.9972 38 150 0.9129 0.9173 39 157
23 0.9186 0.9724 38 149 0.8814 0.9100 38 157

74-Task Problem
Heuristic POT (74) CTR (74) Crew Equip
(74) (74)

1 0.7355 0.7215 64 128
2 0.7020 0.8152 61 245
3 0.7569 0.6411 63 302
4 0.6683 0.8263 60 309
5 0.7322 0.7931 60 398
6 0.6914 0.8467 60 460
7 0.7886 0.8700 61 476
8 0.6830 0.7980 60 236
9 0.6934 0.5415 32 2368
10 0.8954 0.7896 95 95
11 0.7426 0.7896 64 186
12 0.7438 0.8463 64 256
13 0.7438 0.8463 64 256
14 0.7749 0.8205 65 218
15 0.7302 0.8019 64 228
16 0.7678 0.7516 64 182
17 0.7302 0.8019 64 228
18 0.7355 0.7215 64 128
19 0.6930 0.8339 59 776
20 0.9149 0.9596 70 361
21 0.8332 0.9213 67 314
22 0.8570 0.9363 68 338

23 0.7871 0.9168 66 318
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