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ABSTRACT 

This paper presents an innovative methodology that com-
bines simulation, data mining, and knowledge-based tech-
niques to determine the near- and long-term impacts of 
candidate aircraft engine maintenance decisions, particu-
larly in terms of life-cycle cost (LCC) and operational 
availability. Simulation output is subjected to data mining 
analysis to understand system behavior in terms of subsys-
tem interactions and the factors influencing life-cycle met-
rics. The insights obtained through this exercise are then 
encapsulated as policies and guidelines supporting better 
life-cycle asset ownership decision-making. 

1 INTRODUCTION 

The pressures of sustained high tempo military operations, 
spiraling maintenance costs, and concerns over rapidly ag-
ing aircraft assets have generated renewed interest in im-
proved processes and technologies that can dramatically 
improve both affordability and readiness. A largely un-
tapped source of significant gains in these areas is a set of 
carefully designed fleet maintenance policies and practices 
guided by a clear understanding of the consequences of to-
day’s decisions on near- and long-term performance. Simu-
lation plays a potentially significant role in this discovery 
process.  

In traditional simulation, system behavior is usually 
analyzed and interpreted in terms of statistical metrics 
(e.g., mean, variance, confidence intervals for throughput, 
queuing time, utilization) (Benjamin 1995, Erraguntla 
1994). Simulation has also been used in conjunction with 
optimization to seek optimal parameter values or to do 
tradeoff analyses (Goldberg 1989). A more expansive 
framework is needed, however, to fully understand the dy-
namics of this system’s behavior and the factors influenc-
ing overall performance. A key innovation of the approach 
presented in this paper is the marriage of data mining and 
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knowledge discovery techniques with simulation to de-
velop the necessary insights and project the future condi-
tions that will emerge as a consequence of today’s deci-
sions (Painter 2005). The methodology also uniquely 
supports explicit consideration of the context in which 
maintenance decisions are or will be made by directly lev-
eraging asset status and maintenance history data. To-
gether, this framework provides for significantly enhanced, 
measurable improvements. 

2 AFFORDABLE READINESS CHALLENGE 

A growing concern among Department of Defense (DoD) 
decision-makers is the accelerating cost of operations and 
sustainment (O&S). A significant portion of this cost is di-
rectly linked to the 47,630 turbine engines that power the 
24,350 military aircraft in inventory. Sustainment costs for 
these assets exceed $6.66B every year, excluding fuel ex-
penses (Beachkofski 2006). And these costs are growing. 
Over the last ten years, the Navy experienced a 13.3% an-
nual growth in cost per engine flight hour (CPEFH) (Ci-
fone 2006). The Air Force reports that its maintenance 
costs are growing at twice the rate of inflation.  

As O&S costs increase, it becomes too costly to invest 
in new systems. Consequently, aging weapon systems, 
many of which have been in service well beyond their de-
sign life, are pressed into continued service. As these sys-
tems continue to age, they begin to experience new and 
more frequent failures. Recapitalization, engineering modi-
fication, and life extension programs increase O&S costs 
while consuming proportionally higher percentages of that 
budget. Meanwhile, fleet modernization plans have been 
severely curtailed or put on hold simply to cover the costs 
of sustaining the assets that are currently in inventory.  

The impact of these trends on mission capability is an 
even greater concern. The Navy, for example, lost six air-
craft and seven aviators over a span of two months in early 
2006, precipitating aviation standdown orders by the 

 



Painter, Erraguntla, Hogg, and Beachkofski 

 
Commander of Naval Air Forces in San Diego for the first 
time in four years. (CNAF 2006). By this time, the Navy 
had experienced four Class A flight mishaps attributed to 
engine-related problems in the first half of the fiscal year, 
exceeded their annual average (Cifone 2006). A Class A 
mishap is defined as one involving an aircraft with an in-
tent to fly, which resulted in damages totaling $1 million or 
more, a destroyed aircraft, a fatality, or a permanent total 
disability. 

In view of these trends, joint service goals have been 
set to reduce propulsion-related Class A mishaps by 75%, 
reduce maintenance costs by $420M (10%), and double the 
average time on wing for aircraft engines. 

There is clearly a tension here among competing ob-
jectives. Many view the Reliability Centered Maintenance 
(RCM) concept as a possible way to reverse the trend of 
O&S costs spiraling out of control while simultaneously 
ensuring high levels of readiness and safety.  

3 RELIABILITY CENTERED MAINTENANCE 
OVERVIEW 

Current engine maintenance practices across the services 
involve frequent inspections, parts replacements, and re-
work in an attempt to maintain high standards of system 
reliability. Frequent maintenance correspondingly requires 
a large inventory of spare engines and engine components. 
Some studies (Nowlan 1978) indicate that current mainte-
nance practices are not cost-effective, and may even reduce 
reliability and availability.  

RCM provides a method for rational decision-making 
that considers the overall effects of possible maintenance 
actions ⎯ or the risk of not performing those maintenance 
actions ⎯ on aggregate level metrics like engine availabil-
ity, performance, and life-cycle cost (LCC).  

Recent efforts within the DoD to apply RCM seek to 
leverage engine maintenance and reliability history and 
cost data to drive engine maintenance decision-making 
such that CPEFH is minimized. The goal is to simultane-
ously reduce costs (i.e., improve affordability) and increase 
time on wing (i.e., readiness). Estimating the CPEFH im-
plications of a given maintenance decision requires devel-
oping projections of expected time on wing (ETOW) and 
LCC. Maintenance history data is used to fit models yield-
ing ETOW projections. The specific process by which 
ETOW estimates are generated is beyond the scope of this 
paper. Suffice it to say that these estimates are generated 
using Weibull distributions derived from field data reflect-
ing aircraft engine maintenance history and reliability 
characteristics. Today, RCM decision makers are only able 
to estimate the immediate costs of a maintenance decision 
although they recognize that there are long-term cost con-
sequences for those decisions. The following section de-
scribes the unique challenges and methodology developed 
to estimate LCC. 
1254
4 LIFE-CYCLE COST ESTIMATION 
METHODOLOGY 

Every maintenance decision, including the decision to de-
fer scheduled or unscheduled maintenance effort, has both 
immediate and long-term cost implications. These are 
linked decisions with probabilistic outcomes whose cost 
implications can only be understood by projecting the 
combined effects of several factors. Accurate estimates of 
the LCC implications of a given maintenance decision are 
needed to achieve an optimal balance among competing 
enterprise objectives. Particularly for aircraft engines ⎯ 
whose service life can span decades ⎯ maintenance deci-
sion-making that is driven to minimize immediate costs 
alone will tend to increase LCC and reduce operational 
availability.  

Future costs based on historical data are likely to be 
poor estimators for several reasons. For example, sources 
of historical costs provide accounting data that is known to 
reflect a skewed picture of true costs. Furthermore, since 
engines are essentially perpetual life assets, there is little or 
no data reflecting assets that have completed a full life-
cycle maintenance history and cost accumulation. Finally, 
historical patterns of maintenance do not necessarily depict 
what will be experienced in the future, particularly if 
planned usage patterns and the environment of use 
changes. 

An important contribution of this research was the de-
velopment of a methodology for LCC estimation that ad-
dresses these issues by coupling discrete event simulation 
and data mining to develop and maintain meaningful cost 
estimation parameters. The process involves simulating the 
fleet of engines for some planned set of operational scenar-
ios to collect maintenance decisions and their cost implica-
tions over their entire service life. Multiple simulation runs 
are executed to account for the stochastic nature of mainte-
nance events and decisions. This simulation-based mainte-
nance and cost history data is then mined to discover the 
parametric relations that best characterize the LCC impli-
cations of each maintenance decision. The cost parameters 
and/or models developed through mining this data are then 
refined and eventually released for use in RCM decision-
making. Maintaining these parameters requires periodic 
refinements motivated through changes in environment, 
maintenance practices, the underlying reliability of engine 
components, etc. 

The logic of the simulator emulates the dynamics of 
engine fleet operation and maintenance over time using the 
following process:  

 
1. Determine decision points (i.e., the times at which 

maintenance decisions must be made). 
2. Determine decision options at the decision point. 
3. Select decision option. 
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4. Determine costs incurred with the selected deci-
sion. 

5. Iterate, returning to step 1 until a stopping condi-
tion is met (e.g., end of time horizon).  

 
In the first step, the simulator determines the points 

during the life cycle of the asset at which the next set of 
maintenance decisions will be made. Some decision points 
are determined based on calendar-driven requirements 
(e.g., aircraft Programmed Depot Maintenance), while oth-
ers are usage-driven as determined by hard life limits, en-
gine reliability characteristics, optempo, and/or the opera-
tional environment (Figure 1).  
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Figure 1: Decision Point Timeline 

 
Once the decision points are identified, the simulator 

must determine the range of possible maintenance actions.  
Once a decision option is selected, the costs incurred 

as a consequence of that decision are determined. These 
costs may include labor costs, material costs, transportation 
costs, foregone revenues due to loss of availability, etc. 
This process is repeated a sufficient number of times to 
generate maintenance history and cost statistics that can be 
studied using data mining.  

Simulation affords the opportunity to do what cannot 
be done even with the best possible maintenance history 
data collection system. It allows one to produce data re-
flecting operation of the engine fleet throughout its entire 
service life for any set of conditions. Simulation also al-
lows one to determine the combined effects of variability 
and competing constraints on LCC performance.  

Once this data is generated, data mining techniques 
can be used to identify key patterns and parametric rela-
tionships. These can then be used to define models from 
which LCC can be determined parametrically; thereby 
yielding decision support that promotes both accuracy and 
ease of use.  

5 ENABLING TECHNOLOGIES 

The technology needed to generate these LCC estimates 
includes a discrete event simulation-based cost projector, 
or Cost Projection Simulator (CPS) and a suite of data min-
1255
ing tools used to develop and maintain LCC estimation pa-
rameters and/or models. 
The CPS emulates the time varying cost behavior that will 
be manifested for an engine to support planned missions in 
the context of some set of maintenance policies. As the en-
gines are “flown” with the reliability characteristics of the 
engines generating simulated maintenance events. The cost 
consequences of simulated maintenance events are re-
corded along the way until the specified stopping condition 
is met (e.g., engine reaches its service life limit). Differ-
ences in LCC among alternative maintenance decisions are 
determined by simulating alternative maintenance options 
and examining how they compare. Simulation runs are re-
peated multiple times for each decision option to establish 
expected cost and confidence intervals.  

The CPS model encompasses all of the reliability 
modeling aspects needed for reasonable estimation of the 
costs associated with an engine life cycle. In this role, the 
CPS is designed to generate estimations of LCC based on 
the key factors that drive their structure. In essence, the 
model “flies” the fleet of engine assets to subject them to 
the accumulation of age, damage, and maintenance/repair 
actions that keep them operational. This goes beyond just 
simulating the accumulation of run time on an engine and 
the occurrence of scheduled maintenance events. The 
model also uses characteristic life functions to model the 
potential failures of the modules and the engine during op-
eration. The underlying Weibull distributional forms are an 
integral piece of the model structure, and the parameters 
for each module are carried with it throughout its life in the 
model. Also embedded in the model structure are the hard-
life limits for each component, as well as a representation 
of the maintenance policies and actions that these limits 
impose. The model also incorporates a number of other 
factors that are relevant to determining the LCC of an asset 
(see Figure 2). These parameters are not static. As the asset 
ages through use, these parameters are updated to reflect 
imposed changes. The methods for adapting these parame-
ters include consideration of operational tempo, mission 
profiles, and operating environment. 
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Figure 2: Simulation-Based Cost Projector 
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6 SIMULATION MODEL AND PRELIMINARY 

DATA MINING FINDINGS 

6.1 Simulation Model 

The CPS was designed as a discrete-event simulation 
model constructed in Arena. This model had two primary 
purposes. The first purpose was to support long-range cost 
estimates. The second purpose was to generate data that 
could be subjected to data mining analysis to determine 
underlying cost relationships and structures.  

The CPS model is structured to simulate the flying, 
removals, and maintenance actions to which an engine is 
subjected over its life cycle. Of primary importance in 
simulation are the embedded reliability characteristics of 
the engine components. For this model, the representative 
Weibull characteristics for each module are modeled to 
generate the appropriate failure modes and to determine the 
maintenance requirements that the asset will be subjected 
to over time. Statistical sampling is used to determine 
when a failure will be experienced, and, if so, what mod-
ule(s) is involved, and the nature of the failure. If the en-
gine completes a mission successfully, the components are 
aged according to the mission profile that was flown, and 
the parameters for the module reliability are updated. If the 
engine experiences a failure, the nature of the failure de-
termines the repair and replacement options available to-
gether with which action is taken. The implementation of 
this model in Arena is depicted in Figure 3. 

 

 
Figure 3. Cost Projection Simulator 

 
The data generated by the simulator (part of which is 

shown in Figure 4) allows for detailed examination of 
LCCs and how they are accumulated over time. This pro-
vides a history of all maintenance actions and their associ-
ated costs. From this data, the long-term cost consequences 
of particular maintenance actions can be extracted. In addi-
tion to individual costs, the model also tracks various met-
rics like CPEFH, mission completion rate, etc.  
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Figure 4: Cost Projection Simulation Outputs 

 
This simulation framework provides the capability to 

determine LCC based on reliability characteristic curves. 
More importantly, the simulator provides a framework to 
analyze how supply chain parameters (on-hand inventories, 
due-ins, local inventories, engines available for swapping) 
and maintenance policy options (whether to repair, swap 
with another module, replace with a new module, or defer 
maintenance) affect LCC. 

This model functionality can also support the genera-
tion of the Cost per Mean Time Between Removals chart 
that is a common reference for thinking about the charac-
teristic tradeoff between cost and operational availability. 
The ability to generate this curve will allow further study 
of its characteristic form for different type, model, and se-
ries (TMS) engines operated under various maintenance 
policies.  

The prototype CPS developed as part of this research 
demonstrated the feasibility of the concept of using a dis-
crete-event engine to develop estimates of LCC. The 
model design accounts for various factors, including envi-
ronmental stresses (e.g., fine sand environments) and 
changes in op tempo. These factors are used to adapt indi-
vidual component Weibull parameters over time as the en-
gines are flown in the simulator.  

6.2 Data Mining Results 

Data mining refers to a loose collection of analytical driven 
techniques and technologies that support the overall 
knowledge discovery process (Benjamin 2002). KBSI’s 
Personal Data Prospector (PDP) was used to perform data 
mining on the simulation output. The PDP includes an ex-
tensive set of data access, manipulation, mining, and visu-
alization functions supported by fundamental data manipu-
lation elements, data processing elements, numerical 
algorithmic components, and data visualization compo-
nents. These elements can be strung together graphically to 
define and execute an analytical process. In this way, the 
data mining process logic is captured explicitly as a proc-
ess diagram or network (called Knowledge Analysis Net-
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works). This mechanism makes the data mining process 
transparent and repeatable. 

The focus of this data mining effort was to discover 
and understand LCC drivers. Thus, the approach used ex-
tracts engine life-cycle events in terms of projected main-
tenance issues, actions performed, the subsequent events 
that resulted, and their impact in terms of cost. In particu-
lar, this approach uses regression, clustering, and classifi-
cation to determine cost drivers. The following sections 
summarize the results of those efforts.  

6.2.1 Linear Regression 

Regression analysis models the relationships between 
TOW or more explanatory variables (or independent vari-
ables) and a response variable (dependent variable). In lin-
ear regression, the relationship is modeled as a linear equa-
tion. The most popular approaches to linear regression 
attempt to fit the best line to the data by minimizing the 
mean square errors (square of deviation from the data point 
and the line). 

Formally, the model for linear regression can be mod-
eled as: 

 
 Data = Linear Model + Residual, 
 Y = Constant + α1 X1 + α2 X2 +….+ αn Xn + ε, 

 
where: 
 Y is the dependent variable, 
 X1, X2, , Xn are explanatory variables, and 
 ε is the residual. 

 
One of the first activities undertaken to study the 

simulation data was to develop a linear regression model to 
understand the variables influencing LCC. LCC was mod-
eled as a dependent, or response, variable. The number of 
repairs, swaps with inventory, swaps with modules that 
were still part of other engines, replacements with new 
modules, and the number of no actions (i.e., deferred main-
tenance decisions) were modeled as independent or ex-
planatory variables.  

Regression analysis resulted in the following model: 
 

LCC = (450,556 + 61,451 * Number Repairs + 158,430 * 
Number of New Replacements + 18,766 * Num-
ber of Swaps Between Engines + 55,471 * Num-
ber of Swaps with Inventory + 107,042 * Number 
of No Actions) 

 
The regression model had a very high F value (346) 

indicating at least one linearly dependent variable. The 
model had a reasonable R-square (.77) and Adjusted R-
square (.77) indicating that the model was able to explain 
LCC variability to a reasonable extent. 
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The following intuitive notions were obtained through 
an analysis of the regression model: 

 
1. The most significant factor affecting LCC was the 

number of new replacements. This variable had a 
coefficient of 158,430. 

2. Another significant factor affecting LCC was the 
number of repairs. This variable had a coefficient 
of 61,451. 

 
Several counter-intuitions were also identified. Valida-

tion of the model and data results is needed to make sure 
that these counter-intuitive notions are not a result of ap-
proximations in the model. If validated, these observations 
can yield good insights into cost drivers: 

 
3. The coefficient for swapping modules between 

engines (18,766) was less than the coefficient of 
swapping modules with assets in inventory 
(55,471). We expected the cost of swapping be-
tween engines to be higher because of the over-
head involved. One possible explanation for this 
could be that swapping between engines resulted 
in better-aligned engines.  

4. The coefficient for ‘not taking any action’ was 
unusually high (107,042). This could be due to the 
modules failing later on, thereby affecting the 
mission.  

6.2.2 Classification Methods 

Classification methods refer to a collection of statistical or 
heuristic methods that enable the separation of a set of enti-
ties (characterized by a representative attributes) into 
groups (classes) and allocating new entities into these pre-
defined groups (classes). The final result is a set of rules 
that help in assigning new observations to one of the 
classes. Another way of looking at classification is as a 
partitioning of the independent variable space (or attribute 
space) into regions, where each region is associated with a 
particular class assignment. The boundaries between these 
regions are called decision surfaces.  

Commonly used classification methods include logis-
tic regression models, multiple discriminant analysis 
(MDA), decisions trees for classification (CARD and 
CHAID), artificial neural networks (ANN) for classifica-
tion, and Bayesian networks. 

Classification techniques were used to analyze the pa-
rameters that influence LCC. All data points were classi-
fied as either low- or high-cost engines based on their 
LCC. Classification was done using the CART algorithm 
and cost classes were used to develop the classification tree 
structure. The variables ⎯ number of repairs, new module 
replacements, swaps between engines, swaps with inven-
tory, number of repairs within 50 hours of phase (planned 
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intervals of running-hours that define a maintenance point), 
number of new replacements within 100 hours of phase, 
and number of no actions ⎯ were chosen as attributes to 
be included in the model to develop the classification tree 
(Figure 5). 

 

 
Figure 5: Classification Tree  

 
For validation purposes, the classification tree was 

used to classify the original data points into low- or high-
cost classes. The classifier performed well in accurately 
predicting the cost class based on such attributes as number 
of new replacements, number of repairs, etc. This validated 
that the classifier developed was reasonable in identifying 
LCC drivers. 

Several insights were gained through the classification 
exercise, including the following. 

 
5. Repairing parts was the most statistically signifi-

cant factor influencing LCC. The classifier picked 
number of repairs as the first attribute to distin-
guish between low- and high-cost data points. 
This could be caused by incurring significant la-
bor and material cost through repair without sig-
nificantly improving asset life expectancy. This 
insight may be somewhat counter-intuitive, but 
very significant.  

6. The second most significant variable influencing 
costs involved replacement with new modules. 
When the number of repairs was greater than 9.5 
and number of replacements was greater that 6.5, 
the LCC of an engine would automatically be 
high. If the number of new replacements was 
greater than 11.5, LCC was high irrespective of 
anything else. 

7. While it might be intuitive to expect that LCC is 
high for a high number of replacements with new 
modules, it is not obvious that performing too 
many repairs can also increase LCC. This finding 
is very significant and reinforces two observa-
tions: 
(a) Over-performing repair activities can be 

counter-productive in some situations. 
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(b) For the specific situation simulated, swapping 
may be a better option than repairing. 

6.2.3 Clustering Techniques 

Clustering is an exploration of a data set to determine the 
structure of natural groupings. Clustering techniques are 
distinct from classification techniques since they pertain to 
a known number of groups. While the objective in classifi-
cation is to assign new observations to one of these groups, 
cluster analysis is more primitive in that no assumption is 
made about the number of underlying groups or any other 
structure. Grouping is done after defining an appropriate 
similarity or distance measure. The objective of optimiza-
tion-based clustering is to determine a partitioning of the 
data set that minimizes intra-cluster variability and/or 
maximizes inter-cluster variability. To this end, a cluster-
ing criterion (i.e., objective in an optimization model) is 
defined, and the given samples are classified to optimize 
this criterion. Minimization of the intra-cluster variability 
and maximizing the inter-cluster variability yields the clus-
ter centers along with the assignments of the samples to the 
different clusters. Popular methods include hierarchical 
clustering methods (agglomerative hierarchical method and 
divisive hierarchical methods) and neural net-based tech-
nologies such as Kohonen self-organizing feature maps. 

The simulation results generated by the CPS were ana-
lyzed using the clustering data mining technique. The fo-
cus of clustering efforts was to segment low-, medium- and 
high-LCC engines and then study them to understand the 
variables or factors that influenced their costs. 

The data elements used for clustering include the LCC 
of the engine, the number of swaps with inventory, swaps 
with engines, number of new replacements, number of re-
pairs, and number of no actions. Since we wanted to ana-
lyze whether the timing of performing a maintenance ac-
tion influences LCC, we included two additional variables: 
(1) New Replacements within 100 hours of Phase, and (2) 
Repair within 50 hours of Phase. 

Clustering was done on a single variable (LCC) using 
the K-means algorithm. All the other variables were used 
for profiling. Profiling involves calculating the mean value 
of different variables in each cluster to study the similari-
ties and differences between clusters.  

In this study, the data elements were grouped into 
three clusters to represent low-, medium-, and high-cost 
data points. After the clusters were formed, a profile was 
developed for each cluster by calculating the mean values 
of the explanatory variables for each cluster. The centroids 
of the three clusters are summarized in Table 1. 
8
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Table 1. Profile Results for Each Cluster 
Attribute Cluster 1 Cluster 2 Cluster 3

CumulativeCost_Mean $3,390,322 $3,822,992 $4,269,430
RecordCount 139 249 112

ReplaceNew_Mean 7.97 9.84 10.69
Repair_Mean 7.24 8.93 11.69

RepairWithin50HrPhase_Mean 0.68 0.71 0.95
ReplaceNewWithin100Phase_Mean 1.32 1.45 1.37

SwapBtEngs_Mean 9.73 8.33 7.32
SwapWithInv_Mean 9.15 9.65 11.69

NoRepair_Mean 6.01 5.19 5.02  
 
The following insights were gained through the clus-

tering exercise: 
 
8. Low-, medium-, and high-cost clusters (Clusters 

1, 2 and 3 in Table 1) differ significantly in their 
Replace New mean (8.0, 9.8, and 10.7; respec-
tively) and Repair mean (7.2, 8.9, and 11.7; re-
spectively). This result reinforces the insights 
gained through regression analysis. 

9. Replacing new engine modules within 100 hours 
of phase did not seem to influence the cost. All 
three clusters (low-, medium- and high-cost clus-
ters) were very similar in terms of the number of 
replacements of new engines within 100 hours of 
Phase (1.32, 1.45, and 1.37; respectively). 

10. Repairing a module within 50 hours of phase 
seems to have a slight effect on cost differences. 
The mean values of the three clusters were 0.68, 
0.71 and 0.95. Further study would be needed to 
verify whether this difference is statistically sig-
nificant or not. 

7 SUMMARY AND CONCLUSIONS 

A LCC estimation methodology supported by discrete 
event simulation and data mining provides a robust ap-
proach that overcomes practical issues that cannot be ad-
dressed using traditional methods. This innovation pro-
vides a key capability supporting RCM-based decision-
making.  

Demonstration of concept viability was accomplished 
by first showing that discrete event simulation can be used 
to project LCC. A distinct advantage of a discrete event 
simulation-based approach is that LCCs are determined by 
considering not only failure rates and Weibull characteris-
tic curves, but a number of important factors that influence 
LCC ⎯ like inventory levels, swapping policies, supply 
posture, the environment of use, increases in part acquisi-
tion costs, etc. Coupled with this was a demonstration of 
the ability to use data mining to identify and characterize 
cost drivers by extracting them from simulation data out-
put.  

These findings represent significant innovations that, 
when fully developed, can help both field and depot engine 
maintenance units successfully apply RCM principles and 
maximize the return in engine flight hours for each dollar 
125
spent toward maintenance. Significant developments from 
this research include the following: 

 
• Clear identification of the theoretical and practical 

issues involved in LCC projection. 
• Unique approach coupling discrete event simula-

tion and data mining technologies to either di-
rectly calculate or develop and maintain parame-
ters to determine the LCC implications of 
maintenance decisions made in a given context. 
This approach circumvents the risks and short-
comings of parametric model-based approaches, 
minimizes dependence on maintenance history 
and accounting data, directly leverages models re-
flecting component reliability characteristics, and 
accounts for complex interactions among con-
straints in the operational environment to provide 
statistically rigorous and accurate LCC projec-
tions.  

• Simulation-based capability to project the cost 
dynamics and overall LCC implications of main-
tenance decisions, thus providing a significant ad-
vancement in LCC estimation capabilities.  
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