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We should not have to look at the entire corpus (e.g., the Web) to know if two (or more) words are

associated or not.1 A powerful sampling technique called Sketches was originally introduced to

remove duplicate Web pages. We generalize sketches to estimate contingency tables and associ-

ations, using a maximum likelihood estimator to find the most likely contingency table given the

sample, the margins (document frequencies) and the size of the collection. The proposed method

has smaller errors and more flexibility than the original sketch method.

Not unsurprisingly, computational work and statistical accuracy (variance or errors) depend

on sampling rate, as will be shown both theoretically and empirically. Sampling methods become

more and more important with larger and larger collections. At Web scale, sampling rates as low

as 10−4 may suffice.

1 Introduction

Word associations (co-occurrences, or joint frequencies) have a wide range of applications in-

cluding: Speech Recognition, Optical Character Recognition and Information Retrieval (IR)

(Church and Hanks, 1991; Dunning, 1993; Salton, 1989; Manning and Schutze, 1999; Baeza-

Yates and Ribeiro-Neto, 1999). It is easy to compute association scores for a small corpus, but

more challenging to compute lots of scores for lots of data (e.g., the Web), with billions of web

pages (D) and millions of word types (N ). For a small corpus, one could compute pair-wise

(two-way) associations by multiplying the (0/1) term-by-document matrix with its transpose

(Deerwester et al., 1999). But this is probably infeasible at Web scale. Furthermore, the com-

putation and storage cost increases exponentially for multi-way associations.

Web search engines produce estimates of page hits, as illustrated in Tables 1-3 2). Table 1

shows the page hits for two high frequency words, “A” and “The,” suggesting that D ≈ 10 10.

Table 1 also gives page hits for a couple of low frequency words selected from The New Oxford

Dictionary of English (Pearsall, 1998), demonstrating that there are lots of hits even for rare

words.

How many page hits do “ordinary” words have? To address this question, we randomly

picked 15 pages from Learners’ dictionary (Hornby, 1989), and selected the first entry on each

page. According to Google, there are 10 million pages/word (median value, aggregated over the

15 words). To compute the two-way associations for the 57,100 entries in this dictionary would

cost 571002×107/2 ≈ 254; three-way associations would cost 571003×107/6 ≈ 268; four-way

would cost 282. Clearly, we cannot afford to compute these associations using a straightforward

brute force approach.

Estimates are often good enough. We should not have to look at every document to determine

whether two words are strongly associated or not. We could use the estimated co-occurrences
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Table 1
Page hits for a few high frequency and low frequency words.

Query Hits (MSN) Hits (Google)

A 2,452,759,266 3,160,000,000

The 2,304,929,841 3,360,000,000

Kalevala 159,937 214,000

Griseofulvin 105,326 149,000

Saccade 38,202 147,000

from a small sample to compute the test statistics, most commonly the Pearson’s Chi-squared

(χ2) test, the likelihood ratio (G2) test, the Fisher’s exact test (Dunning, 1993; Agresti, 2002;

Manning and Schutze, 1999; Moore, 2004), as well as some non-statistical metrics such as co-

sine similarity or resemblance (Jaccard coefficient) that are also widely used in computational

linguistics and information retrieval (Salton, 1989; Manning and Schutze, 1999; Baeza-Yates and

Ribeiro-Neto, 1999).

The conventional sampling method randomly selects D s documents from a collection of

size D and counts the word co-occurrences within the sampled documents. In terms of the term-

by-document matrix, which has N rows and D columns, the conventional sampling randomly

picks Ds columns. One problem with the conventional sampling is that all words are sampled

at the same rate. Word distributions have long tails. There are a few high frequency words and

many low frequency words. It would be convenient if the sampling rate could vary from word

to word so that the sampling rate would be higher for more interesting words and lower for less

interesting words.

Sampling over postings provides a good solution. For each word W, there are a set of post-

ings, P, which contains a set of document IDs, one for each document containing W. In the

term-document matrix, each row corresponds to the postings of a specific word. A well-known

randomized algorithm that was based on sampling over postings is the “sketch” algorithm devel-

oped by Broder (1997), originally motivated to remove nearly-duplicated documents. Broder’s

sketch algorithm was implemented in Web scale (Broder, 1997; Broder et al., 1997). Broder et

al. (1998; Broder et al. (2000) further developed a “minwise” algorithm, which is essentially a

“sample-with-replacement” version of the original sketch algorithm.

Charikar (2002) pointed out that Broder’s sketch algorithm was a special instance of a local-

ity sensitive hashing (LSH) scheme introduced by Indyk and Motwani (1998). Charikar (2002)

also re-introduced another LSH scheme,which applied the random projection to estimate cosine

similarity, originally proved by Goemans and Williamson (1995). Ravichandran et al. (2005)

applied the LSH to generate noun similarity lists from 70 million pages.

Sampling can make it possible to work in memory, avoiding disk. Brin and Page (1998) re-

ported an inverted index of 37.2 GBs for 24 million pages. By extrapolation, we should expect the

size of the inverted indexes for current Web scale (D ≈ 10 billion pages) to be 1500 GBs/billion

pages, probably too large for memory. But a sample is more manageable; the inverted index for

a 10−4 sample of the entire web could fit in memory on a single PC (1.5 GBs).

In estimating the associations, it is desirable that the estimates be consistent. Joint frequen-

cies ought to decrease monotonically as we add terms to the query. Table 2 shows that estimates

produced by current search engines are not always consist. Adding a term (“Japan”) cannot cause

the hits to increase, but the estimates in Table 2 violate this invariant.
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Table 2
Estimates of page hits are not always consistent. Joint frequencies ought to decrease monotonically as we
add terms to the query, but estimates produced by current state-of-the-art search engines sometimes violate
this invariant.

Query Hits (MSN) Hits (Google)

America 150,731,182 393,000,000

America, China 15,240,116 66,000,000

America, China, Britain 235,111 6,090,000

America, China, Britain, Japan 154,444 23,300,000

Table 3
For a four word query “Governor, Schwarzenegger, Terminator, Austria,” Google returns the estimated
document frequencies and all two-way, three-way, and four-way associations. In order to produce the
smallest intermediate writes, the optimal order of joins would be: ((“Schwarzenegger” ∩ “Austria”) ∩
“Terminator”) ∩ “Governor,” with 136,000 intermediate results. The standard practice starts with the least
frequent terms, i.e., ((“Schwarzenegger” ∩ “Terminator”) ∩ “Governor”) ∩ “Austria,” with 579,100
intermediate results.

Query Hits (Google)

Austria 88,200,000

Governor 37,300,000

One-way Schwarzenegger 4,030,000

Terminator 3,480,000

Governor & Schwarzenegger 1,220,000

Governor & Austria 708,000

Schwarzenegger & Terminator 504,000

Two-way Terminator & Austria 171,000

Governor & Terminator 132,000

Schwarzenegger & Austria 120,000

Governor & Schwarzenegger & Terminator 75,100

Three-way Governor & Schwarzenegger & Austria 46,100

Schwarzenegger & Terminator & Austria 16,000

Governor & Terminator & Austria 11,500

Four-way Governor & Schwarzenegger & Terminator & Austria 6,930

1.1 An Application: The Governator

Table 3 contains estimate of hits for four words and their two-way, three-way, and four-way

combinations. Accurate estimates would have applications in Database query planning (Garcia-

Molina et al., 2002, Chapter 16). Query optimizers construct a plan to minimize a cost function

(e.g., intermediate writes). The optimizer could do better if it could estimate a table like Table 3.

But efficiency is important. We certainly don’t want to spend more time optimizing the plan than

executing it.

Suppose the optimizer wanted to construct a plan for the query: “Governor, Schwarzenegger,

Terminator, Austria.” The standard solution starts with the least frequent terms: ((“Schwarzeneg-

ger” ∩ “Terminator”) ∩ “Governor”) ∩ “Austria.” That plan generates 579,100 intermediate

writes after the first and second joins. An improvement would be ((“Schwarzenegger” ∩ “Aus-

tria”) ∩ “Terminator”) ∩ “Governor,” reducing the 579,100 down to 136,000.

In addition to counting hits, Table 3 could also help find the top k pages. When joining

the terms, we’d like to know how far down the ranking we should go. Accurate estimates of
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associations would help the optimizer make such decisions.

1.2 Sampling and Estimation
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Figure 1
(a): A contingency table for word W1 and word W2. Cell a is the number of documents that contain both
W1 and W2, b is the number that contain W1 but not W2, c is the number that contain W2 but not W1, and
d is the number that contain neither W1 nor W2. The margins, f1 = a + b and f2 = a + c are known as
document frequencies in IR. D = a + b + c + d is the total number of documents in the collection. To be
consistent with our notation in studying the multi-way associations, a, b, c, and d are also denoted, in
parentheses, by x1, x2, x3, and x4, respectively. (b): A sample contingency table (as, bs, cs, ds), where
the subscript s indicates the sample space. The cells are also numbered as (s1, s2, s3, s4), to be consistent
with multi-way associations.

Two-way associations are often represented as two-way contingency tables (Figure 1(a)).

Our task is to construct a sample contingency table (Figure 1(b)), and estimate 1(a) from 1(b).

We will use a maximum likelihood estimator (MLE) to find the most likely contingency ta-

ble, given the sample and various other constraints. We will propose a sampling procedure that

bridges two popular choices: (A) sampling over documents and (B) sampling over postings. The

estimation task is straightforward and well-understood for (A). As we consider more flexible

sampling procedures such as (B), the estimation task becomes more challenging.

We assume a standard inverted index (Witten et al., 1999, section 3.2). For word W 1, there

are a set of postings, P1, containing a set of document IDs, one for each document containing

W1. The size of postings, f1 = |P1|, corresponds to the margins of the contingency tables in

Figure 1(a), also known as document frequencies in IR.

The postings lists are approximated by sketches, K, first introduced by Broder (1997) for

removing duplicate web pages. Assuming that document IDs are random (e.g., achieved by a

random permutation), we can compute K1, a random sample of P1, by simply selecting the first

few elements of P1.

In Section 3, we will propose using sketches to construct sample contingency tables. With

this novel construction, the contingency table (and summary statistics based on the table) can be

estimated using conventional statistical methods such as MLE. This construction can be extended

to estimate multi-way associations in a fairly straightforward manner.

2 Broder’s Sketch Algorithm

One could randomly sample two postings and intersect the samples to estimate associations. The

sketch technique introduced by Broder (1997) is a significant improvement, as demonstrated in

Figure 2.

Assume that each document in the corpus of size D is assigned a unique random ID between

1 and D. The postings for word W1 is a sorted list of f1 document IDs. The sketch, K1, is the

first (smallest) k1 document IDs in P1. Broder used MINk(Z) to denote the k smallest elements

in the set, Z . Thus, K1 = MINk1(P1). Similarly, P2 denotes the postings for word W2, and K2

denotes its sketch, MINk2 (P2). Broder’s algorithm restricted k1 = k2 = k.
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Broder defined resemblance (R) and sample resemblance (R s) to be:

R(W1, W2) =
P1 ∩ P2

P1 ∪ P2
=

a

a + b + c
=

a

f1 + f2 − a
, (1)

Rs(W1, W2) =
|MINk(K1 ∪ K2) ∩ K1 ∩ K2|

|MINk(K1 ∪ K2)|
. (2)

Broder (1997) proved that Rs is an unbiased estimator of R, i.e., R̂ = Rs, E(R̂) = R.

One could use R̂ to estimate a: â = Rs

1+Rs
(f1 + f2). However, this is not recommended, for at

least three reasons. First, Rs uses only k of the 2 × k samples; smaller samples → larger errors.

Secondly, the restriction of equal sample size: k1 = k2, is inflexible and should be removed.

Thirdly, the estimate of a from Rs is (slightly) biased because R is not a linear function of a.

In fact, we recommend estimating resemblance from the estimated a using our generalization

of the sketch algorithm. Our method does not restrict equal sample size (i.e., k 1 �= k2 is permitted

and actually recommended.), and more effectively uses the samples (can use all 2 × k samples)

hence has less errors than Broder’s original algorithm.

Before we delve into the details of our algorithm, we present an experiment to show how

Broder’s sketch improve the coverage of a, as illustrated by Monte Carlo simulations in Figure

2. The figure plots, E
(

as

a

)

, percentage of intersections, as a function of (postings) sampling rate,
k
f , where f1 = f2 = f , k1 = k2 = k. The solid lines (sketches), E

(

as

a

)

≈ k
f , are above the

dashed curve (random sampling), E
(

as

a

)

= k2

f2 . The difference between k
f and k2

f2 is particularly

important at low sampling rates.

To explain the dashed curve in Figure 2, we can analytically show that E
(

as

a

)

= k2

f2 . Suppose

Z = P1 ∩ P2, a = |Z|. If we randomly sample k elements from P1, then by the property of

hypergeometric sampling, on average, we have k
f a samples, denoted by Z1 that belong to the

intersection Z, i.e., E(|Z1|) = ka
f . Similarly, for k random samples from P2, we have E(|Z2|) =

k
f a. By definition, as = |Z1∩Z2|. Again, by the properties of hypergeometric sampling, we have

E(as) = 1
a

(

k
f a
)(

k
f a
)

= k2

f2 a, i.e., E
(

as

a

)

= k2

f2 .

In contrast, with sketches, we have E
(

as

a

)

≈ E
(

Ds

D

)

≈ k
f . Because the approximate rela-

tionship E
(

as

a

)

≈ k
f holds with very good accuracy, we only see one solid curve in the figure.
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Figure 2
Sketches (solid curves) dominate random sampling (dashed curve). a=0.22, 0.38, 0.65, 0.80, 0.85f ,
f=0.2D, D=105. There is only one dashed curve across all values of a. There are different but
indistinguishable solid curves depending on a.
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3 Generalizing Sketches, from Resemblance to Contingency Table

Sketches were first proposed for estimating resemblance (R). This section generalizes the method

to construct sample contingency tables, from which we can estimate associations and all sum-

mary statistics including R and cosine coefficient.

To better explain our construction, we start with an example using conventional random

sampling over documents as illustrated in Figure 3. In this example, there are D = 36 documents

and we choose a corpus sampling rate of 50%, i.e., Ds = 18. Since document IDs are assumed to

be uniformly random, we can pick any 18 documents to construct a random sample. In particular,

we sample the first 18 documents from the collection sorted by document IDs. Suppose we are

interested in word W1 and word W2, we can construct the sample contingency table from using

the Ds = 18 samples as in Figure 3.

    

 

9     10     11    12    13    14    15   16  

1      2      3      4      5      6      7      8   

17   18     19    20    . . . . . .             D = 36 

Figure 3
In this corpus, there are D = 36 documents numbered from 1 to 36 and sorted ascending. We choose a
(corpus) sampling rate of 50%, i.e., Ds = 18. Since document IDs are assumed random, we only need to
pick the first 18 documents. Suppose we are interested in word W1 and word W2. The documents that
contain W1 are marked in small circles, and documents that contain W2 are in small squares. After we
have the samples, we can construct a sample contingency tables for word W1 and word W2: as = |{4, 15}|
= 2, bs = |{3, 7, 9, 10, 18}| = 5, cs = |{2, 5, 8}| = 3, ds = |{1, 6, 11, 12, 13, 14, 16, 17}| = 8.

Next, in Figure 4, we present a procedure that uses sketches to construct the same sample

contingency table as conventional sampling, using the same example in Figure 3. In this proce-

dure, we sample from the beginning of the postings P 1 and P2. In order to equivalently sample

the first Ds = 18 documents, we sample all document IDs in both sketches that are smaller than

or equal to 18. After we have the samples, we can then compute a s, bs, cs, and ds to construct

the sample contingency table, which is identical to the example in Figure 3.

1

2

P    3   4   7   9   10   15   18      19   24   25   28   33

P    2   4   5   8   15    19   21     24   27   28   31   35 

Figure 4
Procedure 1. Suppose we have the same corpus as in Figure 3 and we would like to sample the first
Ds = 18 documents, to construct a sample contingency table for word W1 and word W2, only from their
postings P1 and P2. As the document IDs in the postings are sorted ascending, we only need to sample
from the beginnings of P1 and P2 for all documents IDs that are smaller than or equal to Ds = 18, as
illustrated in the shaded box. In this particular example, this sampling procedure produces a sample
contingency table: as = 2, bs = 5, cs = 3 and ds = 8, identical to the example in Figure 3.

This technique of sampling over postings takes advantage of the fact that the document IDs

span the integers from 1 to D with no gaps. When we compare the two sketches that includes all

documents IDs smaller than or equal to Ds, we have effectively looked at Ds documents in the

original collection.

The above procedure for constructing sketches, however, is not convenient in many situa-

tions and is not recommended. When we construct sketches off-line for all words in a corpus,

we do not know Ds in advance. In fact, we would like to effectively vary D s for different word
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pairs. For on-line sketch construction (say, only for W1 and W2), it is also often much easier to

sample according to the postings sampling rate ( k
f ) as opposed to the corpus sampling rate ( Ds

D ),

even if we do know the target Ds, because during sampling we certainly do not want to compare

samples against Ds.

Next, we will present a slightly different sketch construction procedure that does not require

knowing Ds in advance, as illustrated in Figure 5. In this recommended procedure, we build

sketches according the postings sampling rates, or equivalently, the pre-specified sketch sizes.

When we need to study the associations between two specific words, say W1 and W2, we load

the sketches K1 and K2. The last elements in K1 and K2 are respectively denoted as K1(k1) and

K2(k2), using the standard “order statistics” notation. We treat Ds = min
(

K1(k1), K2(k2)

)

and

trim all documents IDs in K1 and K2 that are larger than Ds. Symbolically,

Ds = min{K1(k1), K2(k2)},
k′
1 = k1 − |{j : K1(j) > Ds}|, k′

2 = k2 − |{j : K2(j) > Ds}|,
as = |K1 ∩ K2|, bs = k′

1 − as, cs = k′
2 − as, ds = Ds − as − bs − cs. (3)

1

2

P    3   4   7   9   10   15   18      19   24   25   28   33

P    2   4   5   8   15    19   21     24   27   28   31   35 

Figure 5
Procedure 2. Using the same corpus as in Figures 3 and 4, we illustrate our recommended procedure to
construct sample contingency tables from sketches, K1 and K2 (larger shaded box). K1 consists of the first
k1 = 7 document IDs in P1, the postings for word W1; and K2 consists of the first k2 = 7 document IDs
in P2, the postings for word W2. There are 11 document IDs in both W1 and W2, and a = 5 document IDs
in the intersection: {4, 15, 19, 24, 28}. Ds = min(18, 21) = 18. Document IDs 19 and 21 in K2 are
excluded from the sample contingency table because we can not determine if they are in the intersection or
not, without looking outside the larger box. As it turns out, 19 is in the intersection and 21 is not. This
produce generates a sample contingency table: as = 2, bs = 5, cs = 3 and ds = 8, which is the same as
in Figures 3 and 4.

Although both Procedures 1 (in Figure 4) and Procedure 2 (in Figure 5) produce the same

sample contingency tables as the conventional random sampling, they are different in that Proce-

dure 1 requires a pre-specified corpus sample size Ds while Procedure 2 is much more flexible.

The analysis for Procedure 1 is the same as for conventional sampling, while the analysis for

Procedure 2 is much harder. However, we can see that, conditional on D s, Procedure 2 is the

same as Procedure 1. Therefore, to simplify the analysis, our estimation method will be based on

conditioning on Ds.

After we have constructed the sample contingency tables, our maximum likelihood estimator

(MLE) will estimate the most probable a by solving a cubic MLE equation:

f1 − a + 1 − bs

f1 − a + 1

f2 − a + 1 − cs

f2 − a + 1

D − f1 − f2 + a

D − f1 − f2 + a − ds

a

a − as
= 1. (4)

Assuming “sample-with-replacement,” we can have a slightly simpler cubic MLE equation:

as

a
− bs

f1 − a
− cs

f2 − a
+

ds

D − f1 − f2 + a
= 0, (5)

Instead of solving a cubic equation, we can also estimate a using a very accurate closed-form

approximation:

â =
f1 (2as + cs) + f2 (2as + bs) −

√

(f1 (2as + cs) − f2 (2as + bs))
2

+ 4f1f2bscs

2 (2as + bs + cs)
. (6)
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In Section 5, we will derive the above MLE results in details. We will also analyze the

estimation errors, which is directly related to the variance of the estimator. In Section 5, we will

derive the following variance formula:

Var (â) ≈
D
Ds

− 1
1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

. (7)

which is the conditional variance, i.e., in terms of Ds.

In some situations (e.g., for choosing postings sample sizes), we also need the unconditional

variance, which is approximated as

Var (â)uc ≈
max

(

f1

k1
, f2

k2

)

− 1

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

. (8)

Based on statistical large-sample theory, these variance formulas are very accurate when the

sketch sizes are reasonable (e.g., ≥ 20 − 50).

Our sketch construction procedure can be easily extended to estimate multi-way associa-

tions, although the MLE solution and variance estimation will be far more complicated. We will

present the details for estimating multi-way associations in Section 11. In all other sections, we

will focus on two-way associations.

4 Baseline Estimators

Before considering our proposed MLE method, we introduce two baseline estimators that will

not work as well. The independence baseline does not take advantage of the samples whereas

the margin-free baseline does not take advantage of the margins (e.g., f 1, f2). It is expected

that the margin-free baseline will work better than the (sample-free) independence baseline but

our proposed MLE estimator, which takes advantage of both the samples and the margins, will

outperform both baselines.

4.1 Independence Baseline

When two words W1 and W2 are independent, the size of intersections, a, follows a hypergeo-

metric distribution, i.e.,

P (a) =

(

f1

a

)(

D−f1

f2−a

)

(

D
f2

) , (9)

with mean and variance (Shao, 1999, Table 1.1)

E(a) =
f1f2

D
, Var(a) =

f1f2(D − f1)(D − f2)

D2(D − 1)
≤ f1f2

D
. (10)

Note that (9) is also a common null-hypothesis distribution in testing the independence of a

two-way contingency table, i.e., the so-called “Fisher’s exact test” (Agresti, 2002, Section 3.5.1).

With the independence assumption, an estimator would be:

âIND = E(a) =
f1f2

D
. (11)

Independence assumptions are often made in Databases (Garcia-Molina et al., 2002, Chapter

16.4) and Statistical NLP (Manning and Schutze, 1999, Chapter 13.3).
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4.2 Margin-free Baseline

The basic margin-free model is known as the multivariate hypergeometric model, which is a

generalization of the hypergeometric model and is often illustrated by a simple urn model. Sup-

pose there are D balls in a bag. Each ball has one of the four different colors. There are a, b, c,

and d balls broken down by their colors. D = a + b + c + d. We pick D s balls randomly from

the bag without replacement and obtain as, bs, cs, and ds balls according to the their colors.

Ds = as + bs + cs + ds. The probability of (as, bs, cs, ds) follows the multivariate hypergeo-

metric distribution. Note that this model is not limited to 4 cells (colors). This model does not

take advantage of the known margins: f1 = a + b, f2 = a + c; hence the name “margin-free

model.” When the samples as, bs, cs and ds are obtained from our sketch construction method,

the margin-free model is also based on conditioning on D s.

The multivariate hypergeometric sample expectations are given by (Siegrist, 1997),

E(as) =
Ds

D
a, E(bs) =

Ds

D
b, E(cs) =

Ds

D
c, E(ds) =

Ds

D
d. (12)

And the variance of as is

Var(as) = Ds
a

D

(

1 − a

D

) D − Ds

D − 1
. (13)

We can replace a in (13) by b, c, d, to get the variances of b s, cs, and ds, respectively.

Knowing the expectation and variance of the multivariate hypergeometric model allows us

to derive an estimator and its variance:

âMF =
D

Ds
as, Var(âMF ) =

D2

D2
s

Var(as) =
D

Ds

1
1
a + 1

D−a

D − Ds

D − 1
. (14)

In the urn model example, if we randomly pick the balls and put them back to the bag

after recording their colors, we end up with a multinomial model. When the sampling rate Ds

D is

low, “sample-with-replacement” is often a good approximation, which in general simplifies the

analysis. However, we need to be careful about this assumption since we do not place restrictions

on the sampling rate, (allowing for up to 100% sampling of rare words).

For a multinomial distribution, its expectations are the same as given in (12). Its variance,

however, is different:

Var(as, r) = Ds
a

D

(

1 − a

D

)

, (15)

where the symbol “r” indicates “sample-with-replacement.”

According to the multinomial model, an estimator and its variance would be:

âMF,r =
D

Ds
as, Var(âMF,r) =

D

Ds

1
1
a + 1

D−a

, (16)

which implies that, for the margin-free model, the “sample-with-replacement” simplification still

results in the same estimator but over-estimates the variance.

In (14), the term D−Ds

D−1 ≈ D−Ds

D , which varies from unity (at 0% sampling rate) to zero (at

100% sample rate), is often called the “finite population correction factor” (Siegrist, 1997).

5 The Proposed MLE Method

The task is to estimate the contingency table from the samples, the margins and D. We would

like to use a maximum likelihood estimator for the most probable a, which maximizes the

9



(full) likelihood (probability mass function, PMF) P (a s, bs, cs, ds; a). Unfortunately, we do not

know the exact expression for P (as, bs, cs, ds; a), but we do know the conditional probability

P (as, bs, cs, ds|Ds; a). Since the document IDs are uniformly random, sampling the first D s con-

tiguous documents is statistically equivalent to randomly sampling D s documents from the cor-

pus. Based on this key observation and Figure 5, conditional on D s, P (as, bs, cs, ds|Ds; a) is the

PMF of a two-way sample contingency table.

We factor the full likelihood into:

P (as, bs, cs, ds; a) = P (as, bs, cs, ds|Ds; a) × P (Ds; a), (17)

where P (as, bs, cs, ds|Ds; a) is the likelihood of the conditional sample contingency table. The

marginal probability P (Ds; a) is difficult. However, since we do not expect a strong dependency

of Ds on a (as illustrated in Figure 6), we use a partial likelihood, which seeks the a that max-

imizes the partial likelihood P (as, bs, cs, ds|Ds; a) instead of the full probability. The partial

likelihood method is widely used in statistics. A well-known example would be the Cox propor-

tional hazards model in survival analysis (Venables and Ripley, 2002, Section 13.3).

10
−5

10
−4

10
−3

10
3

10
4

Sampling rates

E
 (

 D
s
 )

 a = 0

 a = 0.9f
2

 D = 2×10
7

 f
1
 = 0.05× D

 f
2
 = 0.5×f

1

Figure 6
This experiment shows that E(Ds) is not sensitive to a. D = 2 × 107, f1 = D/20, f2 = f1/2. The
different curves correspond to a = 0, 0.05, 0.2, 0.5 and 0.9 f2. These curves are almost indistinguishable
except at very low sampling rates. Note that, at sampling rate = 10−5, the sample size k2 = 5 only.

Conditional on Ds, the partial likelihood is

P (as, bs, cs, ds|Ds; a) =

(

a
as

)(

b
bs

)(

c
cs

)(

d
ds

)

(

a+b+c+d
as+bs+cs+ds

) =

(

a
as

)(

f1−a
bs

)(

f2−a
cs

)(

D−f1−f2+a
ds

)

(

D
Ds

)

∝ a!

(a − as)!
× (f1 − a)!

(f1 − a − bs)!
× (f2 − a)!

(f2 − a − cs)!
× (D − f1 − f2 + a)!

(D − f1 − f2 + a − ds)!

=

as−1
∏

i=0

(a − i) ×
bs−1
∏

i=0

(f1 − a − i) ×
cs−1
∏

i=0

(f2 − a − i) ×
ds−1
∏

i=0

(D − f1 − f2 + a − i), (18)

where
(

n
m

)

= n!
m!(n−m)! . “∝” denotes “proportional to.” The multiplicative terms not mentioning

a are discarded, because they can be considered as constants and will not contribute to the MLE.

To the best of our knowledge, there are no known MLE results for (18).

Let âMLE be the value of a that maximizes the partial likelihood (18), or equivalently,

10
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maximizes the log1 likelihood, log P (as, bs, cs, ds|Ds; a):

as−1
∑

i=0

log(a − i) +

bs−1
∑

i=0

log (f1 − a − i) +

cs−1
∑

i=0

log (f2 − a − i) +

ds−1
∑

i=0

log (D − f1 − f2 + a − i) ,

whose first derivative,
∂ log P (as,bs,cs,ds|Ds;a)

∂a , is

as−1
∑

i=0

1

a − i
−

bs−1
∑

i=0

1

f1 − a − i
−

cs−1
∑

i=0

1

f2 − a − i
+

ds−1
∑

i=0

1

D − f1 − f2 + a − i
. (19)

Since the second derivative,
∂2 log P (as,bs,cs,ds|Ds;a)

∂a2 ,

−
as−1
∑

i=0

1

(a − i)2
−

bs−1
∑

i=0

1

(f1 − a − i)2
−

cs−1
∑

i=0

1

(f2 − a − i)2
−

ds−1
∑

i=0

1

(D − f1 − f2 + a − i)2
,

is negative, we know that the log likelihood function is concave, and therefore, there is a unique

maximum. One could use some numerical methods to solve (19) for
∂ log P (as,bs,cs,ds|Ds;a)

∂a = 0,

which is quite complex and may subject to numerical difficulties.

It turns out that we can derive an exact (and much simpler) solution by developing the

following updating formula from (18):

P (as, bs, cs, ds|Ds; a)

=P (as, bs, cs, ds|Ds; a − 1) × a

a − as

f1 − a + 1 − bs

f1 − a + 1

f2 − a + 1 − cs

f2 − a + 1

D − f1 − f2 + a

D − f1 − f2 + a − ds

=P (as, bs, cs, ds|Ds; a − 1) × g(a). (20)

Since we know that the MLE exists and is unique, it suffices to find the a from g(a) = 1,

g(a) =
a

a − as

f1 − a + 1 − bs

f1 − a + 1

f2 − a + 1 − cs

f2 − a + 1

D − f1 − f2 + a

D − f1 − f2 + a − ds
= 1, (21)

which is cubic in a (the fourth term vanishes), solved either exactly or numerically. The well-

known Cardano formula can be used to solve this cubic equation (Weisstein, 2005b, Web re-

source). However, we recommend a numerical method, which appears to be much simpler and

more straightforward.

g(a) = 1 is equivalent to q(a) = log g(a) = 0. The first derivative of q(a) is

q′(a) =

(

1

f1 − a + 1
− 1

f1 − a + 1 − bs

)

+

(

1

f2 − a + 1
− 1

f2 − a + 1 − cs

)

+

(

1

D − f1 − f2 + a
− 1

D − f1 − f2 + a − ds

)

+

(

1

a
− 1

a − as

)

. (22)

We can solve for q(a) = 0 iteratively using the Newton’s method,

a(new) = a(old) − q(a(old))

q′(a(old))
. (23)

In Appendix A, we provide the C code that implements the Newoton’s method as described.

1 log always denotes logarithm with base e, i.e., the natural log.

11



5.1 The “Sample-with-replacement” Simplification

Under the “sample-with-replacement” assumption, the likelihood function is slightly simpler:

P (as, bs, cs, ds|Ds; a, r) =

(

Ds

as, bs, cs, ds

)

( a

D

)as
(

b

D

)bs ( c

D

)cs
(

d

D

)ds

∝ aas(f1 − a)bs(f2 − a)cs(D − f1 − f2 + a)ds . (24)

Setting the first derivative of the log likelihood to be zero, we can get the following equation

as

a
− bs

f1 − a
− cs

f2 − a
+

ds

D − f1 − f2 + a
= 0, (25)

which is also a cubic equation and is slightly simpler than solving g(a) = 1.

As shown in Section 4.2, using the margin-free model, the “sample-with-replacement” as-

sumption amplifies the variance but does not change the estimations. With our proposed MLE,

the “sample-with-replacement” assumption will change the estimations, although in general we

do not expect big differences. Figure 7 gives an example. The figure shows the concavity of

the log likelihood and indicates that assuming “sample-with-replacement” may result in a wider

log likelihood profile, i.e., wider confidence interval and numerically harder to locate the peak

(solution of MLE).
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Figure 7
An example: as = 20, bs = 40, cs = 40, ds = 800, f1 = f2 = 100, D = 1000. The estimated â = 43 for
“sample-with-replacement,” and â = 51 for “sample-without-replacement.” (a): The likelihood profile,
normalized to have a maximum = 1. (b): The log likelihood profile, normalized to have a maximum = 0.

5.2 A Convenient Practical Approximation

Solving a cubic equation for the exact MLE may be so inconvenient that some people may prefer

the less accurate margin-free baseline because of its simplicity. This section derives a convenient

approximation to the exact MLE.

The idea is to assume that one can identify as from K1 without the knowledge of K2. In

other words, we assume that as is hypergeometrically distributed in K1. Similarly, as is also

hypergeometrically distributed in K2, and is independent of the sample in K1.

Further assuming “sample-with-replacement,”as is then binomially distributed, as ∼ Binom(as+
bs,

a
f1

). Similarly, assume as ∼ Binom(as + cs,
a
f2

). Under these assumptions, the PMF of as is

12
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a product of two binomial PMFs:
[

(

f1

as + bs

)(

a

f1

)as
(

f1 − a

f1

)bs
]

×
[(

f2

as + cs

)(

a

f2

)as
(

f2 − a

f2

)cs
]

∝ a2as (f1 − a)
bs (f2 − a)

cs . (26)

Setting the first derivative of the logarithm of (26) to be zero, we obtain

2as

a
− bs

f1 − a
− cs

f2 − a
= 0, (27)

which is quadratic in a, i.e.,

a2(2as + bs + cs) − a (f1(2as + cs) + f2(2as + bs)) + 2asf1f2 = 0, (28)

and has a convenient closed-form solution:

âMLE,a =
f1 (2as + cs) + f2 (2as + bs)

2 (2as + bs + cs)

−

√

(f1 (2as + cs) − f2 (2as + bs))
2 + 4f1f2bscs

2 (2as + bs + cs)
. (29)

The second root can be ignored because it is always out of range:

f1 (2as + cs) + f2 (2as + bs) +

√

(f1 (2as + cs) − f2 (2as + bs))
2 + 4f1f2bscs

2 (2as + bs + cs)

≥f1 (2as + cs) + f2 (2as + bs) + |f1 (2as + cs) − f2 (2as + bs) |
2 (2as + bs + cs)

≥
{

f1 if f1 (2as + cs) ≥ f2 (2as + bs)
f2 if f1 (2as + cs) < f2 (2as + bs)

≥min(f1, f2).

Our evaluations in Section 6 will show that âMLE,a is very close to âMLE .

Now we can examine why the “sample-with-replacement” assumption is necessary in order

to obtain a quadratic equation. Without assuming “sample-with-replacement,” the approximate

PMF would be:

P (as, bs, cs, ds; Ds, a)approx =

[
(

a
as

)(

f1−a
bs

)

(

f1

as+bs

)

][
(

a
as

)(

f2−a
bs

)

(

f2

bs+cs

)

]

∝

⎛

⎝

as−1
∏

j=0

(a − j)

⎞

⎠

2
bs−1
∏

j=0

(f1 − a − j)

cs−1
∏

j=0

(f2 − a − j). (30)

An updating formula would be:

P (as, bs, cs, ds; Ds, a)approx = P (as, bs, cs, ds; Ds, a − 1)approx×
(

a

a − as

)2
f1 − a + 1 − bs

f1 − a + 1

f2 − a + 1 − cs

f2 − a + 1
. (31)

Therefore, it suffices to find the a such that
(

a

a − as

)2
f1 − a + 1 − bs

f1 − a + 1

f2 − a + 1 − cs

f2 − a + 1
= 1, (32)

which is still a cubic equation.
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5.3 Theoretical Evaluation: Conditional Variance and Bias

How good are the estimates? A popular metric is the mean square error (MSE):

MSE(â) = E (â − a)
2

= E(â − E(â))2 + (E(â) − a)2 = Var (â) + Bias2 (â) . (33)

If â is unbiased, i.e., E(â) = a, then MSE(â) = Var (â) = SE2 (â), where SE (â) is the standard

error. Here, all expectations are conditioned on D s. In general, MLE is biased, i.e., E(â) �= a.

However, the large sample theory (Lehmann and Casella, 1998, Theorem 6.3.10) says that, as-

suming “sample-with-replacement,” âMLE is asymptotically unbiased and converges to a Nor-

mal with mean a and variance 1
I(a) , i.e.,

âMLE
D

=⇒ N

(

a,
1

I(a)

)

, (34)

where I(a), the (Expected) Fisher Information, is

I(a) = −E

(

∂2

∂a2
log P (as, bs, cs, ds; a, r)

)

. (35)

There are a few issues we should keep in mind when applying the large sample theory.

1.The large sample theory assumes that the samples are i.i.d. In other words, we have to

assume “sample-with-replacement” in order to apply the large sample theory.

2.To apply the asymptotic results, the sample size has to be large “enough,” but there are

no clear cut-off how large is large enough. Since we are working with large corpora,

the sample size is in general not an issue. In our experiments, when the sample size is

≥ 20 − 50, the large sample theory can give quite accurate results.

3.With very small samples, 1
I(a) will under-estimate the variance, by the Information

Inequality:Var(âMLE) ≥ 1
I(a) (Lehmann and Casella, 1998, Theorem 2.5.10).

4.The asymptotic distribution is represented by a Normal, whose support ranges the

whole real line, i.e., (−∞,∞), although we know that a can not be negative, nor can it

be larger than min(f1, f2). This may not be a concern in most cases, but sometimes we

do not need to take it into consideration. In fact, the asymptotic distribution can be

represented by other asymptotically equivalent distributions such as Gamma or Beta,

as long as their first two moments are matched (either identical, or only asymptotically

equivalent) (Li et al., 2005).

5.The expectation in (35) is usually difficult to evaluate. One can compute it numerically

(e.g., by Monte Carlo simulations), or resort to some reasonable approximations.

Alternatively, one can use the “Observed Fisher Information,” i.e., without evaluating

the expectation in (35). In fact, the Observed Fisher Information is often considered

more reasonable as a measure of variability (Efron and Hinkley, 1978; Siegmund,

1985, Chapter III.9) for many applications such as sequential analysis. However, for

performance evaluations or for choosing sample sizes, we will still need to compute

the Expected Fisher Information.

Because we would still like to consider the beneficial aspect that our algorithm is “sample-

without-replacement,” we will correct the asymptotic variance 1
I(a) by multiplying it with the

finite population correction factor D−Ds

D .

14
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Assuming “sample-with-replacement,” the second derivative of the PMF is

∂2 log P (as, bs, cs, ds|Ds, a; r)

∂a2
= −

(

as

a2
+

bs

(f1 − a)2
+

cs

(f2 − a)2
+

ds

(D − f1 − f2 + a)2

)

(36)

The Observed Fisher Information would be:

I(a)obs =
as

a2
+

bs

(f1 − a)
2 +

cs

(f2 − a)
2 +

ds

(D − f1 − f2 + a)
2 , (37)

and the Expected Fisher Information would be:

I(a) =
E(as)

a2
+

E(bs)

(f1 − a)
2 +

E(cs)

(f2 − a)
2 +

E(ds)

(D − f1 − f2 + a)
2

≈ Ds

D

(

1

a
+

1

f1 − a
+

1

f2 − a
+

1

D − f1 − f2 + a

)

. (38)

Since no closed-form E(as), E(bs), E(cs), E(ds) exist, we plug (12) from the margin-free model

into (38) as an approximation. We consider the errors due to this approximation to be “second-

order.”

To this end, we have obtained an approximate variance of â MLE ,

Var (âMLE) ≈ 1

I(a)

D − Ds

D
=

D
Ds

− 1
1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

. (39)

Comparing (16) with (39), we can see that Var (âMLE) < Var (âMF ), as expected. In addi-

tion, âMLE is (conditionally) asymptotically unbiased while âMF is no longer unbiased under

margin constraints. Therefore, we expect âMLE has smaller MSE than âMF .

We call the variance computed using the Observed Fisher Information as the “observed

variance”:

Var (â)obs =
1 − Ds

D
as

a2 + bs

(f1−a)2 + cs

(f2−a)2 + ds

(D−f1−f2+a)2

. (40)

5.4 Unconditional Bias and Variance

âMLE is also (practically) unconditionally unbiased:

E (âMLE − a) = E (E (âMLE − a|Ds)) ≈ E(0) = 0. (41)

The unconditional variance is useful because often we would like to estimate the errors be-

fore knowing Ds (e.g., for choosing sample sizes). The unconditional variance can be computed

using the following well-known conditional variance formula (Ross, 2002, Chapter 7.4.4):

Var (âMLE)uc = E

(

Var

(

âMLE

∣

∣

∣

∣

D

Ds

))

+ Var

(

E

(

âMLE

∣

∣

∣

∣

D

Ds

))

≈
E
(

D
Ds

)

− 1

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

, (42)

because of the conditional asymptotic unbiasedness of â: E
(

âMLE | D
Ds

)

≈ a, which is a con-

stant, hence Var
(

E
(

âMLE | D
Ds

))

≈ 0. Note that for estimating the unconditional variance of
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âMF by replacing D
Ds

with E
(

D
Ds

)

will under-estimate the variance because of the conditional

bias in âMF .

To evaluate E
(

D
Ds

)

exactly, we need the exact PMF P (Ds), which we do not know. Even if

P (Ds) were available, we would still need to evaluate E
(

D
Ds

)

numerically, especially because

D
Ds

is a reciprocal function of Ds. We will resort to approximate solutions.

Recall Ds = min
(

K1(k1), K2(k2)

)

. K1(k1) is the order statistics of discrete random variables

in [1, D] (Siegrist, 1997) with PMF and expectations

P (K1(k1) = t) =

(

t−1
k1−1

)(

D−t
f1−k1

)

(

D
f1

) , (43)

E
(

K1(k1)

)

=
k1(D + 1)

f1 + 1
≈ k1

f1
D, (44)

Var
(

K1(k1)

)

=
(D + 1)(D − f1)k1(f1 + 1 − k1)

(f1 + 1)2(f1 + 2)
. (45)

Alternatively, if we approximate
K1(k1)

D as a continuous random variable on [0,1], then the

density function of
K1(k1)

D would be (Ross, 2002, Section 6.6)

P

(

K1(k1)

D
= t

)

=
Γ(f1 + 1)

Γ(f1 − k1 + 1)Γ(k1)
tk1−1(1 − t)f1−k1 , (46)

which is a Beta distribution with parameters (k1, f1 − k1 + 1), with mean and variance (Shao,

1999, Table 1.2)

E

(

K1(k1)

D

)

=
k1

k1 + f1 − k1 + 1
=

k1

f1 + 1
≈ k1

f1
, (47)

Var

(

K1(k1)

D

)

=
k1(f1 − k1 + 1)

(f1 + 2)(f1 + 1)2
. (48)

We can see that both the exact (discrete) PMF or the continuous approximation imply that

E
(

K1(k1)

)

=
k1

f1
D, E

(

K2(k2)

)

=
k2

f2
D. (49)

The min function can be considered concave. By Jensen’s inequality (see Cover and Thomas

(1991, Theorem 2.6.2) or Durrett (1995, Section 1.3.a)), we know that

E

(

Ds

D

)

= E

(

min

(

K1(k1)

D
,

K2(k2)

D

))

≤ min

(

E(K1(k1))

D
,

E(K2(k2))

D

)

= min

(

k1

f1
,
k2

f2

)

. (50)

The reciprocal function, is convex. Again by Jensen’s inequality, we have

E

(

D

Ds

)

= E

(

1

Ds/D

)

≥ 1

E
(

Ds

D

) ≥ max

(

f1

k1
,
f2

k2

)

. (51)

By replacing the inequalities with equalities, we use the following approximations:

E

(

Ds

D

)

≈ min

(

k1

f1
,
k2

f2

)

, (52)

E

(

D

Ds

)

≈ max

(

f1

k1
,
f2

k2

)

. (53)
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Equation (52) gives a very intuitive relationship between the corpus sampling rate Ds

D and

the postings sampling rate k1

f1
( k2

f2
).

With (53), our approximate unconditional variance formula would be:

Var (âMLE)uc ≈
max

(

f1

k1
, f2

k2

)

− 1

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

. (54)

In our experiment, the approximation in (52) and (53) work well. For example, when the

sample size is ≥ 50, the errors in (52) and (53) are usually ≤ 5% − 10%. See the example in

Figure 8.
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This is the same experiment in Figure 6. D = 2 × 107, f1 = 0.05D, f2 = f1/2. The different curves are

for a = 0, 0.05, 0.2, 0.5 and 0.9f2. (a) plots Ds
D

/min
�

k1
f1

, k2
f2

�
and (b) plots max

�
f1
k1

, f2
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�
/ D

Ds
. We can

see that at sampling rates ≥ 10−4, i.e., k2 ≥ 50, the approximations in (52) and (53) work well.

We consider (52) and (53) to be simple, intuitive, and accurate enough in practice. As shown

in the experiment in Figure 6, E(Ds) is not sensitive to a. One approach to improve the accuracy

in estimating E
(

Ds

D

)

and E
(

D
Ds

)

is to assume independence between W1 and W2. The inde-

pendence assumption will result in exact (but also very sophisticated) solutions for E
(

Ds

D

)

and

E
(

D
Ds

)

, which have to be evaluated numerically.

5.5 Smoothing

The classical smoothing (also frequently referred to as “discounting”) methods assume some

“prior” distribution on the cells (a, b, c, and d). A commonly-used prior distribution for multino-

mial sampling is the well-known Dirichlet prior, which is the conjugate prior for multinomial

distributions (Gelman et al., 2004, Chapter 3.5). See Teh et al. (2004) for some NLP applications

of the Dirichlet prior and Dirichlet process.

For the convenience of extending the discussions to multi-way associations, we use the alter-

native notation in Figure 1, i.e., (x1, x2, x3, x4) for (a,b,c,d), and (s1, s2, s3, s4) for (as,bs,cs,ds).

In addition, we use N for the total number of cells. N = 4 for two-way associations and N = 2 m

for multi-way associations where m is the number of words.

The Dirichlet prior can be written as

P (πi, 1 ≤ i ≤ N) =
Γ
(

∑N
i=1 γi

)

∏N
i=1 Γ (γi)

N
∏

i=1

πγi−1
i , (55)
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where πi = xi

D , Γ(.) is the Gamma function .

A particularly popular Dirichlet prior is to let γ1 = γ2 = ... = γN = 1. With this choice,

the Bayes estimator for xi (assuming multinomial) would be:

x̂i,MF+S =
si + 1

Ds + N
D, (56)

where “S” standards for “smoothing.” With this particular prior, the Bayes estimator is effectively

adding one to each cell of observations, hence the name “Add-one smoothing” (sometimes also

called “Laplace pseudo-count” (Manning and Schutze, 1999, Section 6.2.2)).

We will approximately use the “add-one” law for smoothing the exact MLE estimations. In

other words, we will add one to each cell of the observations and plug in the modified observa-

tions for the smoothed MLE solutions.

The “add-one” rule has been criticized for the poor performance in estimating n-gram lan-

guage models (Church and Gale, 1991)(Manning and Schutze, 1999, Section 6.2.5). The problem

is that “one” is too big in many applications. In a bigram model, for an example, the probability

that two words are adjacent is very small for most words. In (Church and Gale, 1991), when

the add-one rule is used, 46.5% of the probability space has actually been assigned to unseen

bigrams, which is way too much. The good current practice in NLP in estimating the n-gram

model is to use the Good-Turing smoothing and linear interpolation or back-off (Good, 1953;

Church and Gale, 1991; Katz, 1987)(Manning and Schutze, 1999, Section 6.2-6.4). Extensive

evaluations of a variety of smoothing methods can be found in (Chen and Goodman, 1996; Chen

and Goodman, 1998).

The word association is somewhat different from the n-gram model case. Instead of estimat-

ing the strict (ordered) adjacency probabilities, we are estimating the the co-occurrences, which

normally have much larger probability, i.e., the impact of “add-one” should be much smaller. One

convenient property of the “add-one” rule is that one can smooth the estimations on a per-pair

base. In this study, for simplicity, we will report the performance of the “add-one” smoothing. In

fact, our evaluations show that “add-one” smoothing does not improve the margin-free estima-

tor, especially for two-way associations. However, the “add-one” rule works surprising well for

improving the exact MLE, which considers the margins.

We can give some theoretical analysis on the impact, in terms of variance and bias, of the

“add-one” smoothing on the performance of the margin-free estimator.

The variance of x̂i,MF+S would be

Var(x̂i,MF+S) = Var

(

D(si + 1)

Ds + N

)

= Var

(

Dsi

Ds + N

)

≈ Var

(

Dsi

Ds

)

= Var(x̂i,MF ), (57)

unless N is large. The squared bias would be

Bias2(x̂i,MF+S) =

(

E

(

D(si + 1)

Ds + N

)

− xi

)2

=

(

DE(si) + D

Ds + N
− xi

)2

≈
(

Dsxi + D

Ds + N
− xi

)2

=

(

D − xiN

Ds + N

)2

, (58)

which could be substantial, unless xi is large or N is large.

In two-way associations, N = 4 is small. Therefore, it is possible that “add-one” smoothing

will only increase bias without decreasing the variance. Our experiments will verify that â MF+S

hurts the performance of âMF in most cases. In multi-way associations, since N grows expo-

nentially (e.g., for six-way associations, N = 26 = 64), it is possible that “add-one” smoothing

may improve the MF estimator.

There seems to be no easy way to theoretically analyze why the “add-one” rule improve the

MLE estimator.
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5.6 How Many Samples Are Sufficient?

The answer depends on the trade-off between computation (and storage) costs and estimation

errors. For very infrequent words, we might afford to sample 100%. In general, whenever pos-

sible we should try to sample as close to 2% as possible. The empirical “2% rule” is based on

the observation that the conditional variance in (39) is proportional to D
Ds

− 1. Figure 9(a) plots

the relative standard error, i.e.,
√

D/Ds − 1, as a function of the corpus sampling rate, Ds/D,

indicating that the “elbow” point is around 2%.
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Figure 9
How large should the sampling rate be? We can sample up to the “elbow point” (2%), but after that there
are diminishing returns (in terms of relative standard error reduction)

2% is certainly too large for high frequency words. At Web scale, 2% is also too large for

“ordinary” words, whose document frequencies are in the order of 10 million. A more reasonable

criterion is the coefficient of variation, cv =
SE(â)

a . We consider the estimate is accurate if the cv

is below some threshold ρ0 (e.g., 0.5). Note that the reciprocal of cv, a
SE(â) can be considered as

the “Signal-to-Noise-Ratio.”

The coefficient of variation can be expressed as

cv =
SE(â)

a
=

1

a

√

√

√

√

D
Ds

− 1
1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

≈ 1

a

√

√

√

√

max
(

f1

k1
, f2

k2

)

− 1

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

. (59)

Figure 10(a) plots the required sampling rate min
(

k1

f1
, k2

f2

)

computed from (59). We assume

f1 = α1D, f2 = α2D, α2 ≤ α1, a = βf2. In Figure 10(a), we have α2 = 0.1α1, β = 0.05,

ρ0 = 0.5, and for three different values of α1 = 0.01, 0.001, 0.0001 ×D. The figure shows that

at Web scales (i.e., D ≈ 10 billion), a sampling rate as low as 10−4 may suffice for “ordinary”

words (i.e., f1 ≈ 107 = 0.001D).

Figure 10(b) plots the required sample size k1, for the same experiment in Figure 10(a). For

simplicity, we assume k1

f1
= k2

f2
. The figure shows that, after D is large enough, the required

sample size does not increase as much.

For better insights, we can simplify (59) by

cv =
SE(â)

a
≤ 1

a

√

D
Ds

1
a

=

√

1

a

D

Ds
. (60)
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Figure 10
(a): An analysis based on cv = SE

a
= 0.5 suggests that we can get away with much lower sampling rates.

The three curves plot the critical value for the sampling rate, Ds
D

≈ min
�

k1
f1

, k2
f2

�
, as a function of corpus

size, D. At Web scale, D ≈ 1010, sampling rates above 10−3 to 10−5 satisfy cv < 0.5, at least for these
settings of fx, fy and a. The settings were chosen to simulate “ordinary” words. The three curves
correspond to three choices of f1: D/100, D/1000, and D/10, 000. f2 = f1/10, a = f2/20. (b) plots

the critical sample size k1 (assuming k1
f1

= k2
f2

), corresponding to the sampling rates in (a).

Suppose we would like cv ≤ ρ0, it suffices if
√

1
a

D
Ds

≤ ρ0, i.e,

Ds

D
≈ min

(

k1

f1
,
k2

f2

)

≥ 1

ρ2
0a

, (61)

which suggests that the sampling rate may decrease as the corpus scales up, because in general,

we expect a increases with increasing D.

Assume k1

f1
= k2

f2
. In order for cv ≤ ρ0, it suffices if

k1

f1
=

1

ρ2
0a

⇒ k1 =
f1

ρ2
0a

=
α1D

ρ2
0βα2D

=
α1

ρ2
0βα2

, (62)

which (approximately) explains why in Figure 10(b), the required sample size k 1 reaches a

plateau after the corpus size D is larger than a certain level.

To apply (59) to the real data, Table 4 presents the critical sampling rates and sample sizes

for all pair-wise combinations of the four-word query “Governor, Schwarzenegger, Terminator,

Austria.” Here we assume the estimates in Table 3 are exact. The table verifies that only a very

small sample may suffice to achieve a reasonable cv.

The analysis above provides a nice solution for a single pair of words with particular values

for f1, f2, and a. If these values are “representative” for “ordinary” words, then this analysis

produces a rough estimate of typical sampling rates. If we would like to choose sample sizes

more carefully, for all words in the corpus, we will have to seek other alternatives.

In many situations, we could compute the maximum allowed total sample size, for example,

based on the available memory. That is,
∑N

i=1 ki = T , where N is the total number of words and

T is the maximum allowed total samples. We could allocate T according to document frequencies

fj , i.e.,

kj =
fj

∑N
i=1 fi

T. (63)
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Table 4
The critical sampling rates and sample sizes (for cv = 0.5) are computed for all two-way combinations
among the four words “Governor, Schwarzenegger, Terminator, Austria,” assuming the estimated
document frequencies and two-way associations in Table 3 are exact. The required sampling rates are all
very small, verifying our claim that for “ordinary” words, a sampling rate as low as 10−4 may suffice. In
these computations, we used D = 5 × 109 for the number of documents in the collection.

Query Critical Sampling Rate Sample Sizes

Governor & Schwarzenegger 2.2 × 10−6 83 & 9

Governor & Terminator 2.9 × 10−5 1084 & 101

Governor & Austria 5.5 × 10−6 205 & 485

Schwarzenegger & Terminator 6.1 × 10−6 25 & 21

Schwarzenegger & Austria 3.3 × 10−5 131 & 2849

Terminator & Austria 2.2 × 10−5 76 & 193

Usually, we will need to define a lowerbound k and an upperbound k̄, which have to be

selected from engineering experience, depending on the specific applications. We will truncate

the computed kj if it is outside [k, k̄]. (63) implies a uniform sampling rate, which may not be

always desirable, but the confinement by [k, k̄] can effectively vary the sampling rates.

Another reasonable criterion is to minimize the total number of “unused” samples. For a pair

consists of word Wi and Wj , if ki

fi
≥ kj

fj
, then on average, there are

(

ki

fi
− kj

fj

)

fi samples unused

in Ki. This is the basic idea behind the following linear program for choosing the “optimal”

sample sizes:

Minimize

N
∑

i=1

N
∑

j=i+1

[

fi

(

ki

fi
− kj

fj

)

+

+ fj

(

kj

fj
− ki

fi

)

+

]

,

subject to

N
∑

i=1

ki = T, ki ≤ fi, k ≤ ki ≤ k, (64)

where (z)+ = max(0, z), is the positive part of z.

This linear program can be modified easily to consider other factors in different applications.

For example, some applications care more about the very rare words, so we would weight the

rare words more.

So far, we have assumed that a is known, in computing the variance and cv. When a is

unknown, we have to use the estimate a to estimate the variance. This is the typical situation in

Sequential analysis (Siegmund, 1985). Using the results of (Chow and Robbins, 1965; Nadas,

1969), we can propose the following stopping rule:

D∗
s = min

{

Ds such that
SE(â)

â
≤ ρ

z1−α/2

}

(65)

where z1−α/2 is the 1
2 (1− α) quantile of the standard Normal distribution. A common choice is

α = 0.05, z1−α/2 = 1.96 ≈ 2. ρ is the “proportional accuracy,” which is defined as

|â − a| ≤ ρa. (66)

With this stopping rule, we can develop a sequential sampling scheme, in Algorithm 1.

Sequential sampling is particularly useful when the experiments are expensive or destructive

(e.g., clinical trials). In our applications, if the postings are already in the memory, sequential
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Algorithm 1 Sequential sampling algorithm

1: Choose α, ρ. For example, α = 0.05, ρ = 0.5.

2: Choose a reasonable initial sample size, k1, k2.

3: Construct sketches K1 and K2. Estimate a. Use the estimated â to estimate the variance (the

observed variance is recommended).

4: if
SE(â)

â ≤ ρ
z1−α/2

then

5: Exit

6: else

7: Increase k1, k2.

8: Goto 3

9: end if

sampling could be useful in saving the CPU time for estimating associations online. However, if

the samples are in the memory but the original postings are stored on disk, sequential sampling

could be very expensive. In this case, in the implementation of sequential sampling, we should

try to read as many data as possible in one disk I/O.

5.7 When Will Sketch Not Work Well?

We consider three scenarios. (A): f1 and f2 are both large; (B): f1 and f2 are both small; (C): f1 is

very large but f2 is very small. Conventional sampling over documents can handle situation (A),

but will perform poorly on (B) because the less frequent words have less chance to be sampled

(hence, large variance). The sketch algorithm can handle both (A) and (B) well. In fact, it will do

very well when both words are small because the equivalent sampling rate Ds

D ≈ min
(

k1

f1
, k2

f2

)

can be very high, even 100%.

When f2 << f1, no sampling method can work well unless we are willing to sample P 1

with a sufficiently large sample. Otherwise even if we let k2

f2
= 100%, the corpus sampling rate,

Ds

D ≈ k1

f1
, will be low.

For example, Google estimates 14,000,000 hits for “Holmes,” 37,500 hits for “Diaconis,”

and 892 joint hits. 3 Assuming D = 5 × 109 and cv = 0.5, the critical sample size for “Holmes”

would have to be 6.1 × 104, probably way too large.

6 Evaluation of Two-way Associations

We evaluated our two-way association sampling/estimation algorithm with one chunk of web

crawls provided by Microsoft MSN. The collection includes D = 2 16 web pages. We randomly

sampled the English words that appeared in at least 20 documents and generated a dataset of 968

unique words (i.e., 468,028 pairs). Figure 11 displays the histograms and some statistics of the

dataset.

The first (small dataset) experiment considered 4 English words (6 word pairs), shown in

Table 5. The document IDs (from 1 to D = 216) were randomly permuted 105 times. On each

permutation, we constructed sketches by sampling the postings at a range of sampling rates, from

0.002 to 0.95. With 105 Monte Carlo experiments, we are able to compute the mean square errors

and other statistics to verify the correctness of our theoretical formulas (e.g., theoretical variance)

and evaluate the performance of the various estimation methods we have studied.

After we have verified our theoretical formulas by the small dataset Monte Carlo experiment,

we will run our algorithm on all 468,028 word pairs. In this larger dataset experiment, we will

3 As a married couple, Holmes and Diaconis are both professors in Statistics at Stanford University.
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Figure 11
(a): Histogram of the document frequencies (df ) of the 968 words. Max df = 42564, median = 1135, mean
= 2135, standard deviation = 3628. (b): Histogram of the co-occurrences (a) for the 468028 word pairs.
Max a = 33045, mean = 188, median = 74, standard deviation = 459.

Table 5
Gold Standard associations, a. The document frequencies are shown in parentheses. These words are
frequent, suitable for evaluating our algorithms at very low sampling rates. Since the associations are
symmetric, they are only displayed in the lower triangle in the table. In the upper triangle, the six different
combinations of word-pairs are numbered in square brackets.

THIS HAVE HELP PROGRAM

THIS (27633) — [2-1] [2-2] [2-3]

HAVE (17396) 13517 — [2-4] [2-5]

HELP (10791) 7221 5781 — [2-6]

PROGRAM (5327) 3682 3029 1949 —

compare the performance of different estimators at a range of sampling rates. We repeat the

experiment 6 times using different permutations.

6.1 Small Dataset Monte Carlo Experiment

Figure 12 evaluates the various estimate methods by MSE over a wide range of sampling rates.

The figure shows that the proposed method, âMLE , is considerably better (by 20%− 40%) than

the margin-free baseline, âMF . The recommended approximation, âMLE,a, is remarkably close

to the exact solution.

Figure 13 compares how the “add-one” smoothing affects the estimations (â MLE , âMLE,a,

and âMF ). The results are presented in terms of the percentages of improvements of MSE, with

respect to the un-smoothed estimations. For all 6 cases, smoothing improves the proposed es-

timators âMLE and âMLE,a, in some cases for up to 20% at low sampling rates. However, as

expected, for all cases except Case 2-1, the “add-one” smoothing does not improve â MF . In fact,

for Case 2-5 and Case 2-6, âMF+S is > 10% worse than the âMF at low sampling rates.

Figure 14 compares the theoretical unconditional variances with the empirical variances for

two selected cases. We could use the approximate unconditional variance formula (54), which

replaced E
(

D
Ds

)

with its approximation max
(

f1

k1
, f2

k2

)

, but we decided to present the uncondi-

tional variances (42) using the measured (i.e., empirical) E
(

D
Ds

)

. Figure 15 plots the ratio of
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Figure 12

The proposed method, âMLE outperforms the margin-free baseline, âMF , in terms of MSE0.5

a
. The

recommended approximation, âMLE,a, is close to âMLE . All methods are better than assuming
independence (IND).

max
(

f1

k1
, f2

k2

)

over E
(

D
Ds

)

, to illustrate how much the approximate formula (54) underestimate

the true unconditional variance.

Figure 14 indicates that, for the exact MLE, the theoretical variances match the empirical

variances remarkable well. The figure also shows that the “add-one” smoothing is quite effective

in reducing the variances for the exact MLE. For the margin-free (MF) estimator, the “add-one”

smoothing does not reduce the variances (at least not noticeable). Also, as expected, the theoret-

ical unconditional variance for the MF estimator slightly underestimates the true variances.
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Figure 13
Smoothing improves the proposed MLE estimators but hurt the margin-free estimator in most cases. The
vertical axis is the percentage of relative improvement in MSE0.5 of each smoothed estimator with respect
to its un-smoothed version.

Figure 15 plots max
(

f1

k1
, f2

k2

)/

E
(

D
Ds

)

. This figure verifies that max
(

f1

k1
, f2

k2

)

≤ E
(

D
Ds

)

but the differences are not very large. For example, at a sampling rate of 0.01, for all 6 cases,

max
(

f1

k1
, f2

k2

)

≥ 0.95E
(

D
Ds

)

. Therefore, while it appears difficult to compute E
(

D
Ds

)

, it is

fairly accurate to use the simple approximation: max
(

f1

k1
, f2

k2

)

.

Finally, we also compare the biases in Figure 16 for Case 2-5 and Case 2-6. The figure shows

that the MLE estimator is essentially unbiased, unlike the margin-free baseline.
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Figure 14

Normalized standard error,
SE(â)

a
. For the MLE, the theoretical unconditional variance formula (42) fits the

simulation results so well that the curves are indistinguishable. Also, smoothing effectively reduces the
variances at low sampling rates. In contrast, the margin-free estimator exhibits higher variances than the
MLE and smoothing does not reduce variances. In addition, the theoretical variance for the MF estimator
under-estimates the true variance.

6.2 Large Dataset Experiment

The large experiment considers 968 English words (468,028 pairs) over a range of sampling

rates, from 0.003 to 0.5. A floor of sampling rates is imposed so no sample contains fewer than

20 documents.

As reported in Figure 17, the large experiment confirms again that the proposed method,

âMLE , is considerably better than the margin-free baseline, which is also better than the inde-

pendence baseline. The recommended approximation, â MLE,a, is very close to âMLE .

Figure 18(a) plots the percentage of improvements after applying the “add-one” smoothing.

For the MLE method, smoothing can improve as much as 20%. For the margin-free method,

smoothing worsens the performance. Figure 18(b) more clearly displays how much â MLE+S

does better than âMF . The differences are, in general, about 20%− 30%.

Therefore, both small dataset and large dataset experiments verify that the proposed MLE

method considerably improves the margin-free method. The approximate MLE method, which,

like the margin-free method, has a closed-form solution, produces remarkably close results to the

exact MLE. The simple “add-one” smoothing helps the both proposed MLE estimators but hurts

the margin-free method.
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Biases in terms of
|E(â)−a|

a
. âMLE is practically unbiased, unlike âMF . Smoothing increases bias slightly.

6.3 Rank Retrieval by Cosine Similarity

These estimates of a can be used to find highly associated pairs of words using standard similarity

measures such as cosine: a√
f1f2

. Because the margins f1 and f2 are known, estimating the cosine

coefficient is equivalent to estimating the joint frequency,a. If we sort word pairs by their cosines,

using estimates of a based on a small sample, the rankings will hopefully be close to what we

would obtain if we used all the data. This section will compare the rankings based on a small

sample to a gold standard, the rankings based on all of the data.

How should we evaluate the two rankings? One simple measure is “top-k” percentage of

agreements. That is, we compare the top-k pairs from the reconstructed list with the top-k list

from the gold standard list and compute the percentage of how many pairs are common in both

“top-k” lists, as in (Ravichandran et al., 2005).
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We report the (normalized) mean absolute errors (divided by the mean co-occurrences, 188). All curves
are averaged over three permutations. The proposed MLE and the recommended approximation are very
close and both are significantly better than the margin-free (MF) baseline. All estimators do better than
assuming independence.
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Figure 18
(a): The “add-one” smoothing improves the proposed (exact and approximate) MLE methods, but hurts the
margin-free method. (b): âMLE+S improves âMF for 15% − 30% at most sampling rates.

Figure 19(a) plots the top-3 to top-200 percentage of agreements for the 468,028 pairs in the

large dataset experiment. With a sampling rate of 0.003, the agreements are consistently around

70%. With a sampling rate of 0.5, the agreements are close to 100%. Increasing sampling rates,

increases agreements.

Figure 19(b) presents the same type of results as in Figure 19(a), but not limited to top-200.

The figure suggests that the most strongly-associated (e.g., top-200 in this case) pairs are likely

to remain in the top of the similarity list even with very low sampling rates.

The same comparisons can be evaluated in terms of precision and recall, by fixing the top-

LG gold standard list but varying the length of the sample list LS . More precisely, recall =
relavant/LG, and precision = relevant/LS, where “relevant” means the retrieved pairs in the

gold standard list. Figure 20 gives a graphical representation of this evaluation scheme, using
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Figure 19
The 468,028 pairs were sorted descending by the cosine similarity scores to form a similarity list. The gold
standard similarity list was constructed using the true associations, while the reconstructed similarity list
used the estimated a. The vertical axis is the percentage of agreements among the top-k word pairs
between the two similarity lists. (a): k ranges from 3 to 200. (b): k ranges from 3 to 468,028. In both
sub-figures, there are three curves, corresponding to three different sampling rates: 0.003, 0.01, and 0.5.

notation in (Manning and Schutze, 1999, Chapter 8.1): true positive (TP) = retrieved and relevant,

false negative (FN) = relevant but not retrieved, false positive (FP) = retrieved and irrelevant, true

negative (TN) = irrelevant and not retrieved.

scores
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Figure 20
Definitions of recall and precision. L = total number of pairs. LG = number of pairs from the top of the
gold standard similarity list. LS = number of pairs from the top of the reconstructed similarity list.

Figure 21 presents the precision-recall curves for LG = 1%L and 10%L, where L =
468, 028. For each LG, there is one precision-recall curve corresponding to each sampling rate.

All curves indicate the precision-recall trade-off and that the only way to improve both precision

and recall simultaneously is to increase the sampling rate.

7 Estimate Two-way Contingency Table Summary Statistics

After we have estimated a, we can then compute all summary statistics, such as the cosine co-

efficient, dice coefficient, Jaccard coefficient, log likelihood ratio (LLR), generalized inverse

document frequency (IDF), and more. We denote these summary statistics by h(a) generically.

The simplest estimator of h(a) would be h(â), i.e, substituting the estimated a into h(a). How-

ever, this method may raise some concerns, especially when h(a) is a strong non-linear function
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Figure 21
Precision-recall curves in retrieving the top-1% and top-10% gold standard pairs, at different sampling

rates from 0.003 to 0.5. Note that the precision is always larger than
LG
L

.

of a and we have small samples.

We have shown that our proposed MLE method is practically unbiased. However, h(â) in

general is not unbiased unless h(a) is a linear function of a. If h(a) is a convex function of a,

then by Jensen’s inequality, E(h(a)) ≥ h(a). Similarly, if h(a) is concave, then E(h(a)) ≤ h(a).
See Figure 22 for the example of LLR. We should mention that, when the first derivative h ′(a)
exists and non-zero, h(a) is in fact asymptotically unbiased, but the convergence rate could be

very slow (depending on h).

0 5000
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L
L
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2σ

True LLR

Estimate

2σ

True a

Figure 22

The log likelihood ratio (LLR) curve is plotted for Case 2-6 in Table 5, i.e., W1 = “HELP” with
f1 = 10791, W2 = “PROGRAM” with f2 = 5327, a = 1949, D = 216. LLR is a convex function of a. If
we use the estimated a to compute LLR, i.e., LLR(â), due to the errors (variance) of â and the convexity
of LLR, LLR(â) will be above the LLR curve.

If it is desirable to have an unbiased estimator of h(a), we can correct the biased estimator

h(â) by a Taylor expansion:

h(â) = h(a) + (â − a)h′(a) +
(â − a)2

2
h′′(a) +

(â − a)3

6
h′′′(a) + negligible terms, (67)

where h′(a), h′′(a), and h′′′(a), are the first, second, and third derivatives, respectively. Taking
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expectations in both sides, we obtain

E(h(â)) ≈ h(a) +
σ2

2
h′′(a) +

η3

6
h′′′(a), (68)

where σ2 = Var(âMLE), and η3 = E (âMLE − a)
3
. Here we treat âMLE as an unbiased esti-

mator, i.e., E(âMLE − a) ≈ 0.

Equation (68) suggests an approximately unbiased estimator, denoted by ĥ(a),

ĥ(a) = h(â) − σ2

2
h′′(a) − η3

6
h′′′(a). (69)

We already know how to compute σ2, at least approximately. The large sample theory says

that âMLE can be approximated as a Normal random variable, i.e., â ∼ N
(

a, σ2
)

. Under the

Normal assumption, all odd central moments of â vanish (e.g., η 3 = 0). We refer to this adjust-

ment as the “Normal correction.”

As mentioned in Section 5.3, we could use another (asymptotically) equivalent distribution

to approximate the distribution of âMLE , for example, a Gamma random variable, G(α, β), as

long as the first two moments are the same. If we replace Normal with Gamma, we refer to the

adjustment as “Gamma Correction.” Figure 23 gives an example of the histogram and empirical

density of âMLE , which shows that both Normal and Gamma fit the empirical data quite well.
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Figure 23
(a) The histograms of âMLE for Case 2-6 in Section 6 at a sampling rate 0.05. Recall that Case 2-6
involved word “HELP” and word “PROGRAM” with true association a = 1949. (b): The empirical
density of âMLE is very close to Normal, which verifies the large sample theory. The asymptotically
equivalent Gamma approximation also fits the empirical density well.

The first two moments of N(a, σ2) are a and σ2, respectively. The first two moments of

G(α, β) are αβ and αβ2, respectively (Shao, 1999, Table 1.2). Equating the first two moments

of Normal and Gamma, we obtain,

α =
a2

σ2
, β =

σ2

a
. (70)

Assuming Gamma G(α, β), the third central moment η 3 would be

η3 = 2αβ3 = 2
σ4

a
. (71)

This technique for removing biases is commonly used in statistics, see (Lehmann and Casella,

1998, Theorem 6.1.1) for an example. Often in practice, the Taylor expansion of h(â) is truncated
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after the second-derivative term. The reason that we recommend a third-order Taylor expansion

and using a Gamma distribution to replace the Normal is because most of the summary statistics

we are interested in are positive, while using only a second-order Taylor expansion may lead

to negative values. We use the log likelihood ratio (LLR) to illustrate this effect. This “Gamma

trick,” i.e., replacing the Normal with a Gamma as the asymptotic distribution, was also used by

Li et al. (2005).

In terms of D, f1, f2, and a, LLR, can be expressed as (Agresti, 2002, Section 3.2.1),

LLR(a) = a log
Da

f1f2
+ (f1 − a) log

(f1 − a)D

(D − f2)f1
+ (f2 − a) log

(f2 − a)D

(D − f1)f2

+ (D − f1 − f2 + a) log
(D − f1 − f2 + a)D

(D − f1)(D − f2)
. (72)

The first three derivatives of LLR 4 are

LLR′(a) = log
a(D − f1 − f2 + a)

(f1 − a)(f2 − a)
, (73)

LLR′′(a) =
1

a
+

1

f1 − a
+

1

f2 − a
+

1

D − f1 − f2 + a
, (74)

LLR′′′(a) = − 1

a2
+

1

(f1 − a)2
+

1

(f2 − a)2
− 1

(D − f1 − f2 + a)2
. (75)

The second derivative, LLR′′(a), is positive, i.e., it is possible that the Normal correction,

i.e., ˆLLR(a) = LLR(â) − σ2

2 LLR′′(a), may be negative in some situations. Note that using a

higher-order Taylor expansion would not avoid this problem because all even derivatives of LLR

are positive.

Figure 24 compares the two bias correction methods. Although both methods do well in

removing the bias in estimating LLR, the Normal correction generates so many negative values

that we do not recommend it.

After we have adjusted the estimator for h(a), then how about the variance?

A first-order Taylor expansion of h(â) leads to:

Var(h(â)) ≈ σ2(h′(a))2, (76)

which is also well-known as the popular “Delta Method” (Agresti, 2002, Chapter 3.1.5). Note that

(76) is asymptotically exact as long as h(a) exists and non-zero, although the rate of convergence

may be very slow.

If h(a) is a convex function of a, then h(â) − h(a) ≥ (â − a)h ′(a) and E (h(â) − h(a)) ≥
E ((â − a)h′(a)), i.e., Var(h(â)) ≥ σ2(h′(a))2. Similarly if h(a) is a concave function of a, we

know Var(h(â)) ≤ σ2(h′(a))2.

Theoretically, the adjusted ĥ(a) in (69) will have the same variance as h(â) because σ2 and

η3 are constants, i.e., Var
(

ĥ(a)
)

= Var(h(â)). However, if we have to use the estimated a to

compute σ2 and η3, ĥ(a) should have larger variance than h(â) because of additional variations.

To this end, we have discussed LLR in details. Table 6 collects some other common summary

statistics including the angle (inverse cosine), the generalized IDF, and three vector similarity

4 The derivatives of LLR contain some other useful information. The first derivative, LLR′(a) is the same as the “log
odds ratio,” an important summary statistics of contingency tables (Agresti, 2002, Chapter 2.2.3, Chapter 3.1.1). The

zero first-derivative point of LLR(a), i.e., a = f1f2
D

, corresponds to the point where the odds ratio = 1 (log odds
ratio = 0). In other words, when two words are independent, LLR has zero first derivative. The second derivative of

LLR is always positive, i.e., LLR is convex in a and reaches its minimum (= 0) at a = f1f2
D

, which is consistent
with the well-known facts about mutual information, as LLR is basically the mutual information.
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Figure 24
Both Normal and Gamma corrections were applied to the case: f1 = 10791, f2 = 5327, a = 1000,
D = 216, which is basically Case 2-6 in Section 6 except that a was reduced from 1949 to 1000 to make
the case more difficult. The true LLR = 10.86. 106 random samples were generated from N(a, σ2), where
σ2 was the approximate unconditional variance (54). For each sample, an LLR value was computed. The
average over all 106 LLR values is the uncorrected estimator of LLR(a) in (a). Both Normal correction
and Gamma correction, on average, fit the exact LLR very well except at very small sampling rates. The
Normal correction appears even better than the Gamma correction. The sub-figure (b) plots the percentage
of negative values after corrections, among 106 samples. With the Normal correction, a large portion (can
be 70% at low sampling rates) are negative, while with the Gamma correction, no negative values are
observed in this example.

measures: dice, cosine, and Jaccard (resemblance), along with their first three moments. The dice

and cosine coefficients are linear functions of a hence no need for them to be adjusted for bias.

Resemblance is a weak non-linear function of a and therefore we expect its bias to be negligible.

The second derivative of the generalized IDF is 1
a2 , implying its non-linearity is not as strong as

LLR, whose second derivative is O
(

1
a

)

. The non-linearity of the angle (inverse cosine) depends

on f1, f2, and a. In most cases, we expect its second derivative to be quite small (i.e., small bias),

but when a ≈ f1 ≈ f2 (i.e., angle ≈ 0), its non-linearity is severe. When a = f1 = f2, the first

derivative becomes ∞ and we can no longer use the Taylor expansion.

The next two sections discuss the estimation of resemblance and cosine angle in more detail.

8 Estimate Resemblance from Contingency Tables

In this section, we will show that our proposed MLE method always outperforms Broder’s sketch.

The improvement is roughly a factor of 2 in normal settings.

Broder’s sketch algorithm was originally designed to estimate the resemblance (Jaccard co-

efficient): R(a) = a
a+b+c = a

f1+f2−a . In this section, we will compute R from the estimated

contingency table with:

R̂MLE =
âMLE

f1 + f2 − âMLE
. (77)

R̂MLE is slightly biased (see Table 6). We could correct the bias using a second-order or

third-order Taylor expansion as in described in the previous section. However, since the second

derivative of R(a)

R′′(a) =
2(f1 + f2)

(f1 + f2 − a)3
≤ 2(f1 + f2)

max(f1, f2)3
≤ 4

max(f1, f2)2
, (78)
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Table 6
Definitions and first three derivatives of some common summary statistics. The dice and cosine measures
are linear functions of a. The second derivatives of resemblance is very small and the second derivative of
the generalized IDF is on the order of O

�
1

a2

�
, which is also small, hinting that bias corrections for

resemblance or generalized IDF may not be as important as for LLR. The inverse cosine function has
different degrees of non-linearity.

h(a) h′(a) h′′(a) h′′′(a)

Dice 2a
f1+f2

2
f1+f2

0 0

Cosine a√
f1f2

1√
f1f2

0 0

Jaccard (Resemblance) a
f1+f2−a

f1+f2

(f1+f2−a)2
2(f1+f2)

(f1+f2−a)3
6(f1+f2)

(f1+f2−a)4

Generalized IDF log( D
a ) − 1

a
1
a2 − 2

a3

Angle cos−1
(

a√
f1f2

)

−1√
f1f2−a2

−a

(f1f2−a2)
3
2

−1

(f1f2−a2)
3
2

+ −3a2

(f1f2−a2)
5
2

is very small, it is unlikely that the bias will have a noticeable effect.

The variance of R̂MLE is approximately:

Var
(

R̂MLE

)

≈ Var(âMLE)(R′(a))2

=
max

(

f1

k1
, f2

k2

)

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

(f1 + f2)
2

(f1 + f2 − a)4
, (79)

ignoring the “finite-population correction factor,” for convenience.

Broder considered the special case where the two sample sizes were the same: k1 = k2 = k.

In the original sketch construction (Broder, 1997), the estimator of resemblance, denoted as R B ,

has a hypergeometric distribution. In the “minwise” sketch construction (Broder et al., 1998),

the estimator, denoted as RB,r, is a binomial. We have reviewed the Broder’s original sketch in

Section 2. For completeness, we shall also review the “minwise” sketch construction as follows.

After a random permutation on the document ID’s, we record the smallest IDs in the post-

ings P1 and P2, denoted as MIN(P1) and MIN(P2), respectively. The possibility of MIN(P1) =

MIN(P2) would be |P1 ∩ P2| out of |P1 ∪ P2|, i.e.,

P (MIN(P1) = MIN(P2)) =
|P1 ∩ P2|
|P1 ∪ P2|

, (80)

P (MIN(P1) = MIN(P2)) can be estimated by repeating the permutation k times indepen-

dently.

The “minwise” construction appears to be more straightforward than Broder’s original sketch.

However, the original sketch used only one permutation while the “minwise” construction used

k permutations. One of the reasons that Broder moved to the “minwise” construction is to over-

come the difficulty in dealing with very short postings. Recall Broder assumed equal sample

sizes, which can be problematic for very short postings because the pre-specified sample size has
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to be large enough to ensure accuracy. This, however, is not a problem for our generalization of

the sketch algorithm since we do not assume equal samples.

For simplicity, we ignore the difference between RB and RB,r. As a binomial, the variance

would be

Var
(

R̂B

)

≈ Var
(

R̂B,r

)

=
1

k
R(1 − R) =

1

k

a(f1 + f2 − 2a)

(f1 + f2 − a)
2 .

We can use the ratio VB =
Var(R̂MLE)

Var(R̂B)
to compare the performance of our proposed MLE

with Broder’s sketch:

VB =
Var

(

R̂MLE

)

Var
(

R̂B

) =
max

(

f1

k1
, f2

k2

)

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

(f1 + f2)
2

(f1 + f2 − a)2
k

a(f1 + f2 − 2a)
.

(81)

In most cases, it is reasonable to assume that a << min(f1, f2) < max(f1, f2) << D, i.e.,

Var
(

R̂MLE

)

≈ max( f1

k1
, f2

k2
) a
(f1+f2)2

, Var
(

R̂B

)

≈ 1
k

a
f1+f2

. Therefore, approximately

VB ≈
k max( f1

k1
, f2

k2
)

f1 + f2
. (82)

With equal samples, i.e., k1 = k2 = k, we have

VB ≈ max(f1, f2)

f1 + f2
, (83)

which is about 1
2 when f1 = f2.

With proportional samples, i.e., k1 = 2k f1

f1+f2
, k2 = 2k f2

f1+f2
, we have

VB ≈ 1

2
. (84)

As previously mentioned, in Broder’s sketch construction, only half of the samples are used

in the estimation. Our construction uses more samples. In fact, with proportional sampling, al-

most all samples will be used. These observations are consistent with VB .

VB ≈ 1
2 suggests that our algorithm is a significant improvement over Broder’s original

sketch. It implies that in order to achieve the same accuracy, our method requires only half as

many samples as in Broder’s construction.

Figure 25 plots VB in (81) for the whole range of f1, f2, and a, assuming equal samples:

k1 = k2 = k. We can see that VB ≤ 1 always holds and VB = 1 only when f1 = f2 = a, which

is a trivial case. When a/f2 is small, VB ≈ max(f1,f2)
f1+f2

holds well.

Compared with equal samples in Figure 25, proportional samples further reduce V B , as

shown in Figure 26.

It is not hard to show algebraically that VB in (81) is always less than unity unless f1 =
f2 = a. For convenience, we use the notion a, b, c, d in (81). Assume k 1 = k2 = k and f1 > f2,

we obtain

VB =
a + b

1
a + 1

b + 1
c + 1

d

(2a + b + c)2

(a + b + c)2
1

a(b + c)
. (85)

To show VB ≤ 1, suffices to show

(a + b)(2a + b + c)2bcd ≤ (bcd + acd + abd + abc)(a + b + c)2(b + c), (86)
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Figure 25
We plot VB in (81) for the whole range of f1, f2, and a, assuming equal samples: k1 = k2 = k. (a), (b),
(c) and (d) correspond to f2 = 0.2f1, f2 = 0.5f1, f2 = 0.8f1 and f2 = f1, respectively. Different curves

are for different f1’s, ranging from 0.05D to 0.95D spaced at 0.05D. The horizontal lines are
max(f1,f2)

f1+f2
.

Note that VB in (81) is independent of D. We can see that for all cases, VB ≤ 1 holds. VB = 1 when

f1 = f2 = a, a trivial case. When a/f2 is small, VB ≈ max(f1,f2)
f1+f2

holds well. It is also theoretically

possible that VB is zero when d = D − f1 − f2 + a = 0, or when a = f2 < f1.
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Figure 26
Compared with equal samples in Figure 25, proportional samples further reduce VB .

which is equivalent to
(

a3(b − c)2 + bc2(b + c)2 + a2(2b + c)(b2 − bc + 2c2) + a(b + c)(b3 + 4bc2 + c2)
)

d

+ abc(b + c)(a + b + c)2 ≥ 0, (87)
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which always holds. The equality holds only when b = c = 0, i.e., f 1 = f2 = a.

We can compare our estimated resemblance with Broder’s sketch for the same small dataset

in evaluating two-way associations, as given in Table 5. Figure 27 compares the MSE. Here we

assume equal samples and later we will show that proportional samples could further improve

the results. The figure shows that our algorithm is consistently better. The approximate MLE still

gives very close answers to the exact MLE. Also, the simple “add-one” smoothing improves the

estimations at low sampling rates, quite substantially.
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Figure 27
When estimating the resemblance, our algorithm gives consistently more accurate answers than Broder’s
sketch. In our experiments, Broder’s “minwise” construction gives almost the same answers as the
“sample-without-replacement” version, thus only the “minwise” results are presented here. The
approximate MLE again gives very close answers to the exact MLE. Also, smoothing improves at low
sampling rates.
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Figure 28 illustrates the bias. As expected, our estimator for the resemblance has higher bias

than Broder’s sketch. However, since the absolute magnitude of the bias is very small compared

with the MSE, also as expected, we can basically ignore the bias in our discussions.
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Figure 28
Our proposed MLE has higher bias than the “minwise” estimator because of the non-linearity of
resemblance. However, the bias is very small compared with the MSE.

Figure 29 verifies that the variance of our estimator is always smaller than Broder’s sketch.

Our theoretical variance in (79) under-estimates the true variances for three reasons. First, The

reciprocal of the Expected Fisher Information 1
I(a) under-estimates the variance at very low sam-

pling rates. Secondly, the approximation E
(

D
Ds

)

= max
(

f1

k1
, f2

k2

)

under-estimates the variance.

Thirdly, the resemblance R(a) is a convex function of a, hinting that the Delta Method also
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under-estimates the variance. However, Figure 29 shows that the errors are not very big and be-

come negligible after the sample size is large enough (e.g., 50). Therefore, we still regard our

variance formula (79) reliable.
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Figure 29
Our proposed estimator have consistently smaller variances than Broder’s sketch. The theoretical variance,
computed by (79) slightly under-estimates the true variance with small samples. Here we did not plot the
theoretical variance for Broder’s sketch because it is very close to the empirical curve.

Finally, in Figure 30, we show that with proportional samples, our algorithm further im-

proves the estimates. In terms of the relative MSE, with equal samples, our estimators improves

Broder’s sketch by 30%− 50%. With proportional samples, improvements become 40%− 80%.

The maximum possible improvement is 100%.
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Figure 30

Compared with Broder’s sketch, the relative MSE improvement should be, approximately,
min(f1,f2)

f1+f2
with

equal samples, and 1
2

with proportional samples. The two horizontal lines in each figure correspond to
these two approximates. The actual improvements could be lower or higher. The figure verifies that
proportional samples can considerably improve the accuracies.

9 Compare MLE with Random Projection in Estimating Cosine Angles

The random projection algorithm is also a very popular method for estimating vector similarity.

Charikar (2002) treated the random projection algorithm as a special case for local sensitive

hashing (LSH). Ravichandran et al. (2005) implemented it for estimating word associations.

For completeness, we repeat the basic theorem, first proved by Goemans and Williamson
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(1995). Given two vectors v1 and v2 in D dimensions, and a random vector vr whose entries

consists of i.i.d. standard Normals, a hash function is defined as:

Hr(v1) =

{

1 if dot(v1, vr) ≥ 0
0 if dot(v1, vr) < 0

. (88)

Similary, we can define Hr(v2). Goemans and Williamson (1995) proved that

P (Hr(v1) = Hr(v2)) = 1 − θ(v1, v2)

π
, (89)

where θ(v1, v2) = cos−1
(

dot(v1,v2)
|v1||v2|

)

, is the angle between the two vectors v1 and v2.

Figure 31 gives an intuitive example why (89) is true in two dimensions.

rv

1v

2v
θ

θ

θ

Figure 31
The angles between two vectors v1 and v2 is θ. Suppose there is a random vector vr whose orientation is
uniformly random in [0, 2π]. We can compute the hash Hr(v1) and Hr(v2) by (88). Suppose θ < π

2
as

shown in the figure. When vr falls inside the shaded area, we know Hr(v1) �= Hr(v2), which occurs with

a probability 2θ
2π

, i.e., P (Hr(v1) = Hr(v2)) = 1 − θ(v1,v2)
π

, which holds even when θ > π
2

.

We can generate k such random vectors and estimate the probability P (H r(v1) = Hr(v2))
as a binomial distribution, from which we can estimate the angle by

θ̂RP =
(

1 − P̂ (Hr(v1) = Hr(v2))
)

π, (90)

whose variance would be

Var
(

θ̂RP

)

=
π2

k
(P (Hr(v1) = Hr(v2))) (1 − P (Hr(v1) = Hr(v2)))

=
π2

k

(

1 − θ

π

)(

θ

π

)

=
θ(π − θ)

k
. (91)

Our sketch algorithm estimates a, from which we can compute the angle by

θ̂MLE = cos−1

(

â√
f1f2

)

, (92)
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whose variance is approximately

Var
(

θ̂MLE

)

=
max

(

f1

k1
, f2

k2

)

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

1

f1f2 − a2
. (93)

We can also define the ratio of Var(θ̂MLE) over Var(θ̂RP ):

VRP =
Var(θ̂MLE)

Var(θ̂RP )
=

k max
(

f1

k1
, f2

k2

)

1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

1

f1f2 − a2

1

θ(π − θ)
. (94)

Figure 32 plots VRP for f2 = 0.2f1, f2 = 0.5f1, f2 = 0.8f1 and f2 = f1 for equal samples

k1 = k2 = k. The plots show that the ratio VRP is normally very small in most cases, except

when f1 = f2 = a, which corresponds to θ = 0, a trivial case. The figure implies that our

estimator is better than random projection in estimating the angles. Proportional samples will

further reduce the variance but we skip the plots here.
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Figure 32
We plot VRP in (94) for the whole range of f1, f2, and a, assuming equal samples: k1 = k2 = k. (a), (b),
(c) and (d) correspond to f2 = 0.2f1, f2 = 0.5f1, f2 = 0.8f1 and f2 = f1, respectively. Different curves
are for different f1’s, ranging from 0.05D to 0.95D spaced at 0.05D. The figure shows that the variance

ratio VRP = Var(θ̂MLE)

Var(θ̂RP )
is very small for all cases except when f1 = f2 = a, which is a singular case and

the variance formula (93) derived by Delta Method is no longer applicable.

We compare the performance of our estimator with random projection in estimating the

angles, using the same dataset of 4 words (6 word pairs) in Table 5. We first experiment with

equal samples.
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Figure 33 compares the MSE. Using our proposed MLE, we are able to estimate the angles

much more accurately than random projection. The approximate MLE works almost as well as

the exact MLE. Also, smoothing helps at low sampling rates.
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Figure 33
We compare random projection (RP) with our proposed MLE. Our method gives much more accurate
estimates in terms of MSE0.5. The approximate MLE works almost as well as the exact MLE. Also,
smoothing helps at low sampling rates.

Figure 34 plots the absolute bias for both random projection and our proposed MLE. Both

estimators are practically unbiased for these 6 cases.

Figure 35 compares the variance. Empirically, the proposed MLE has much lower variance

than random projection, as expected. The theoretical variance for the proposed MLE fits the

empirical variance quite well but there is no consistent trend whether the theoretical variance
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Figure 34
The biases in both random projection and our proposed MLE are very small compared with MSE.

under-estimate or over-estimate the true variance. Because the inverse cosine, cos−1, function is

concave in [0, π], the approximate variance (93) derived by Delta Method will in general over-

estimate the true variance, while other factors (e.g., the approximation D
Ds

= max
(

f1

k1
, f2

k2

)

)

tend to under-estimate the variance.

Finally, we show in Figure 36 that with proportional samples, our estimators can further

improve the accuracy, compared with random projection. Since the maximum possible relative

improvement is 100% and even with equal samples our estimator is already much better than

random projection, the additional improvement due to proportional samples may not appear to

be very significant.
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Figure 35
Empirically, the proposed MLE has much lower variance than random projection. The theoretical variance
for the proposed MLE fits the empirical variance quite well.

10 Testing for Strong Two-way Associations

Statistical hypothesis testing has been widely used in NLP (Dunning, 1993; Moore, 2004) (Man-

ning and Schutze, 1999, Section 5.3). We will first review four kinds of tests that are applicable

for testing two-way associations: the Fisher’s exact test, G2 test, χ2 test, and Poisson test.

We start with the Fisher’s exact test. Assuming fixed margins f1, f2, the PMF of the co-
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(b) Case 2-2
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(c) Case 2-3
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(d) Case 2-4
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(e) Case 2-5
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(f) Case 2-6

Figure 36
With proportional samples, the proposed MLE can further improvement the MSE compared with random
projection. Note that the maximum possible relative improvement is 100%.

occurrences of W1 and W2 is

P (a = t; Fisher) =

(

f1

t

)(

D−f1

f2−t

)

(

D
f2

) =

t−1
∏

i=0

(f1 − i)(f2 − i)

(t − i)(D − f1 + t − i)

f1−t−1
∏

i=0

D − f2 − i

D − i

= exp

(

t−1
∑

i=0

log
(f1 − i)(f2 − i)

(t − i)(D − f1 + t − i)
+

f1−t−1
∑

i=0

log
D − f2 − i

D − i

)

. (95)

In (95), we expand the PMF into a product form and a log-summation-exp form for nu-
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merical reasons because factorial can easily exceed the largest machine number (e.g., 100! =
9.33 × 10157). In most cases, the product form in (95) suffices but occasionally we will need to

use the more expensive log-summation-exp form to avoid overflow. There are other more effi-

cient (but approximate) alternatives to compute the PMF such as the Binet’s log gamma formulas,

(Weisstein, 2005a, Web resource), which was also used in (Moore, 2004).

To test whether W1 and W2 are strongly correlated, we can compute the “p-value,”

p-value =

min(f1,f2)
∑

t=a

P (a = t; Fisher). (96)

If p-value < α, the significance level, we accept the alternative hypothesis that W 1 and W2

are strongly correlated. Since we are mostly interested in positive correlations, we will focus

our discussion on one-sided tests, i.e., only testing whether two words are strongly positively-

correlated.

Alternatively, we can compute a “critical value,” acr, based on the level of significance,

P (a ≥ acr) =

min(f1,f2)
∑

t=acr

P (a = t; Fisher) = α (97)

If the observed value a exceed acr, we accept that W1 and W2 are significant.

The Fisher’s exact test is usually considered be to “exact” and most suitable when the D is

small. However, we should also be aware of its limitations:

1.The “exactness” is based on assuming that the margins, f1 and f2, are fixed. In other

words, the Fisher’s exact test is a “conditional test.” When we try to estimate a, we

take the advantage of knowing the margins. However, in hypothesis testing, the

fixed-margins assumption may not be always appropriate because at the corpus level,

the margins are also random. The argument about the “conditional test” v.s.

“unconditional test” is still a debatable issue (Agresti, 2002, Chapter 3.5.5 3.5.6).

2.The PMF in the Fisher’s exact test, i.e., the hypergeometric distribution, is highly

discrete, which makes it not possible to achieve the exact significance level and leads

to conservative tests. There are some procedures to (partially) overcome these

shortcomings, such as the “randomization extension” or the “mid-p-value adjustment”

(Agresti, 2002, Chapter 3.5.4). However, the problem of discreteness is not that

significant for multiple (simultaneous) hypothesis testing especially when the simplest

multiple testing method, the Bonferroni’s method, which leads to very small

significance levels, is used. We will discuss more about multiple testing later.

3.The Fisher’s exact test is computationally very expensive. Although there are accurate

log-Gamma approximations that can speed up in computing the PMF, one still has to

compute the cumulative probability as in (96) and (97). Normally one can write the

PMF P (a = t− 1) recursively in terms of P (a = t) to save computations, but we need

to be very careful of error propagations because P (a = min(f 1, f2)) is normally

nearly zero.

We will assume that we do not worry about the “conditional v.s. unconditional” and “dis-

creteness” issues, so that we can use the Fisher’s exact as the “gold standard” for other hypothesis

testing methods.

Next, we will review the G2 test and χ2 test. We have already seen the LLR statistics, which
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is 1
2G2, i.e.,

G2 = G2(a) = 2a log
Da

f1f2
+ 2(f1 − a) log

(f1 − a)D

(D − f2)f1
+ 2(f2 − a) log

(f2 − a)D

(D − f1)f2

+ 2(D − f1 − f2 + a) log
(D − f1 − f2 + a)D

(D − f1)(D − f2)
. (98)

The χ2 statistics can be written as

χ2 = χ2(a) =

(

a − f1f2

D

)2

f1f2

D

+

(

f1 − a − f2(D−f1)
D

)2

f2(D−f1)
D

+

(

f2 − a − f1(D−f2)
D

)2

f1(D−f2)
D

+

(

D − f1 − f2 + a − (D−f1)(D−f2)
D

)2

(D−f1)(D−f2)
D

. (99)

Here we have implicitly used the “fixed-margins” assumption when we write G 2 (or χ2) as a

function of a only.

It is well-known that both G2 and χ2 converge to the Chi-squared distribution (which is also

represented as χ2). In fact χ2 is basically the second-order Taylor expansion of G2 (Dunning,

1993)(Shao, 1999, Chapter 6.4)(Agresti, 2002, Chapter 14.3.3). Therefore, it should be almost

always the case that G2 is more accurate and converges faster than χ2, especially at very small

significance level because G2 has heavier tail than χ2.

Note that the only condition required for convergence is that D → ∞, which is very well

approximated in NLP applications.

We can similarly compute the critical values, acr for both G2 and χ2 tests by solving

G2(acr;G2) − χ2
1,1−α = 0, (100)

χ2(acr;χ2) − χ2
1,1−α = 0. (101)

where χ2
1,1−α is the Chi-squared critical value at α significance level and one degree of freedom.

We have to solve for acr;G2 numerically. However, there is an exact solution for a cr;χ2 :

acr;χ2 =

(

f1f2

D

)

+

√

χ2
1,1−α

(

f1f2

D

)

(D − f1)(D − f2)

D2
, (102)

which can be used as the initial value for acr;G2 .

Finally, we introduce the Poisson test, which is not as widely-used but it has certain ad-

vantages. The concept of Poisson approximation is well-known. For example, a binomial with

probability p and counts n can be often well-approximated by Poisson with parameter λ = np
if n is large and p is small. For more details about Poisson approximations, see (Ross, 1996,

Chapter 2, 10).

For the words we are interested, it is often the case that the document frequencies are much

smaller than D, the corpus size. Therefore, under the independence assumption, the distribution

of a can be approximated as a Poisson with parameter λ = f1f2

D (compared with the more famil-

iar Poisson approximation for binomial,
min(f1,f2)

D can be considered as “p,” and max(f1, f2) as

“n”). The PMF of a according to a Poisson distribution would be

P (a = t; Poisson) =
exp

(

− f1f2

D

)(

f1f2

D

)t

t!
, (103)
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Figure 37
We compare the critical value, acr, for four different kinds of tests. D = 105, f1 = f2, and two
significance levels, α = 0.01 (a) and α = 10−10 (b). The figures illustrate that at very small significance
levels, for relatively infrequent words, the Fisher’s exact test and the G2 test are very similar. The Poisson
test matches the Fisher’s test fairly well at low document frequencies. The χ2 test, however, differ
significantly from all other three tests.

which is much simpler than the PMF for the Fisher’s exact test.

We compared the acr for all four tests for D = 105, f1 = f2 = 1 to 300, at two significance

levels, α = 0.01 and α = 10−10. The results are plotted in Figure 37.

One may ask, isn’t α = 10−10 too low as a significance level? Not necessarily. When

we simultaneously test many pairs of words, using a significance level = 0.01 may result in

falsely accepting too many pairs to be strongly associated. Here we introduce the concept of

“family-wise error rate” (FWER), which is the rate at which a statistical test would be expected to

produce one or more false positives among a class (family) of tests, under the null hypothesis. The

Bonferroni’s method (Shao, 1999, Chapter 7.5.1) is a very conservative approach that achieve the

designed FWER by dividing the level of significance by the total number of tests, i.e., α
N . In our

understanding, N does not necessarily have to the number of tests in the current experiment.

Instead, it should reflect that in total how many tests one intend to perform.

A relatively new approach of multiple testing is the false discovery rate (FDR) method (Ben-

jamini and Hochberg, 1995). FDR controls the expected proportion of false positives (false dis-

coveries) and is in general much more powerful than the Bonferroni’s method. Note that the FDR

= FWER if all null hypotheses are true. The FDR method has become very popular recently, e.g.,

(Efron and Tibshirani, 2002; Storey, 2003).

We decide to perform multiple G2 tests on a set of relatively less frequent words, using the

Bonferroni’s method. Because we have to use the estimated a to compute the G 2 statistics, we

would like to know the effects of sampling on the hypotheses testing results. Directly related

to sequential sampling, there is also the issue of sequential hypothesis testing (Siegmund, 1985,

Chapter III, IV), which we do not delve in.

We now describe our experiment on multiple tests. Because we are mainly interested in

relatively rare words, in our experiment, we select those words whose document frequencies

are ≤ 200 from the dataset, resulting in 1953 word pairs. At a significance level of 0.01 (with

Bonferrorni’s correction, the actual significance is 0.01
1953 = 5.12 × 10−6), the G2 tests report

that 305 pairs are considered as strongly correlated. Next we performed the multiple G 2 testing

on the same 1953 word pairs using the estimated a values. We report precision and recall at

different sampling rates. Since we did not vary the significance levels, there is no obvious trade-
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off between the precision curves and the recall curves. To combine the precision and recall into

a single measure, we report the “F -measures” (Manning and Schutze, 1999, Chapter 8.1). A

common choice of F -measure is that F -measure = 2 precision×recall

precision+recall
.

We report the F -measures v.s. sampling rates in Figure ??. Because G2 (LLR) is highly

non-linear, we correct the estimated G2 by the “Gamma correction.” The variances are computed

by both the Expected Fisher Information and Observed Fisher Information.

Figure ?? (a) shows the “Gamma correction” can improve the F-measure. Figure ??(b) plots

the relative improvement using “Gamma correction” with respect to the uncorrected G 2 test.

We can see that with “Gamma correction,” we can improve the G2 accuracy by up to 7%. In

particular, using the variance computed by the Observed Fisher Information performs slightly

better than the variance computed by the Expected Fisher Information for this dataset.
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Figure 38
(a): Three F -measure curves with respect to the sampling rates indicate that correcting the G2 statistics
(by “Gamma correction”) can improve the hypothesis testing accuracy. (b): With respect to the
non-corrected G2 test, The Gamma correction can improve up to 7%. Using the Observed Fisher
Information gives slightly better results than using the Expected Fisher Information.

11 Extension to Multi-way Associations

Many applications involve multi-way associations as opposed to two-way associations. For ex-

ample, in Databases and Web search, user queries are not necessarily limited to two “words.” The

“Governator” example in Table 3, for example, made use of three-way associations in addition

to two-way associations. Fortunately, our sketch construction and estimation algorithm can be

naturally extended to multi-way associations.

In this section, we will show that estimating multi-way associations using our sketch algo-

rithm amounts to a convex optimization problem for the exact MLE. We will present an algorithm

to analyze the estimation variance. We will also compare our proposed MLE estimator with two

baselines.

11.1 Multi-way Sketches

We will need some more notation to discuss multi-way assocations. Suppose we are interested

in the associations among m words, denoted by W1, W2, ..., Wm. The document frequencies of

these m words are f1, f2, ..., and fm, which are also the lengths of the postings P1, P2, ..., Pm.

There are N = 2m combinations of associations, denoted by x1, x2, ..., xN . For example,
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we can define

x1 = |P1 ∩ P2 ∩ ... ∩ Pm−1 ∩ Pm|,
x2 = |P1 ∩ P2 ∩ ... ∩ Pm−1 ∩ ¬Pm|,
x3 = |P1 ∩ P2 ∩ ... ∩ ¬Pm−1 ∩ Pm|,
x4 = |P1 ∩ P2 ∩ ... ∩ ¬Pm−1 ∩ ¬Pm|,
...

xN−1 = |¬P1 ∩ ¬P2 ∩ ... ∩ ¬Pm−1 ∩ Pm|,
xN = |¬P1 ∩ ¬P2 ∩ ... ∩ ¬Pm−1 ∩ ¬Pm|, (104)

which can be directly related to the binary representation of integers. Table 7 gives two examples

for m = 2 and m = 3, respectively.

Table 7
We number the associations, x1, x2, ..., xN , using binary numbers. For each word Wi, a “0” indicates that
documents containing Wi are in the intersections, an “1” indicates the complement (i.e., the documents not
containing word Wi) are in the intersection. This way, the binary representation of the subscript of xi

minus 1 (i.e, i − 1) corresponds to the set intersections. For example, when m = 3, the binary
representation of 3 is “0 1 1,” indicating x4 = |P1 ∩ ¬P2 ∩ ¬P3|.

(a) m = 2

W1 W2

x1 0 0
x2 0 1
x3 1 0
x4 1 1

(b) m = 3

W1 W2 W3

x1 0 0 0
x2 0 0 1
x3 0 1 0
x4 0 1 1
x5 1 0 0
x6 1 0 1
x7 1 1 0
x8 1 1 1

For convenience, we introduce some vector and matrix notation. We denote X = [x 1, x2, ..., xN ]T.

F = [f1, f2, ..., fm, D]T is a vector of document frequencies (margins) and the total number of

documents. Suppose all the margins and the corpus size are known, we can write down the con-

straints in terms of a linear matrix equation as

AX = F, (105)

where A is the constraint matrix. If necessary, we can use A
(m) to identify A for different m

values. For example, when m = 2 or m = 3, this matrix becomes

A
(2) =

⎡

⎣

1 1 0 0
1 0 1 0
1 1 1 1

⎤

⎦ , A
(3) =

⎡

⎢

⎢

⎣

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤

⎥

⎥

⎦

. (106)

The sampling procedure for multi-way associations is very similar to that for two-way asso-

ciations. For each word Wi, we sample the first ki elements from its sorted postings, Pi, to form

a sketch, Ki. We can compute

Ds = min{K1(k1), K2(k2), ..., Km(km)}, (107)
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where Ki(ki) denotes the last element in the sketch Ki. After removing the elements in all Ki’s

that are larger than Ds, we can then intersect these m trimmed sketches to generate the sample

table counts. The samples are denoted as S = [s1, s2, ..., sN ]T.

Conditional on Ds, the samples S are statistically equivalent to Ds random samples over

documents from the corpus. The corresponding conditional PMF would be

P (S|Ds;X) =

(

x1

s1

)(

x2

s2

)

...
(

xN

sN

)

(

D
Ds

) ∝
N
∏

i=1

si−1
∏

j=0

(xi − j), (108)

and the log likelihood would be

log P (S|Ds;X) ∝ Q =

N
∑

i=1

si−1
∑

j=0

log(xi − j), (109)

which is a concave function.

A partial likelihood MLE solution, i.e., the X̂ that maximizes log P (S|Ds; X̂), will again be

adopted, which leads to a convex optimization problem. But first, we shall discuss two baseline

estimators.

11.2 Baseline Independence Estimator

Assuming independence, an estimator of x1 would be

x̂1,IND = D

m
∏

i=1

fi

D
, (110)

which can be easily proved using a conditional expectation argument.

We have seen that, according to a hypergeometric distribution,

E(|Pi ∩ Pj |) =
fifj

D
. (111)

Therefore,

E(x1) = E(|P1 ∩ P2| ∩ ... ∩ Pm|) = E(| ∩m
i=1 Pi|)

= E(E(|P1 ∩ (∩m
i=2Pi) || (∩m

i=2Pi)))

=
f1

D
E(| ∩m

i=2 Pi|)

...

=
f1f2...fm−2

Dm−2
E(|Pm−1 ∩ Pm|)

= D

m
∏

i=1

fi

D
. (112)

We can estimate x2 etc., in a similar fashion. In fact, we can ignore the expectation operation

and simply treat |Pi ∩ Pj | =
fifj

D . This way, we can write down the expressions for x̂2 etc. very

easily using set operations and the results will still be correct. For example,

x̂4,IND = E(|P1 ∩ P2 ∩ ... ∩ ¬Pm−1 ∩ ¬Pm|)
treat as
=====|(P1 ∩ P2 ∩ ... ∩ Pm−2) ∩ (¬Pm−1 ∩ ¬Pm)|

=

(

D

m−2
∏

i=1

fi

D

)

(

D − fm−1 − fm +
fm−1fm

D

)

1

D
.

(113)
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11.3 Baseline Margin-free Estimator

Ignoring the margin constraints, the conditional PMF P (S|D s;X) becomes the multivariate hy-

pergeometric distribution, based on which we can derive the margin-free estimators to be

E(si) =
Ds

D
xi, (114)

x̂i,MF =
D

Ds
si, (115)

Var(x̂i,MF ) =
D

Ds

1
1
xi

+ 1
D−xi

D − Ds

D − 1
(116)

We can see that the margin-free estimator remains its simplicity in the multi-way case. When

we work with two-way associations, the resultant exact MLE is the solution to a cubic equation;

not a big deal. In addition, the approximate MLE for the two-way association is a solution to a

quadratic equation, which is very close to the exact MLE.

Next, we will show how to solve for the exact MLE, considering the margin constraints.

11.4 The Exact MLE

The exact MLE can be formulated as a standard convex optimization problem,

minimize − Q = −
N
∑

i=1

si−1
∑

j=0

log(xi − j),

subject to AX = F, and X 
 S, (117)

where X 
 S is a compact representation for xi ≥ si, 1 ≤ i ≤ N .

This optimization problem can be solved by a variety of standard methods such as the New-

ton’s method (Boyd and Vandenberghe, 2004, Chapter 10.2). Note that we can ignore the implicit

inequality constraints, X 
 S, if we start with feasible (i.e., satisfying both equality and inequal-

ity constraints) initial guess.

It turns out that the formulation in (117) will encounter numerical problems due to the inner

summation in the objective function Q. Strictly speaking, we should use the integer programming

algorithms because all variables are supposed to be integers. We formulate it approximately as

a convex programming without worrying the integer constraints. Smoothing will bring in more

numerical difficulties. Recall in estimating two-way associations we do not have this problem,

because we have eliminated the summation in the objective function, by using the (integer) updat-

ing formula. In multi-way associations, we do not see any easy way to reformulate the objective

function Q in a similar updating form.

To avoid the numerical problems, a simple solution is to assume “sample-with-replacement,”

under which the conditional likelihood becomes

P (S|Ds;X, r) ∝
N
∏

i=1

(xi

D

)si

∝
N
∏

i=1

xsi

i , (118)

and the log likelihood would be

log P (S|Ds;X, r) ∝ Qr =

N
∑

i=1

si log xi. (119)

Our MLE problem can then be reformulated as

minimize − Q = −
N
∑

i=1

si log xi,

subject to AX = F, and X 
 S, (120)
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which is again a standard convex optimization problem. To simplify the notation, we neglect the

subscript ‘”r” because throughout the rest of this section we will be working with the “sample-

with-replacement” version of Q.

We can compute the gradient (▽Q) and Hessian (▽2Q). The gradient is a vector of the first

derivatives of Q with respect to xi, for 1 ≤ i ≤ N ,

▽Q =

[

∂Q

∂xi
, 1 ≤ i ≤ N

]

=

[

s1

x1
,
s2

x2
, ...,

sN

xN

]T

, (121)

where the superscript T indicates “transpose”as we always work with column vectors.

The Hessian is a matrix whose (i, j)th entry is the partial derivative ∂2Q
∂xixj

, i.e.,

▽2Q = −

⎡

⎢

⎢

⎢

⎢

⎣

s1

x2
1

0 · · · 0

0 s2

x2
2

· · · 0

...
...

. . .
...

0 0 0 sN

x2
N

⎤

⎥

⎥

⎥

⎥

⎦

= −diag

[

s1

x2
1

,
s2

x2
2

, ...,
sN

x2
N

]

. (122)

The Hessian has a very simple diagonal form, implying that the Newton’s method will be

the best algorithm for solving the optimization problem. We implement the equality constrained

Newton’s method with feasible start and backtracking line search (Boyd and Vandenberghe,

2004, Algorithm 10.1). A key step in this algorithm is to solve for the Newton’s step, △X nt:

[

−▽2 Q A
T

A 0

] [

△Xnt

dummy

]

=

[

▽Q
0

]

. (123)

Since the Hessian ▽2Q is a diagonal matrix, solving for the Newton’s step in (123) can be

speeded up substantially (e.g., using the block matrix inverse formula).

How do we obtain a feasible initial starting value, Xini? It is easy without the inequality

constraints in (120). For example, it appears that a nice choice of the initial guess would be:

X̂ini = X̂MF − A
T(AA

T)−1(−F + AX̂MF ), which satisfies AX = F and minimizes the

2-norm ‖X̂MF − X̂ini‖2
2. Unfortunately, this choice of X̂ini does not satisfy the inequality

constraint, X 
 S, hence not particularly useful.

Our approach is to solve for the feasible initial guess from a simpler quadratic optimization

problem,

minimize ‖X̂MF − Xini‖2
2

subject to AXini = F, and Xini 
 S.

Alternatively, one can use the 1-norm, which leads to a standard linear programming problem.

Both quadratic programming and linear programming can be easily solved using standard soft-

ware (e.g., Matlab).

In fact, the whole convex optimization problem in (120) can be solved by numerical pack-

ages, although most of these packages may still require the user input of ▽Q and ▽ 2Q.

We provide a sample implementation of the multi-way association estimator in Appendix B.

11.5 Variance Estimation

We will again apply the large sample theory to estimate the variance of the MLE, which will

be a covariance matrix for multi-way associations. Recall that we have N = 2m variables and

m + 1 constraints. The effective number of variables would be 2m − (m + 1), which is also the

dimension of the covariance matrix.
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One approach will convert X into Z, which is a vector of length N − (m + 1). For example

(Boyd and Vandenberghe, 2004, Chapter 10.1.2), one can write X = BZ + X̃, where X̃ is par-

ticular solution satisfying the margin constraints and could be treated as a constant; B, a matrix

of size N×(N−(m+1)), is the null space of A, i.e., AB = 0. With this type of transformation,

one can first estimate the variance in the Z-space and then convert it back to the X-space. Our

approach, however, is simpler, by exploiting the specific structure of A.

We seek a partition of A = [A1,A2], such that A2 is invertible. We may have to switch the

columns of A in order to find an invertible A2. In our construction, the jth column of A2 is the

column of A such that last entry of the jth row of A is 1. An example for m = 3 would be

A
(3)
1

=

⎡

⎢

⎢

⎣

1 1 1 0
1 1 0 1
1 0 1 1
1 1 1 1

⎤

⎥

⎥

⎦

, A
(3)
2

=

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎤

⎥

⎥

⎦

, (124)

where A1 is the [1 2 3 5] columns of A and A2 is the [4 6 7 8] columns of A. We can see that

A2 constructed this way is always invertible because its determinant is always one.

Corresponding to the partition of A, we partition X = [X1,X2]
T. For example, when m =

3, X1 = [x1, x2, x3, x5]
T, X2 = [x4, x6, x7, x8]

T. We can then express X2 to be

X2 = A
−1
2 (F − A1X1) = A

−1
2 F − A

−1
2 A1X1. (125)

The log likelihood function Q, which is separable, can then be expressed as

Q(X) = Q1(X1) + Q2(X2). (126)

By the matrix derivative chain rule, the Hessian of Q with respect to X1 would be

▽2
1Q = ▽2

1Q1 + ▽2
1Q2 = ▽2

1Q1 +
(

A
−1
2 A1

)T ▽2
2 Q2

(

A
−1
2 A1

)

, (127)

where we use ▽2
1 and ▽2

2 to indicate the Hessians are with respect to X1 and X2, respectively.

Conditional on Ds, the Expected Fisher Information of X1 is

I(X1) = E
(

−▽2
1 Q

)

(128)

= −E(▽2
1Q1) +

(

A
−1
2 A1

)T
E(−▽2

2 Q2)
(

A
−1
2 A1

)

.

Again, we approximate the expectations using the results from the margin-free case, i.e.,

E(−▽2
1 Q1) = diag

[

E

(

si

x2
i

)

, xi ∈ X1

]

≈ Ds

D
diag

[

1

xi
, xi ∈ X1

]

, (129)

E(−▽2
2 Q2) ≈

Ds

D
diag

[

1

xi
, xi ∈ X2

]

. (130)

By the large sample theory, and also considering the finite population correction factor, we

can approximate the (conditional) covariance matrix of X 1 to be

Cov(X1) ≈ I(X1)
−1 D − Ds

D

≈
(

D

Ds
− 1

)(

diag

[

1

xi
, xi ∈ X1

]

+
(

A
−1
2 A1

)T
diag

[

1

xi
, xi ∈ X2

]

(

A
−1
2 A1

)

)−1

.

(131)

We can also use compute the Observed Fisher Information by not evaluating the expecta-

tions.
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For a sanity check, we can verify that this approach recovers the same variance formula in

the two-way association case. Recall that, when m = 2, we have

▽2Q = −

⎡

⎢

⎢

⎢

⎣

s1

x2
1

0 0 0

0 s2

x2
2

0 0

0 0 s3

x2
3

0

0 0 0 s4

x2
4

⎤

⎥

⎥

⎥

⎦

, ▽2
1Q1 = − s1

x2
1

, ▽2
2Q2 = −

⎡

⎢

⎣

s2

x2
2

0 0

0 s3

x2
3

0

0 0 s4

x2
4

⎤

⎥

⎦
(132)

A
(2) =

⎡

⎣

1 1 0 0
1 0 1 0
1 1 1 1

⎤

⎦ , A
(2)
1

=

⎡

⎣

1
1
1

⎤

⎦ , A
(2)
2

=

⎡

⎣

1 0 0
0 1 0
1 1 1

⎤

⎦ (133)

(

A
−1
2 A1

)T ▽2
2 Q2A

−1
2 A1 = −

[

1 1 −1
]

⎡

⎢

⎣

s2

x2
2

0 0

0 s3

x2
3

0

0 0 s4

x2
4

⎤

⎥

⎦

⎡

⎣

1
1
−1

⎤

⎦

= − s2

x2
2

− s3

x2
3

− s4

x2
4

(134)

Hence,

−▽2
1 Q =

s1

x2
1

+
s2

x2
2

+
s3

x2
3

+
s4

x2
4

=
as

a2
+

bs

(f1 − a)2
+

cs

(f2 − a)2
+

ds

(D − f1 − f2 + a)2
, (135)

which leads to the same Fisher Information and variance for the two-way association case as we

have already derived.

11.6 Unconditional Variance

Similar to two-way associations, the unconditional variance of the proposed MLE can be esti-

mated by replacing D
Ds

in (131) with E
(

D
Ds

)

, i.e.,

Cov(X1)uc ≈
(

E

(

D

Ds

)

− 1

)(

diag

[

1

xi
, xi ∈ X1

]

+
(

A
−1
2 A1

)T
diag

[

1

xi
, xi ∈ X2

]

(

A
−1
2 A1

)

)−1

.

(136)

Following the similar analysis as in two-way associations, we can get the approximate for-

mulas

E

(

Ds

D

)

≈ min

(

k1

f1
,
k2

f2
, ...,

km

fm

)

, (137)

E

(

D

Ds

)

≈ max

(

f1

k1
,
f2

k2
, ...,

fm

km

)

. (138)

Again, the approximation (137) will over-estimate E
(

Ds

D

)

and (138) will under-estimate

E
(

D
Ds

)

hence also under-estimates the unconditional variance.
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Table 8
The same four words as in Table 8 are used for evaluating multi-way associations. There are in total four
three-way combinations and one four-way combination.

Case # Words Co-occurrences

Case 3-1 THIS & HAVE & HELP 4940

Three-way Case 3-2 THIS & HAVE & PROGRAM 2575

Case 3-3 THIS & HELP & PROGRAM 1626

Case 3-4 HAVE & HELP & PROGRAM 1460

Four-way Case 4 THIS & HAVE & HELP & PROGRAM 1316

11.7 Evaluation

We use the same four words as in Table 5 to evaluate the multi-way association algorithm. Since

our results are theoretical, this evaluation is merely a quick sanity check. For four words, there

are four different combinations of three-way associations and one four-way associations, as num-

bered in Table 8.

We will only present the results for estimating x1 (i.e., a in two-way associations) for all

cases. The evaluations for four three-way cases are presented in Figures 39, 40, 41 and 42. From

these figures, we can see that the proposed MLE is unbiased and has lower MSE than the margin-

free baseline (MF). As in the two-way case, smoothing helps MLE but still hurts MF in most

cases. Also, the experiments verify that our approximate variance formula are fairly accurate.

Figure 43 presents the evaluation results for the four-way association case, including MSE,

smoothing, variance and bias. The results are similar to the three-way case.

We have used the empirical E
(

D
Ds

)

to compute the unconditional variance. Figure 44 plots

max
(

f1

k1
, f2

k2
, ..., fm

km

)

/ D
Ds

for all cases. The figure indicates that using max
(

f1

k1
, f2

k2
, ..., fm

km

)

to

estimate E
(

D
Ds

)

is still fairly accurate when the sample size is reasonable.

Combining the results of two-way associations for the same four words, we can study the

trend how the proposed MLE improve the MF baseline. Figure 45(a) suggests that, compared

with the MF baseline, the improvements of the proposed MLE decreases monotonically as the

order of associations increases. This observation is not surprising, because the degree of the

freedom is 2m − (m + 1), increasing exponentially as the the order m increases. In order words,

the effect of the margin constraints decreases as m increases.

On the other hand, smoothing becomes more and more important as m increases, as shown

in Figure 45(b), partly because of the data sparcity in high order associations.

12 Conclusion

We proposed a novel sketch-based procedure for constructing sample contingency tables. The

method bridges two popular choices: (A) sampling over documents and (B) sampling over post-

ings. Well-understood maximum likelihood estimation (MLE) techniques can be applied to sketches

(or to traditional samples) to estimate word associations. We derived an exact cubic solution,

âMLE , as well as a quadratic approximation, âMLE,a. The approximation is recommended be-

cause it is close to the exact solution, and easy to compute.

The proposed MLE methods were compared empirically and theoretically to a margin-free

(MF) baseline, finding large improvements. When we know the margins, we ought to use them.

Not unsurprisingly, there is a trade-off between computational work (space and time) and

statistical accuracy (variance or errors); reducing the sampling rate saves work, but costs accu-

racy. We derived formulas for variance, showing precisely how accuracy depends on sampling
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Figure 39

In terms of
MSE(x1)0.5

x1
, the proposed MLE is consistently better than the margin-free baseline (MF), which

is better than the independence baseline (IND), for four three-way association cases.

rate. Sampling methods become more and more important with larger and larger collections. At

Web scale, sampling rates as low as 10−4 may suffice for “ordinary” words.

Our sketch construction generalized Broder’s sketch. Our method is more flexible in that

we do not require fixed sample sizes. Using the same storage for the samples, our method can

improve Broder’s algorithm by roughly 50%. The improvement over random projections is even

larger (e.g., 80% − 90%).

We have generalized the sampling algorithm and estimation method to multi-way associa-

tions, which is important for many applications such as estimating the number of page hits for a

multi-word Web query.
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A Sample C code for estimating two-way associations

#include <stdio.h>
#include <math.h>
#define MAX(x,y) ( (x) > (y) ? (x) : (y) )
#define MIN(x,y) ( (x) < (y) ? (x) : (y) )
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Figure 40
The simple “add-one” smoothing improves the estimation accuracies for the proposed MLE. Smoothing,
however, in all cases except Case 3-1 hurts the margin-free estimator.

#define EPS 1e-10
#define MAX_ITER 50
int est_a_appr(int as,int bs,int cs, int f1, int f2);
int est_a_mle(int as,int bs, int cs, int ds, int f1, int f2,int D);

int main(void)
{

int f1 = 10000, f2 = 5000, D = 65536; // test data
int as = 25, bs = 45, cs = 150, ds = 540;

int a_appr = est_a_appr(as,bs,cs,f1,f2);
int a_mle = est_a_mle(as,bs,cs,ds,f1,f2,D);
printf("Estimate a_appr = %d\n",a_appr); // output 1138
printf("Estimate a_mle = %d\n",a_mle); // output 821
return 0;

}

// The approximate MLE is the solution to a quadratic equation
int est_a_appr(int as,int bs,int cs, int f1, int f2)
{

int sx = 2*as + bs, sy = 2*as + cs, sz = 2*as+bs+cs;
double tmp = (double)f1*sy + (double)f2*sx;
return (int)((tmp-sqrt(tmp*tmp-8.0*f1*f2*as*sz))/sz/2.0);

}
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Figure 41

The proposed MLE is compared with the margin-free (MF) baseline in terms of
SE(x1)

x1
, for Case 3-3 and

Case 3-4 only. The proposed MLE has lower variance than MF. At low sampling rates, smoothing
effectively reduces the variance for MLE but not for MF. The theoretical variance of MLE fits the

empirical values very well. Note that we plug in the empirical E
�

D
Ds

�
into (136) to estimate the

unconditional variance. The errors due to this approximation are presented in Figure 44.

// Newton’s method to solve for the exact MLE
int est_a_mle(int as,int bs, int cs, int ds, int f1, int f2,int D)
{

int a_min = MAX(as,ds+f1+f2-D), a_max = MIN(f1-bs,f2-cs);
int a1 = est_a_appr(as,bs,cs,f1,f2); // A good start
a1 = MAX( a_min, MIN(a1, a_max) ); // Sanity check

int k = 0, a = a1;
do {

a = a1;
double q = log(a+EPS) - log(a-as+EPS)

+log(f1-a-bs+1+EPS) - log(f1-a+1+EPS)
+log(f2-a-cs+1+EPS) - log(f2-a+1+EPS)
+log(D-f1-f2+a+EPS) - log(D-f1-f2-ds+a+EPS);

double dq = 1.0/(a+EPS)-1.0/(a-as+EPS)
-1.0/(f1-a-bs+1+EPS) + 1.0/(f1-a+1+EPS)
-1.0/(f2-a-cs+1+EPS) + 1.0/(f2-a+1+EPS)
-1.0/(D-f1-f2-ds+a+EPS) + 1.0/(D-f1-f2+a+EPS);

a1 = (int)(a - q/dq); a1 = MAX(a_min, MIN(a1,a_max));
if( ++k > MAX_ITER ) break;

}while( a1 != a );
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Figure 42

The estimation biases, in terms of
|bias(x1)|

x1
, verify that our proposed ME is unbiased, unlike the

margin-free baseline.

return a;
}

B Sample Matlab Code for Estimating Multi-way Associations

function test_program
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Authors: Ping Li and Kenneth Church %%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% A short program for testing the multi-way association algorithm.
% First generate a random gold standard dataset. Then construct
% sketches by sampling a certain portion of the postings. Associations
% are estimated by the exact MLE as well as the margin-free (MF) method.
%
clear all;
m = max(2,ceil(rand*6)); % Number of words (random)
D = 1000*m; % Total number of documents
f = ceil(rand(m,1)*D/2); % document frequencies (random)

P{1} = sort(randsample(D,f(1))); % Posting of the first word (random)
Pc = setdiff(1:D, P{1})’; % Compliment of the posting

% The postings of words 2 to m are randomly generated. 30% are
% sampled from the postings of word 1.
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Figure 43
The evaluation results for the four-way case are presented in five sub-figures. (a): The proposed MLE has
smaller MSE than the margin-free (MF) baseline, which has smaller MSE than the independence baseline.
(b): Smoothing considerably improve the accuracy for MLE and also slightly improves MF. (c): For the
proposed MLE, the theoretical prediction fits the empirical variance very well. Smoothing considerably
reduces variance. (d): For the MF baseline, smoothing slightly reduces variance. (e): The MLE is unbiased
while the MF baseline has slightly higher bias. Smoothing increases bias.

for i = 2:m
k = ceil(0.3*min(f(i),f(1)));
P{i} = sort([randsample(P{1},k);randsample(Pc,f(i)-k)]); % Postings

end
X = compute_intersection(P,D); % Gold standard associations
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are plotted for all cases. At sampling rates > 0.01, the ratios are

> 0.9 − 0.95, indicating good accuracy.
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Figure 45
(a): Combining the three-way, four-way, and the two-way association results for the four words in the
evaluations, the average relative improvements of MSE0.5 suggests that the proposed MLE is consistently
better the MF baseline but the improvement decreases monotonically as the order of associations
increases. (b): Average MSE0.5 improvements due to smoothing imply that smoothing becomes more and
more important as the order of association increases.

pc = 1; % Pseudo-count(pc), pc=0 for no smoothing, pc=1 for "add-one".
sampling_rate = 0.1;
for i = 1:m

k = ceil(sampling_rate*f(i));
K{i} = P{i}(1:k); % Sketches

end
% Estimate the associations and covariance matrices
[X_MLE, X_MF, Var_c, Var_o] = multi_way_est(K,f,D,pc);
% Display the estimations of associations
[X X_MLE X_MF] % [Gold standard, MLE, MF]
__________________________________________________

function [X_MLE, X_MF, Var_c, Var_o] = multi_way_est(K,f,D,pc);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Authors: Ping Li and Kenneth Church %%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Matlab code for estimating multi-way associations
% K: Sketches (Cell array data type)
% f: Document frequencies, a column vector
% D: Total number of documents
% pc: Pseudo-count for smoothing.
% X_MLE: Maximum likelihood estimator (MLE), a column vector
% X_MF : Margin-free (MF) estimator, a column vector
% Var_c: Conditional (on Ds) covariance matrix, using the estimated X,
% Var_o: Covariance computed using the observed Fisher information
%
pc = max(pc,1e-4); % Always use a small pc for numerical stability.
m = length(K); % The order of associations, i.e., number of words.
[A,A1,A2,A3,ind1,ind2] = gen_A(m); % Margin constraint matrix

for i = 1:m;
last_elem(i) = K{i}(end);

end
Ds = min(last_elem);
for i = 1:m

K{i} = K{i}(find(K{i}<=Ds)); % Trim sketches according to D_s
end

S = compute_intersection(K,Ds); % Intersect the sketches to get samples
[X_MLE, X_MF] = newton_est(pc,S,Ds,D,A,f); % Estimate X

% Conditional variance
Z_c = 1./(X_MLE+eps); Z1_c = diag(Z_c(ind1)); Z2_c = diag(Z_c(ind2));
Var_c = inv(Z1_c + A3’*Z2_c*A3)*(D/Ds-1);

% Observed variance
Z_o = S./(X_MLE+eps).ˆ2; Z1_o = diag(Z_o(ind1)); Z2_o = diag(Z_o(ind2));
Var_o = inv(Z1_o + A3’*Z2_o*A3)*(D-Ds)/D;
_________________________________________________________

function [X_MLE,X_MF] = newton_est(pc,S,Ds,D,A,f)
% Estimate multi-way associations by solving a convex
% optimization problem using the Newton’s method.

NEWTON_ERR = 0.001; % Threshold for termination.
MAX_ITER = 50; % Maximum allowed iteration.
N = length(S); m = length(f); F = [f;D];
pc = min(pc,(D-Ds)/N); % Adjust pc, if Ds is close to D.

% Solve a quadratic programming problem to find an initial
% guess of the MLE that minimizes the 2-norm with respect to
% the MF estimation and satisfies the constraints.
while(1)

X_MF = (S+pc)./(Ds+N*pc)*D; % Margin-free estimations.
[X0,dummy,flag] = quadprog(2*eye(2ˆm),-2*X_MF,[],[],A,F,S+pc);
if(flag == 1) break; end
pc = pc/2; % Occasionally need reduce pc for a feasible solution.

end

S = S + pc; X_MLE = X0; iter = 0;
while(1);

D1 = -S./(X_MLE+eps); % Gradient (first derivatives)
D2 = diag(S./(X_MLE.ˆ2+eps)); % Hessian (second derivatives)

% Solve a linear system of equations for the Newton’s step.
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M = [D2 A’; A zeros(size(A,1),size(A,1))];
dx = M\[-D1; zeros(size(A,1),1)]; dx = dx(1:size(D2,1));

lambda = (dx’*D2*dx)ˆ0.5; % Measure of errors
iter = iter + 1;
if(iter>MAX_ITER | lambdaˆ2/2<NEWTON_ERR) break; end

% Backtracking line search for a good Newton step size.
z = 1; Alpha = 0.1; Beta = 0.5; iter2 = 0;
while(min(X_MLE+z*dx-S)<0|S’*log(X_MLE./(X_MLE+z*dx))>=Alpha*z*D1’*dx);

if(iter2 >= MAX_ITER) break; end
z = Beta*z; iter2 = iter2 + 1;

end
X_MLE = X_MLE + z*dx;

end
_________________________________________________________

function S = compute_intersection(K,Ds);
% Compute the intersections to generate a table with N = 2ˆm
% cells. The cells are ordered in terms of the binary representation
% of integers from 0 to 2ˆm-1, where m is the number of words.

m = length(K); bin_rep = char(dec2bin(0:2ˆm-1)); S = zeros(2ˆm,1);
for i = 0:2ˆm-1;

if(bin_rep(i+1,1) == ’0’)
c{i+1} = K{1};

else
c{i+1} = setdiff([1:Ds]’,K{1});

end
for j = 2:m

if(bin_rep(i+1,j) == ’0’)
c{i+1} = intersect(c{i+1},K{j});

else
c{i+1} = setdiff(c{i+1},K{j});

end
end
S(i+1) = length(c{i+1});

end
_________________________________________________________

function [A,A1,A2,A3,ind1,ind2] = gen_A(m)
% Generate the margin constraint matrix and compute its decompositions
% for analyzing the covariance matrix

t1 = num2str(dec2bin(0:2ˆm-1)); t2 = zeros(2ˆm,m*2-1);
t2(:,1:2:end) = t1; t2(:,2:2:end) = ’,’;
A = xor(str2num(char(t2))’,1); A = [A;ones(1,2ˆm)];

for i = 1:size(A,1);
[last_one(i)] = max(find(A(i,:)==1));

end
ind1 = setdiff((1:size(A,2)),last_one); ind2 = last_one;
A1 = A(:,ind1); A2 = A(:,ind2); A3 = inv(A2)*A1;
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