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36 Abstract

37 This paper presents a detailed methodological framework for collecting microscopic driver and 

38 vehicle behaviour data over a long road segment with an application to the entire stretch of a 

39 freeway ramp segment using single and multiple Unmanned Aerial Vehicles (UAVs). The 

40 methodology allows users to collect reliable and complete trajectories of traffic movements at 

41 areas with challenging physical characteristics (long road segment, horizontal curvature, changing 

42 elevation, and presence of shadow), challenging traffic characteristics (high traffic volume, high 

43 speeds, and high speed changes), and restrictive regulations (UAVs prohibited from hovering over 

44 the freeway or the right-of-way). Different UAV setups were recommended and can be used 

45 depending on the site conditions. Specific commercial software and procedures used to complete 

46 the data collection are explained. The methodology was applied at two ramps and verified with 

47 speed data acquired from differential GPS receivers using three different error metrics. Results 

48 showed good performance of the proposed methodology, including when aerial videos must be 

49 taken from oblique angles.

50

51 Keywords: Traffic Data Collection, Microscopic Driver Behavior Data, Freeway Ramp Terminal, 

52 Multiple Unmanned Aerial Vehicles, Traffic Analysis 
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53 1. Introduction

54 Little information is available in the literature about the speeds and behaviour of freeway 

55 drivers as they travel along an interchange’s ramp and speed change lane (SCL). Most studies (e.g., 

56 Ahammed et al. 2008; El-Basha et al. 2007; Yi and Mulinazzi 2007) that examined driver 

57 behaviour at freeway ramp terminals observed drivers along the SCL only. Little is also known 

58 about the traffic conflicts and interactions that happen between freeway and ramp drivers during 

59 the merging and diverging activities. As indicated in the literature (Fitzpatrick and Zimmerman 

60 2007; Torbic et al. 2012), existing knowledge about driver and vehicle merging/diverging 

61 behaviour in current North American design guides (AASHTO 2018; TAC 2017) is based on 

62 limited studies conducted on passenger cars between the 1930s and 1950s. The design criteria for 

63 the freeway SCLs are also based on the laws of kinematics with assumptions related to operating 

64 speeds and acceleration/deceleration capabilities of passenger vehicles (Fitzpatrick and 

65 Zimmerman 2007; Torbic et al. 2012). Factors such as driver gap acceptance behaviour and the 

66 presence of heavy vehicles have not been explicitly considered. Consequently, several researchers 

67 have expressed a need to evaluate current SCL design values and called for more research in this 

68 area (Fitzpatrick and Zimmerman 2007; Fitzpatrick et al. 2012).

69 One possible explanation for the lack of driver behaviour data at interchanges is the difficulties 

70 in observing vehicles over the entire stretch of a ramp segment in a cost-effective, efficient, and 

71 safe manner. Most existing traffic data collection technologies need to be installed on the freeway 

72 or within the right-of-way. Typical examples are laser/lidar guns and fixed video cameras; both 

73 cannot track all vehicles on all travel lanes at the same time or for a long distance unless multiple 

74 units are used. Alternative data collection techniques include using instrumented probe vehicles 

75 and driving simulators. However, the accuracy of driving simulators and the sample size required 
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76 for these studies are two significant concerns. The Naturalistic Driving Study (NDS) conducted 

77 through the Strategic Highway Research Program (SHRP 2) can address some of these concerns 

78 by collecting the data over a long period of time such that drivers’ behaviour will not be altered 

79 due to presence of data collection equipment (Dingus et al. 2015). Yet, the equipment cost is 

80 another limitation to such studies (Turner et al. 1998). 

81 Unmanned Aerial Vehicles (UAVs), on the other hand, can be a powerful tool for 

82 investigating driver behaviour at the microscopic level, specifically in areas where traditional data 

83 collection is difficult. Recent research has demonstrated that UAVs can overcome the limitations 

84 of traditional data collection methods due to their mobility, flexibility, and ability to cover large 

85 areas (Khan et al. 2017a, 2018). Additionally, traffic data captured by UAVs contain more 

86 information than those collected by traditional methods (Wang et al. 2016), specifically the non-

87 camera-based methods. Besides traditional data such as speed, density, and flow, UAV videos 

88 could provide vehicle-level data, such as lane-change and car-following information (Wang et al. 

89 2016). Combined with image processing tools, the use of UAVs can be a promising technique to 

90 provide comprehensive trajectory-based information and driver behaviour at different road 

91 segments. 

92 The objectives of this paper are to present a detailed methodology for collecting and extracting 

93 accurate vehicle trajectories over a long road segment with challenging physical characteristics 

94 using UAVs and video image processing and apply the methodology in a case study to extract 

95 trajectories of freeway ramp vehicles and microscopic driver behaviour data over the entire ramp 

96 segment. The major tasks covered in this paper include developing a methodology to process UAV 

97 videos, collecting aerial video data using single and multiple UAVs, and extracting driver merging 

98 and diverging behaviour parameters. The approach adopted for the video analysis consists of three 
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99 consecutive steps: video stabilization, camera calibration, and vehicle tracking. The methodology 

100 was applied at an interchange with two ramps and verified with speed data acquired from 

101 differential GPS receivers.

102 2. UAV Use in Traffic Data Collection

103 Using UAVs in traffic data collection needs considerable planning and management for 

104 efficient use within local laws and regulations (Khan et al. 2017b). For example, Canadian 

105 legislations restrict UAV operations for commercial purposes, at nighttime, in adverse weather 

106 conditions, and within controlled airspace. Canadian legislations also prohibit UAVs to be hovered 

107 over highways or in built-up areas, flown higher than 120 meters above the ground level, or 

108 operated within 30 meters of bystanders. These restrictions can prevent recording the videos of 

109 traffic movements from optimal top-down camera angles and consequently pose a challenge in 

110 employing UAVs in traffic data collection. Another challenge is the UAV’s short battery life which 

111 makes it difficult to obtain long video footages. Depending on wind conditions and thermal uplift, 

112 most of today’s commercial UAV batteries, except for much larger and more complicated types, 

113 can generally provide 18 to 28 minutes of flight time. A third critical challenge is related to the 

114 analysis of UAV videos, which is more complicated than those acquired via stationary camera 

115 systems (Khan et al. 2017b). Although most UAVs are equipped with a mechanical stabilizer, 

116 UAV footages suffer from camera motions and shakiness, due to wind gusts or vibrations of the 

117 UAV’s mechanical parts (Khan et al. 2017a). A slight shakiness in the video footage can lead to 

118 large errors in vehicles’ trajectories, especially when the videos are taken from an oblique angle 

119 and long distance (Barmpounakis et al. 2016; Khan et al. 2017a). Moreover, detection of vehicles 

120 in aerial videos is still an active research problem in computer vision, mainly due to their small 
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121 size with regard to the entire frame and potential interference of vehicles close to each other 

122 laterally or longitudinally (Maiti et al. 2019). 

123 Yet, considerable research has been recently conducted using a variety of methodological 

124 approaches and frameworks for the collection and extraction of vehicle trajectory data from UAV 

125 videos. Generally, existing methods to process UAV videos can be classified based on the level of 

126 human involvement as manual, semi-automated, and automated image processing techniques. It 

127 can be further subcategorized according to the type of vehicle detection algorithm into three types: 

128 traditional computer vision, traditional machine learning, and deep learning. 

129 The key advantages of manual and semi-automated video processing techniques, though time-

130 consuming and laborious, are that they are easier to use, can provide highly accurate results, and 

131 require less computational power (Khan et al. 2017b). Most related studies in the literature have 

132 applied semi-automated computer vision-based techniques to extract kinematic traffic data from 

133 UAV video footages (Khan et al. 2017a). For example, Salvo et al. (2014) used UAV video-based 

134 data extracted using semi-automated video analysis techniques to investigate driver gap acceptance 

135 behaviour at an urban intersection in Italy. The speed data acquired from UAV videos were found 

136 to be close to those measured from a differential GPS placed on a probe vehicle. Barmpounakis et 

137 al. (2016) conducted a similar UAV-based study to examine vehicles’ kinematic characteristics at 

138 a low-volume four-leg intersection in Greece. Gu et al. (2019) and Ma et al. (2020) evaluated 

139 driver behaviour and safety at an interchange in China based on microscopic traffic data acquired 

140 from UAV videos. All previous studies used Tracker, an open-source video processing software 

141 developed by Brown and Cox (2009), to extract the positions of individual vehicles from the UAV 

142 videos. This software, however, works well only on videos that are taken from a nearly top-down 

143 angle or when the direction of vehicle motion is perpendicular to the camera view. These 
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144 conditions are difficult to satisfy in collecting data over a long segment in most situations due to 

145 the regulations concerning UAV operations, as mentioned earlier.

146 Recently, the advances in computer vision have allowed researchers to consider automatic 

147 approaches to process and analyze UAV video data (Apeltauer et al. 2015; Feng et al. 2020; Ke et 

148 al. 2020; Khan et al. 2017a; Kim et al. 2019). The main advantage is that automatic video analysis 

149 systems can provide quick results with minimum human interactions. However, building a robust 

150 and accurate automated video processing system is still a challenging task involving a series of 

151 complex algorithms and extensive computational power (Khan et al. 2017b). In addition, 

152 traditional computer vision-based systems suffer from limitations such as illumination changes, 

153 occlusion, deformation, and background clutter (Shakeel et al. 2019). Khan et al. (2017b) indicated 

154 that the accuracy of automatic image processing systems fluctuates with changes in conditions 

155 such as light and climate. Moreover, deep learning models, particularly those based on the 

156 convolutional neural network (CNN), rely on massive-annotated data and large networks with a 

157 large number of parameters (Liu et al. 2020). Annotated image-based datasets are still manually 

158 labelled, which is a labour-intensive operation. It was also noted that although deep learning-based 

159 detection models offer more accurate and robust results than traditional computer vision-based 

160 models, they still have difficulties in detecting vehicles travelling in shaded areas, close to each 

161 other, or at far distances from the UAV recording sensor. Most of these issues should be expected 

162 on freeway ramps, especially in urban areas where the shadow of nearby trees and fences can 

163 deteriorate the reliability of these automated techniques. It is also noted that freeway ramps allow 

164 the exchange of traffic movements on grade-separated intersections and are therefore always 

165 associated with a change in elevation along each vehicle’s path. This adds to the complexity of 
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166 video processing compared to at-grade intersections, where vehicles are mostly assumed to 

167 experience no change in elevation along their paths.

168 In summary, previous studies using UAVs to collect traffic data have mostly been conducted 

169 over small areas such as low-volume intersections using only one UAV in near ideal conditions. 

170 Studies that covered longer segments did not include shaded areas or consider geometric 

171 characteristics that include horizontal curves or steep grades. Procedures may not be reliably 

172 extended to traffic data collection over long and high-speed road segments, especially when the 

173 site exhibits challenging characteristics in terms of geometry and shaded areas. Furthermore, 

174 legislative restrictions prohibiting UAVs from flying over highways and right-of-way mean that 

175 aerial videos can only be taken at oblique angles or at far distances from the area of interest. 

176 Therefore, this study covers a gap in UAV data collection research to address these issues and 

177 provide a practical and safe methodology to obtain complete and reliable vehicle trajectories over 

178 a long segment of high-speed, high-volume road. Applying the methodology to the most 

179 challenging area of the freeway, which is the SCL and ramp, would prove the methodology’s 

180 robustness. 

181 3. Methodology

182 The methodology adopted in this study is divided into three main phases: data collection, data 

183 processing, and trajectory analysis. Figure S1 presents a flowchart of the tasks and tools involved 

184 in each phase in addition to data collection using a probe vehicle for comparison with UAV data.

185 3.1. Phase I: Data Collection

186 With the aim of developing a methodology that is robust enough to cover long segments of 

187 high-speed, high-volume roads with challenging site characteristics, the specific road segment 

188 emphasized in this paper is the freeway ramp terminal, including the ramp proper and SCL. As 
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189 mentioned earlier, this segment has unique features that make UAV videos an ideal tool for traffic 

190 data collection but also has features that add to the challenges in UAV video analysis. 

191 In selecting the UAV setup to be used at a specific site, the hovered altitude can first be 

192 determined to allow camera coverage of the entire study area, and can be calculated using UAV 

193 camera characteristics and the ground dimensions of the study area. However, this altitude must 

194 not exceed the maximum allowable altitude according to local regulations or the altitude at which 

195 the wind speed does not exceed the maximum UAV’s wind speed tolerance, which can be 

196 determined by cross-referencing information from weather forecasting services and UAV 

197 specifications. 

198 Then, the UAV’s hovered location and setup can be determined based on the specific site 

199 conditions. As mentioned earlier, an ideal setup is to fly the UAV over the center of the study area 

200 and record the videos from a top-down angle. However, because of regulations prohibiting UAVs 

201 from flying over highways, Figure 1 illustrates three alternative settings that can be used depending 

202 on the site conditions. The figure uses an exit ramp terminal for illustrative purposes, and the same 

203 procedures can be used at entrance ramps. 

204 If site conditions permit, Setup 1 (Figure 1a) is the preferred setting using one UAV with the 

205 camera positioned such that the paths of SCL vehicles are at an approximately zero horizontal 

206 angle from the camera. When a suitable area for UAV takeoff/landing is not available at the same 

207 side of the study area, the UAV has to be flown at the opposite side of the study area with the 

208 direction of vehicles’ paths at an oblique angle to the camera as shown in Setup 2 (Figure 1b). The 

209 drawback is that the accuracy of video processing could decrease significantly as the tilt angle 

210 and/or the distance between the camera and the vehicles increase. In both setup plans, the camera 

211 needs to be positioned such that a portion of the freeway mainline upstream the SCL is covered 
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212 with the study area to investigate the extent of vehicle deceleration (or acceleration) on the freeway 

213 mainline lanes before they diverge off (or after the merge onto) the freeway. 

214 When the study area of interest is relatively large, two UAVs need to be used at the same time, 

215 as shown in Setup 3 (Figure 1c). For freeway ramp areas, the first UAV can be set to focus on the 

216 freeway mainline and SCL, while the second focuses on the ramp proper. The two UAVs are then 

217 set to hover at approximately the same altitude with around 3-5% overlap area while covering the 

218 entire study area. One of the main advantages of flying two UAVs simultaneously is that the 

219 collected videos would have a high level of details of vehicles and road surface, which would 

220 significantly improve the overall accuracy of image processing, especially at low altitudes. An 

221 UAV with dual cameras could also be used to cover the study area in Setup 3. However, such an 

222 UAV system is currently not available for over-the-shelf use.

223 Finally, the camera settings and video resolution need to be properly selected based on the 

224 expected vehicle speeds (Pueo 2016). Generally, 4k video resolution (3840 × 2160 pixels), 29.97 

225 frames per second (fps) frame rate, and 1/60-second shutter speed would be sufficient for ramp 

226 vehicles and virtually all vehicles on a freeway with 100 km/h speed limit. However, a higher 

227 shutter speed of 1/120-second is recommended for freeways to capture very aggressively speeding 

228 vehicles.  

229 3.2. Phase II: Data Processing

230 In this phase, the raw UAV videos are processed in three consecutive steps: video 

231 stabilization, camera calibration, and vehicle tracking. Each step is a computer vision problem that 

232 requires a specific software or algorithm to solve.
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233 3.2.1. Video Stabilization

234 Video stabilization is the first and most important step in UAV video-based data processing. 

235 UAV footages must be properly stabilized before conducting any video analysis as a small 

236 shakiness in the UAV footages can dramatically affect the overall accuracy of the extracted traffic 

237 information, especially when the footages are taken from a high altitude. Although stabilization 

238 features are built in most UAVs, recording videos will still contain some camera shakiness that 

239 needs to be removed using digital video stabilization techniques. In this paper, the Mocha Pro 

240 software (version 7.50) from BORIS FX and Imagineer Systems Limited was employed to 

241 stabilize shaky videos based on a two-dimensional planar motion tracking technique, which is very 

242 effective and robust in eliminating camera motions in video sequences. Compared to a point 

243 feature matching technique proposed by Khan et al. (2017a), the stabilization process in Mocha 

244 Pro is more flexible, quicker, and less sensitive to vehicle movements in the video scene.

245 The Mocha Pro software requires the user to perform few steps before it can automatically 

246 stabilize a shaky UAV video. First, a 2D planar layer must be defined and drawn around objects 

247 that remain stationary in all video frames. A mask layer is then added on top of the previous layer 

248 to mask out moving objects and ensure that the tracking algorithm only tracks the motions caused 

249 by the camera movements. The software then identifies several types of camera motions, including 

250 X-Y translation, scale, rotation, and perspective. Once the desired camera motions are chosen by 

251 the user, the software tracks each camera motion in every frame and aligns all frames with a 

252 reference frame (e.g., the first frame). The software also allows the user to use the tracking data to 

253 remove lens distortion and further enhance the video quality. 

254 The level of stabilization can be checked by tracking a stationary point through the video 

255 sequences and checking whether its pixel coordinates in the reference frame change between 
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256 frames. This step can be conducted using an automated point-based tracking algorithm, readily 

257 available in Adobe After Effect software or MATLAB computer-vision toolbox. If the output 

258 video still contains shaky frames, the stabilization process can be repeated using the output video 

259 as the next input video. However, doing so might reduce the quality of the final output video.

260 3.2.2. Camera Calibration

261 Camera Calibration is the process of converting image-pixel coordinates into real-world 

262 coordinates. Upon reviewing different options for this process, this study used an open-source 

263 software called T-Calibration. The software uses the well-known Tasi algorithm (Tsai 1987) to 

264 calibrate the camera view (Laureshyn and Nilsson 2018). The software allows users to estimate 

265 camera intrinsic and extrinsic parameters, including the camera focal length, principal point, 

266 translation, orientation, skew angle, and radial distortion. From these camera parameters, the 

267 relationship between the video image coordinates and real-world coordinates can be determined, 

268 lens distortions can be corrected, and reliable geometric and dynamic metric information can be 

269 derived from the UAV video.  The calibration procedure described here can be applied to single 

270 or multiple UAVs as each camera is calibrated individually.

271 The camera calibration using the T-Calibration tool requires two images, which can be two 

272 still frames with different camera views or a still frame and a satellite image for the area where the 

273 video was recorded. In this study, a still frame from the stabilized video was used along with a 

274 satellite image from the open-source satellite imagery platform Google Earth Pro. Figure S2 shows 

275 an example of the still frame and satellite image used to calibrate the UAV camera view at one 

276 site. It is important that the two images have the same resolution, and the date of the satellite image 

277 is close to the date of the video data. To further enhance the calibration process, the satellite image 

278 was rectified to the correct map coordinate system using the georeferencing toolbar in ArcMap 
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279 software (version 10.7) and high-resolution orthoimages normally available through transportation 

280 authorities. The orthoimages used in this study were obtained from Carleton University library 

281 based on LiDAR data collected by the City of Ottawa between 2015 and 2017. The fundamental 

282 vertical accuracy of the used LiDAR data was 8.6 cm, while the ground pixel resolution of 

283 orthoimages was 5 cm.

284 Once the two images are defined in the software, a local X-Y Cartesian coordinate system is 

285 placed on the road surface, potentially at the center of the region of interest, and calibrated 

286 according to a specific real-world scale. In this study, the origin point (0, 0) of the local Cartesian 

287 coordinate system was placed at the start point of the SCL taper for exit terminals or at the painted 

288 nose for entrance terminals. The positive X-axis was set in the direction of vehicle motion and the 

289 positive Y-axis in the perpendicular direction pointing away from the freeway mainline lanes for 

290 exit ramps or towards the freeway mainline lanes for entrance ramps. This setting of the coordinate 

291 system ensures that the headings of all exiting or entering vehicles are along the positive X and Y 

292 directions.

293 After defining the coordinate system, the next step is to match and annotate points that are 

294 clearly visible in the video frame and satellite image, as demonstrated by the red dots in Figure S2. 

295 Common matching points that can be clearly identified in freeway scenes are pavement markings, 

296 manholes, and light pole bases. To ensure a high level of accuracy, a sufficient number of matching 

297 points need to be annotated and distributed over the entire camera view (Laureshyn and Nilsson 

298 2018). It was noted in this study that using at least 150 matching points for Setup 1 and 2, which 

299 were close to each other and distributed over the entire study area, improved the calibration 

300 accuracy. In Setup 3 where two UAVs were used and each camera covered a relatively smaller 
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301 area than the single UAV, 70 matching points for each camera were sufficient to produce a good 

302 calibration model.

303 Traditionally, the true positions of the matching points can be measured directly in the field 

304 by a high-accuracy instrument such as Total Station or extracted from high-resolution aerial maps. 

305 Because of safety concerns in taking field measurements on freeways, the true positions of the 

306 matching points in this study were extracted from the LiDAR and orthoimages. Following 

307 Laureshyn and Nilsson (2018) recommendations, the elevations of the measured points were used 

308 in the calibration model assuming that vehicles move on a non-flat plane. Once the calibration is 

309 completed, the software draws a gird on the camera scene at the center of the Cartesian coordinate 

310 system and its projection on the aerial map plane (Figure S2) and displays the average and 

311 maximum camera and map errors. Figure S3 shows a heatmap generated by the software for the 

312 ranges of the calibration errors in the camera and world planes. Expectedly, the calibration errors 

313 increase as the distance from the camera increases.

314 3.2.3. Vehicle Tracking

315 The final video processing step is to detect and track individual vehicles in the UAV video 

316 sequences. In this study, a semi-automated video analysis software called T-Analyst, which has 

317 been used in several traffic-related studies including (Kazemzadeh et al. 2020; Madsen and 

318 Lahrmann 2017; van Haperen et al. 2018), was used due to its efficiency, accuracy, and simplicity. 

319 The software is also integrated with the calibration software, making video analysis faster and 

320 more efficient. Unlike the Tracker software used in other studies, the T-Analyst software allows 

321 users to upload and analyze multiple video files even with high-resolution formats, including 4k 

322 resolution. Once the stabilized UAV video and calibration model are uploaded into the software, 

323 it would allow the user to manually locate the spatial positions of vehicles in the video stream by 
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324 placing a 3D bounding box around them at regular time intervals, such as every half second 

325 (Madsen and Lahrmann 2017). Based on the positions of the 3D bounding box and time interval, 

326 the software creates trajectories of each tracked vehicle and determines its speed and acceleration 

327 (Madsen and Lahrmann 2017). One of the useful features of this software is that it allows the user 

328 to open and work on two video files at the same time, which enhances the process of tracking 

329 individual vehicles in Setup 3 as the vehicle moves from one UAV camera view to another. The 

330 software also allows the user to estimate vehicles’ trajectories along curved segments, which 

331 further enhances the accuracy of the extracted data on long segments. Another main advantage of 

332 the T-Analyst software is that it allows the user to zoom in to 200% to facilitate the process of 

333 tracking vehicles travelling on shaded areas or at far distances from the UAV camera. 

334 In this study, ramp vehicles were tracked every 15 frames (around 0.5 seconds). The smooth 

335 function tool within the software was then used to obtain the vehicle trajectory over all frames. 

336 This smooth function estimates the X-Y coordinate of the tracked vehicle between the points that 

337 were manually tracked every 15 frames using linear interpolation and moving average methods 

338 (Monte Malveira 2019). Upon finishing the tracking process, the software allows the user to 

339 visualize the accuracy of the tracking process by showing the projection of vehicle trajectories 

340 from the video space to the real-world space. The final output of the tracking process is the 

341 vehicle’s X-Y coordinates, speed, and acceleration in each frame within the tracking area, which 

342 can be exported in a tabular format and saved as an Excel file. The same procedure can be followed 

343 for extracting trajectories of freeway mainline vehicles.

344 Two additional steps are needed when using two UAVs (Setup 3). The first step is to match 

345 the overlapping trajectories belonging to the same vehicle observed in both camera views. The 

346 second step is to connect trajectories from the two UAVs to construct a single complete trajectory 
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347 of each vehicle across the entire study area. This step requires linking the coordinate systems in 

348 the camera views of the two UAVs, which can be achieved by referencing a point of specific 

349 physical characteristics such that it is easily identified in both camera views. In this paper, 

350 overlapping trajectories of the same ramp vehicle were matched manually. The output data 

351 extracted from UAV 1 in the overlapping area can then be evaluated against their corresponding 

352 output data from UAV 2 to assess the data accuracy as each camera is calibrated separately. After 

353 ensuring that the results in the overlapping area in both cameras are very close, the final values of 

354 overlapping points can be taken as the average of the two cameras.

355 3.3. Phase III: Trajectory Analysis

356 The final phase in the proposed methodology is the extraction of driver behaviour parameters 

357 from the trajectory data acquired from the video processing in the previous phase. As this paper 

358 focuses on freeway ramp areas, the driver behaviour parameters of interest include vehicles’ speed 

359 profiles on freeway mainline lanes and on ramp, acceleration/deceleration on SCLs, 

360 merging/diverging speed, merging/diverging location, and accepted merging gaps. All these 

361 parameters can be extracted from the vehicle trajectories. For example, by setting the origin point 

362 for an exit terminal as the taper starts, as shown in Figure S4a, the diverge point can be identified 

363 as the first point in the vehicle trajectory where both the X and Y coordinates are positive. Once 

364 the diverge point is found, other parameters can be extracted, such as diverging speed, SCL length 

365 utilized, and deceleration rate. The merging point at entrance ramp terminals is determined in a 

366 similar way by positioning the origin point at the painted nose.

367 It should be mentioned that the tracking reference point in the T-Analyst software is the 

368 bottom center of the vehicle 3D bounding box that is close to the road surface (Figure S4b). The 

369 extracted trajectories can be processed to find the diverging point as the point at which the 
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370 passenger-side (right) front corner crosses into the deceleration lane or the merging point as the 

371 point at which the driver-side (left) front corner crosses into the freeway right lane. Based on this 

372 definition, the vehicle’s dimensions, which can be extracted from the tracking software, can be 

373 used along with the X-Y coordinate of the tracking reference point to determine the X-Y coordinate 

374 of the diverge or merge point. 

375 With setting the X-Y coordinate in the way explained earlier as shown in Figure S4 for the 

376 case of an exit ramp terminal, the vehicle’s heading is always in the first quadrant, i.e., 𝑥𝑐2 >  𝑥𝑐1 

377 and . The same condition is also satisfied for an entrance terminal with the origin point  𝑦𝑐2 ≥  𝑦𝑐1

378 positioned at the painted nose and the Y-axis pointing towards the freeway mainline lanes. The 

379 coordinates of the right front corner (in diverging) or the left front corner (in merging) can then be 

380 calculated as:

(1) 𝜃 =  tan ―1
𝑦𝑐2 ―  𝑦𝑐1

𝑥𝑐2 ―  𝑥𝑐1

(2) 𝑥𝑓2 =  𝑥𝑐2 +  
𝐿
2cos 𝜃 ―  

𝑊
2 sin 𝜃

(3) 𝑦𝑓2 =  𝑦𝑐2 +
𝐿
2sin 𝜃 +

𝑊
2 cos 𝜃

381 Where:  = the previous X and Y coordinates of the tracking reference point;  = the 𝑥𝑐1, 𝑦𝑐1 𝑥𝑐2, 𝑦𝑐2

382 current X and Y coordinates of the tracking reference point;  = the current X and Y 𝑥𝑓2, 𝑦𝑓2

383 coordinates of the right front (in diverging) or left front corner (in merging);  = vehicle’s length; 𝐿

384  = vehicle’s width; and  = vehicle’s heading angle.𝑊 𝜃 

385 These equations can be easily applied in Excel or any programing language for the extracted 

386 trajectories. The exact frame for the diverge or merge point can then be found when the sign of the 

387 Y-coordinate of the relevant vehicle corner changes from negative to positive.
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388 4. Case Study

389 4.1. Data Collection 

390 The proposed methodology was applied to a case study involving two sites of freeway ramp 

391 terminals on Highway 417, Ottawa, Canada, which is a divided multilane freeway with a speed 

392 limit of 100 km/h, within the limits of the study area. The two sites were the eastbound (EB) exit 

393 and entrance ramps of Parkdale Avenue interchange (Figure S5), which will simply be referred to 

394 as the exit and entrance ramps. The annual average daily traffic (AADT) on the freeway’s mainline 

395 lanes in this area has grown from 163,200 veh/d in 2006 to over 177,000 veh/d in 2016. 

396 The video data were collected in August 2018, during a weekday, in the daytime between 

397 11:00 am to 01:00 pm, and in good weather conditions with the wind speeds at the hovered 

398 (recording) altitude not exceeding 7.5 m/s. The UAV videos were captured under these conditions 

399 to minimize the effects of shakiness, instability, or shadows in the collected videos, as suggested 

400 by Barmpounakis et al. (2016). Moreover, it was important to observe the traffic movements 

401 during the off-peak daytime hours to obtain traffic data under free-flow conditions. Such data 

402 should reflect drivers’ merging/diverging behaviours when not restricted by traffic congestion.

403 Both selected ramps have a single taper-type SCL. The length of the study area, measured 

404 from the traffic signal at the crossroad to the beginning/end of the SCL taper, was 255 and 423 m 

405 at the exit and entrance ramps, respectively. The deceleration/acceleration SCL length was 

406 measured from the point at which the SCL width is 3.60 m to the ramp controlling feature as 

407 defined in AASHTO (2018).

408 Prior to recording the UAV videos, initial field investigations and reconnaissance were carried 

409 out to identify the proper space for the UAV takeoff, landing, and hovering operations. 

410 Subsequently, Setup 2 using a single UAV was selected for the exit ramp, while Setup 3 with a 
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411 pair of UAVs was selected for the entrance ramp. The hovering spot was selected to be as close as 

412 possible to the highway and the center of the study area. The UAV takeoff/landing area was 

413 selected as close as possible to the hovering spot to minimize the distance and time between the 

414 UAV takeoff/landing and hovering and maximize the recording time. 

415 At the exit ramp, the UAV was hovered at 166.73 m altitude, and its spot was 97.13 m away 

416 from the takeoff/landing spot, as shown by the yellow line in Figure S5a. The distance between 

417 the UAV recording spot and the furthest point in the study area was 363.21 m, as shown by the 

418 blue line in Figure S5a. At the entrance ramp (Figure S5b), the recording altitude was 191.60 and 

419 194.45 m, and the hovering spot was 18.02 and 109.45 m away from the takeoff/landing spot, for 

420 UAV1 and UAV 2, respectively. The distance between the furthest point of the study area in each 

421 camera view and the recording spots of UAV 1 and UAV 2 was approximately 157.70 and 144.63 

422 m, respectively, as shown by the blue lines in Figure S5b. 

423 The flights were carried out by two licensed UAV pilots using two DJI Phantom 3 Professional 

424 ready-to-fly quadcopter UAVs. Each UAV was equipped with a 3-axis gimbal stabilization and an 

425 advanced camera that can capture a 4k video at 29.97 (fps). Since each UAV had a maximum 

426 battery lifetime of around 23 minutes per charge, four additional batteries were used for each UAV 

427 to obtain an hour’s worth of aerial video. Swapping the UAV batteries was performed nearly after 

428 15 minutes of continuous recordings with a five-minute gap between every two consecutive flights. 

429 A total of 126 minutes of aerial video data were collected by the UAVs (65 and 61 minutes at the 

430 exit and entrance ramps, respectively). Figure S6 shows sample video footages captured by the 

431 UAVs at the exit and entrance ramps.

432 A probe vehicle was also used to collect GPS-based vehicle trajectories at the exit ramp while 

433 the UAV videos were recorded to check the accuracy of the data extracted from UAV videos. 
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434 Differential GPS data were collected using two Leica GPS receivers (static and rover receivers). 

435 After post-processing, these two GPS receivers provided data at a rate of 10 readings/second and 

436 position accuracy in the range of ±1-5 cm for rover operations (Leica 1999). A total of six trips by 

437 the probe vehicle were recorded by the GPS and UAV at the exit ramp.

438 4.2. Results

439 The collected UAV video data were processed following the data processing phase (Phase II) 

440 of the methodology presented earlier on 64-bit Windows 10 platform with an Intel i7-8700K CPU, 

441 64 GB of memory, and Nvidia GeForce GTX 1080 TI. All ramp vehicles were tracked in the UAV 

442 footages over the study area using the T-Analyze software. Finally, trajectories of the tracked 

443 vehicles were extracted for every frame in the videos and stored in a spreadsheet. 

444 As mentioned earlier, when using two UAVs, the speeds of vehicles in the overlapping area 

445 can be used to validate the accuracy of the analysis methodology. Table 1 shows a sample 

446 overlapping data for ten randomly selected ramp vehicles observed at the same reference point in 

447 both UAV cameras. As shown in the table, the speeds extracted from both UAVs had a maximum 

448 difference of 0.8 m/s (3.94%), which indicates that the setup and methodology produced consistent 

449 results.

450 Figure 2 shows sample trajectory data for 10 ramp vehicles at each of the exit and entrance 

451 ramps, respectively. Figure 2a and Figure 2c show the space-time diagrams, while Figure 2b and 

452 Figure 2d show the speed profiles with the diverge/merge point marked as a circle on each profile. 

453 Several driver diverging and merging parameters can be extracted from these figures. For example, 

454 the space-time diagram can provide the exact time at which ramp vehicles merged onto the 

455 freeway, which can be cross-referenced with the space-time diagram for freeway right lane vehicle 

456 to analyze driver’s gap acceptance behaviour. In addition, the speed profiles can be used to analyze 
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457 the acceleration/deceleration behaviour and diverge/merge speed and location. For instance, 

458 Figure 2b shows that drivers at this location tended to diverge off the freeway immediately after 

459 the beginning of the SCL taper. The effect of the queue at the traffic light at the crossroad can be 

460 observed in the same figure as several diverging vehicles stopped close to the gore nose area. 

461 Figure 2d shows that the merging vehicles had significant frequent speed adjustments on the SCL 

462 with some vehicles merging at the taper after the end of SCL and that almost all vehicles were still 

463 accelerating after they had merged onto the freeway right lane. 

464 4.3. Comparison with GPS Speeds

465 The performance of the proposed methodology is already evident from comparing the results 

466 of the vehicles in the overlap area in Setup 3 that was used for the entrance ramp, as shown earlier 

467 in Table 1. The methodology was also evaluated by comparing the UAV-extracted speeds of the 

468 probe vehicle at the exit ramp against the GPS speeds, as shown in Figure 3. The UAV 

469 measurements (approximately 30 readings per second) were matched with the GPS measurement 

470 (10 readings per second) based on the vehicle’s geolocation. The average of the 30 readings was 

471 then compared with the average of the 10 readings at every one second, as shown in Figure 3. It 

472 should be noted that some GPS data were missing in Trips 1, 4, and 5, which is evident in the gaps 

473 in the relevant graphs, possibly because of the dense trees and noise barriers near the freeway right 

474 lane shoulder, which might obstruct the GPS signals. 

475 In addition to subjective evaluation, three error indicators; Mean Absolute Deviation (MAD), 

476 Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE); were calculated 

477 as follows: 
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(4) MAD =  
1
n

n

∑
i = 1

|Probe Vehicle Speed GPS ―  Probe Vehicle Speed UAV |

(5) RMSE =   
1
n

n

∑
i = 1

(Probe Vehicle Speed GPS ― Probe Vehicle Speed UAV )2 

(6) MAPE =  
1
n

n

∑
i = 1

|Probe Vehicle Speed GPS ―  Probe Vehicle Speed UAV  
Probe Vehicle Speed GPS

| * 100

478 As shown in Table S1, all estimated values of MAD and RMSE were lower than 5 km/h, and 

479 all estimated values of MAPE were less than 5%, except for Trip 01. These results confirm that 

480 the probe vehicle’s speeds obtained from the UAV videos were very close to those measured by 

481 the differential GPS method. Generally, RMSE within 5 km/h and MAPE within 5% are 

482 considered good results, especially for videos recorded at an oblique angle (Khan et al. 2018). 

483 5. Discussion and Conclusions

484 This paper proposed a detailed step-by-step UAV-based traffic data collection and extraction 

485 methodology. The methodology, which consists of only three steps, can be followed by users who 

486 are not versed in UAV operation to collect reliable microscopic traffic data over a long segment 

487 of a high-speed, high-volume road, especially when the site has challenging conditions in terms of 

488 road geometry (curvature and elevation differences) as well as having significant parts of the 

489 segment covered by shadow due to presence of trees and fences. Such difficulties have limited 

490 many researchers (e.g., Xu et al. 2020) to only manual video image processing techniques. This 

491 paper, therefore, differs from previous UAV-based traffic-related studies in several aspects. First, 

492 to allow covering a relatively long segment, the proposed methodology allows for employing 

493 single and multiple UAVs to simultaneously videotape traffic over the entire study area. Because 
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494 of restrictions on UAV operations, aerial videos are captured from camera angles different from 

495 optimum UAV camera configuration. Finally, the methodology utilizes manual tracking to allow 

496 reliable and accurate extraction of vehicle trajectories in shaded areas or at far distances from the 

497 UAV recording sensor. However, a limitation of this study is that the UAV-based video data were 

498 collected in the daytime and good weather conditions (no precipitation or strong wind). In addition, 

499 the semi-automated approach can be time consuming if the study area has extremely high traffic 

500 volumes, which might make the tracking process a difficult task for some users.

501 A case study was presented where the methodology involving the use of a single and two 

502 UAVs was applied to two ramps: entrance and exit. Given that the UAVs used simultaneously on 

503 a specific site are calibrated separately, the collected data from both UAVs are independent. 

504 Therefore, the extracted speed data at the site covered by two UAVs were compared for vehicles 

505 in the overlap area. On the other hand, a probe vehicle was used at the site covered by a single 

506 UAV to compare the extracted speed data to GPS-based speeds. The findings revealed the good 

507 performance of the proposed methodology, including when aerial videos must be taken from 

508 oblique angles. The extracted trajectories for ramp vehicles were shown to be easily manipulated 

509 to extract information such as speed profiles, space-time diagrams, and location of diverge/merge 

510 point.

511 Future research will focus on applying the proposed methodology for extracting a sufficient 

512 sample of driver and vehicle behaviour parameters at freeway ramp terminals to examine 

513 performance of acceleration and deceleration SCL lengths. The data can be used to develop 

514 statistical models for driver behaviour parameters at ramp terminals that can be used in other 

515 research related to the operational and safety performance or design of ramps and SCL. Examples 

516 of studies integrating detailed driver behaviour into the application of freeway SCL design include 
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517 (Abdelnaby and Hassan 2014; Fatema and Hassan 2013). It is noted that in all these studies, several 

518 assumptions had to be made regarding the drivers’ behaviour related to merging or diverging 

519 because of lack of reliable data or models to quantify this behaviour.
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523 Table 1. Summary of comparison of a random sample of vehicles in the overlapping area of the 

524 two UAVs.

Vehicle Speed at the Same Reference Point 
(m/s)

Absolute 
Difference 

Vehicle

Using UAV 1 Using UAV 2 (m/s) (%)

Vehicle 01 19.00 19.40 0.40 2.08%

Vehicle 02 16.70 17.10 0.40 2.37%

Vehicle 03 18.90 19.10 0.20 1.05%

Vehicle 04 18.60 19.10 0.50 2.65%

Vehicle 05 19.30 19.20 0.10 0.52%

Vehicle 06 19.70 20.10 0.40 2.01%

Vehicle 07 22.90 23.30 0.40 1.73%

Vehicle 08 19.90 20.70 0.80 3.94%

Vehicle 09 20.40 20.40 0.00 0.00%

Vehicle 10 20.60 21.20 0.60 2.87%
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529

530 (a) Setup 1

531

532 (b) Setup 2

533

534 (c) Setup 3

535 Figure 1. UAV setups and coverage areas.
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536 Figure 2. Driver and vehicle behaviour data.
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537 Figure 3. Comparison between probe vehicle’s speeds acquired by GPS and UAV.
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