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Using Smart City Data in

5G Self-Organizing Networks
Massimo Dalla Cia, Federico Mason, Davide Peron, Federico Chiariotti, Student Member, IEEE,

Michele Polese, Student Member, IEEE, Toktam Mahmoodi, Senior Member, IEEE,

Michele Zorzi, Fellow, IEEE, Andrea Zanella, Senior Member, IEEE

Abstract—So far, research on Smart Cities and self-organizing
networking techniques for 5G cellular systems has been one-
sided: a Smart City relies on 5G to support massive M2M
communications, but the actual network is unaware of the infor-
mation flowing through it. However, a greater synergy between
the two would make the relationship mutual, since the insights
provided by the massive amount of data gathered by sensors
can be exploited to improve the communication performance.
In this work, we concentrate on self-organization techniques to
improve handover efficiency using vehicular traffic data gathered
in London. Our algorithms exploit mobility patterns between
cell coverage areas and road traffic congestion levels to optimize
the handover bias in HetNets and dynamically manage Mobility
Management Entity (MME) loads to reduce handover completion
times.

Index Terms—Symbiocity; Traffic for London; handover; Het-
Nets; virtual Mobility Management Entity

I. INTRODUCTION

The fifth generation of mobile networks (5G) is forecasted

to rely on virtualization and self-organization techniques to

deal with the extreme complexity and heterogeneity of the net-

work and with the massive number of connected devices [2].

The rise of internet-capable sensors and monitoring devices is

one of the major drivers of such complexity, due to the volume

of information they generate [3]; however, this information can

also be a valuable resource in the network decision-making

process.

According to the Smart City paradigm, these data can be

leveraged to provide innovative services to citizens and to

help administrators define smarter policies. However, since

they must be transmitted and aggregated by the network in

order to be processed [4], there is no reason why the network

itself should not benefit from them. For example, traffic data

can be used to predict mobility patterns and future cell load

with higher accuracy, enabling anticipatory techniques [5].

Cellular network operators would be incentivized to support

the deployment of Smart Cities given the possibility of in-

creased efficiency and lower operating costs, improving both

the carrier network and the sensors’ pervasiveness.

Building upon the ”SymbioCity” concept proposed in [6],

in this paper we exploit the traffic data from the Transport
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for London (TfL) Urban Traffic Control (UTC) network [7]

in order to dynamically optimize network parameters such

as (i) the handover range expansion bias for Heterogeneous

Networks (HetNets) and (ii) the number of virtualized Mobil-

ity Management Entities (MMEs) deployed city-wide. Since

handovers will be one of the major issues in 5G ultra-dense

networks, the techniques we propose will reduce the handover

completion time and the well-known ping-pong effect [8], [9]

without losing the benefits of microcell offloading. The ability

to choose the point in the tradeoff between handover frequency

and offloading capability is going to be a key element in the

design of self-organizing 5G networks.

The rest of this work is organized as follows. Sec. II presents

an overview of state of the art techniques in traffic data

analysis, self-organizing networks and handover management,

while Sec. III describes the London traffic sensor network,

the available data and our analysis of the vehicular mobil-

ity patterns. We provide the details on the two previously

mentioned optimization techniques in Sec. IV, along with an

example application of both, using the London traffic data.

Finally, in Sec. V we make our final remarks and suggest

some possibilities for future research.

II. RELATED WORK

The emerging Smart City paradigm is getting significant

attention from researchers, companies and city officials all over

the world. A Smart City enables a wide array of services,

from environmental monitoring to traffic control and smart

parking [10]. These services build upon data generated by a

plethora of sensors, and collected by means of possibly differ-

ent technologies that collectively concur to the shaping of the

so-called Internet of Things (IoT) [11]. The data these services

need are gathered by millions of distributed sensors [12] and

aggregated through a modular event-driven architecture [13].

These devices communicate using either dedicated low power

networks (e.g., LoraWAN, SigFox, IEEE 802.15.4) [14] or

standard cellular networks. Both these solutions have their

advantages and drawbacks; using cellular networks requires

no additional infrastructure investment (place & play concept),

but the Machine to Machine (M2M) traffic has an impact on

traditional human communications [15], [16].

The information that the Smart City generates can be used to

make cellular networks aware of the surrounding environment.

Although one of the 5G design guidelines is the usage of

big-data-driven optimization [17], [18] at various scales (e.g.,

fog computing [19]), the optimization mostly relies on data

generated by the network itself. In our opinion, integrating the
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Smart City knowledge in this optimization framework would

be a significant step towards the cognitive network model [20],

as for the ”SymbioCity” concept proposed in [6].

Mobility patterns are some of the most valuable pieces of

information that the Smart City can provide to the cellular

network. Mobility affects ultra-dense network performance

significantly, as sub-optimal handover strategies both (i) in-

crease the Radio Access Network (RAN) and the Core Net-

work (CN) signaling and (ii) reduce the overall throughput.

Research on mobility models [21], [22] and their integration

in communication protocols (e.g., Medium Access [23] or

interference coordination [24]) is already ongoing, and using

real Smart City data as input for these techniques would reduce

the uncertainty compared to purely statistical approaches. To

the best of our knowledge, this is the first work to do so,

although mobility-aware strategies have been proposed and

tested in scenarios with simulated mobility patterns [25], [26].

A. Handover in HetNets

In order to support the ever growing traffic demand within

the limits of the available spectrum, cellular networks are

becoming denser and denser. Micro-, femto- and picocells

have been a hot research topic for the last ten years [27]

and are now being deployed all over the world. The main

challenges that the network densification is causing are (i)

interference coordination and (ii) cell association and mobility

management. The Self-Organizing Network (SON) approach

is one of the most promising candidates to address these

complex issues [28], using tools such as Software-Defined

Networking (SDN) [29].

In this paper, we focus on handover management. While

handover algorithms are well-studied and several decision

criteria have been proposed in the literature [30], the most

common ones are based on Received Signal Strength (RSS).

3GPP defines a baseline handover procedure for LTE in [31],

and most studies concentrate on optimizing its parameters. The

handover is triggered if the difference between the serving and

the neighbor cell RSS is larger than a threshold value for at

least one Time-to-Trigger (TTT). This parameter is meant to

avoid unnecessary handovers due to fluctuations caused by

fast fading, but introduces a delay in the association with the

optimal evolved Node Base (eNB), whose impact becomes

more significant as the UE speed increases [32], [33]. An

analytical model to optimize the TTT is introduced in [9].

Using the TTT to reduce ping-pong effects inevitably leads

to a higher handover delay. In order to overcome this trade-

off, we need to exploit other parameters, such as the hys-

teresis threshold. Biasing this threshold towards femtocells is

already a standard practice to favor offloading from the Macro

tier [27], and it is possible to adapt the bias based on the user

mobility to reduce the handover delay problem caused by the

TTT. In [34], the authors present a heuristic that reacts to

late or early handovers and adapts the bias for each pair of

neighboring cells. Another work jointly adapts the TTT and

bias in a reactive manner [35]. It is even possible to skip

handovers entirely, avoiding connections to very small cells

while moving at high speed [36].

Fig. 1: Scheme of a traffic detector. Source: TfL.

B. Virtual MME

One of the main architectural trends in the evolution towards

5G is Network Function Virtualization (NFV): instead of using

specialized and costly hardware in both the core and the

access network, most of the processing is virtualized and run

on general-purpose machines in the cloud [2]. This allows a

larger flexibility and adaptability to the instantaneous load of

the control and user planes. The initialization cost of a new

Virtual Machine (VM) is orders of magnitude smaller than

the cost of the equivalent worst-case dimensioned hardware.

A broad overview of the issues and other potential benefits

of NFV is presented in [37]. Although this research is still

ongoing, preliminary results [38] show that it is possible

to increase the energy efficiency of the network without

significant performance losses.

In the second part of this work, we focus on handover

management in virtualized MMEs. A first model of the perfor-

mance of the different virtualized CN functions is presented

in [39], and the MME is identified as a critical element for

scalability of control plane functionalities. Virtualization can

also enable distributed MME designs [40].

An optimized design of a virtualized MME is given in [41],

where the number of vMME instances is adapted to the traffic

load in an M2M scenario, using a traffic model for CN-related

events.

III. DATA GATHERING AND ANALYSIS

The TfL UTC network is composed of more than 10000

road sensors, placed at all critical crossings around the city.

The Split Cycle Offset Optimization Technique (SCOOT)

optimizer uses the traffic flow data from the sensors to adapt

the traffic light times to the traffic situation in real time. TfL

released the raw sensor data of the first three months of 2015

for the North and Central regions of London, and we use those

data in our optimization.

The sensors are actually very basic presence-detectors:

every Ts = 250 ms, each sensor returns a 1 if it detects a

vehicle in close proximity, and a 0 otherwise. The resulting

binary signal (see Fig. 1) is packetized and sent to a central

collector through different types of technologies.

In this work, we extract two kinds of information from

the TfL dataset: (i) the average vehicular speed at any single

crossing in London and (ii) the number of handovers between

Macro eNBs over the whole city.

These values are not directly provided by TfL. However,

they can be roughly estimated using the binary signals gen-

erated by the detectors. Indeed, when a vehicle of length L
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Fig. 2: Hourly average speed for January 23, 2015 at the intersection between
Homerton High St. and Daubeney Rd.

Fig. 3: Map of traffic in London from 12 PM to 1 PM of January 23, 2015.
Free intersections are shown in green, heavily congested ones in red.

moving at speed v passes over a sensor, the detector will

generate a run of about n = L
vTs

ones, followed by a few

zeros corresponding to the inter-vehicle spacing.

It is then possible to estimate the speed by counting n and

assuming a reference vehicle length of L = 4 m:

v =
L

nTs
(1)

Fig. 2 shows the evolution of the average speed measured by

a single sensor over a whole day (namely, January 23, 2015):

as expected, the speed of the vehicles is higher at night because

of the lighter traffic, while during rush hour (from 8 AM to

9 AM and from 5 PM to 6 PM) the average speed drastically

decreases. The spatial distribution of traffic is shown in Fig. 3.

For the second part of our data analysis, we assume that the

Macro eNBs are placed using a standard regular hexagonal

tiling, with sides of 100 m.

We associate the detection of a car by a sensor in a cell with

a handover, and, given a time interval Tper equal to 1 hour,

we estimate the number of handovers Hm as the total number

of detections from the different sensors in cell m during Tper.

Since the timescale is long and each vehicle is likely detected

only once when crossing the area (because of the relatively

low density of sensors), the number of vehicles counted in the

area in the period Tper is roughly equal to the number of cell

handovers performed by the vehicles crossing that area in the

considered time interval. This assumption is not necessarily

realistic for a single cell, but is a valid approximation on

the city-wide scale and for timescales of minutes or hours.

Moreover, we assume that on average each vehicle carries

an LTE device. This is a working assumption based on the

(a) N = 2

(b) N = 3

(c) N = 4

Fig. 4: Partition for a different number N of vMMEs. The colors indicate the
areas controlled by each vMME.

available data, and the integration of additional data such as

bus position and usage can be easily accommodated by the

framework.

After computing Hm for all eNBs, the cells are partitioned

into N areas, with N ∈ {1, 2, 3, 4}, each controlled by a

different vMME; given the estimated number of handovers at

peak hours, 4 vMMEs should be enough to maintain network

stability. The results in Sec. IV-B confirm this hypothesis.

These groups are obtained using a clustering algorithm that

divides the cells among N vMMEs so that each vMME

handles approximately the same number of handovers. An

example of this is shown in Fig. 4, which reports the partitions

for N ∈ {2, 3, 4}.

We define Ii as the total number of handovers for vMME i,
and Si,j as the number of handovers from vMME i to vMME

j. Ii is given by

Ii =
∑

m∈Ai

Hm (2)

where Ai is the set of cells controlled by vMME i. Si,j can

be approximated with this formula:

Si,j =
∑

m∈Ai

∑

n∈Aj

Hm

6
em,n (3)
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Fig. 5: UE trajectory in the considered scenario.

where the variable em,n ∈ {0, 1} indicates the number of sides

that cells m and n have in common.

IV. SMART CITY APPLICATIONS

The information processed as described in Sec. III can be

used to perform data-driven optimization of several parameters

in a cellular network. In this paper, we use vehicular speed

to dimension the handover range expansion bias in a HetNet

and the number of handovers over time to find the number of

vMME instances that minimize the handover completion time.

A. Asymmetrical Handover Bias Optimization in HetNets

In this simulation we provide a technique to dinamically set

the handover range expansion bias of Femto eNBs (FeNBs)

in order to improve the capacity provided to the User Equip-

ment (UE) by the only Macro eNB (MeNB). We focus on

a scenario consisting of a MeNB with transmission power

PM
TX and a FeNB with transmission power PF

TX placed at

a distance dMF from each other. The two tiers transmit at

different carrier frequencies (off-band HetNets) to avoid cross-

tier interference [42]: fM
0

for the MeNB and fF
0

for the FeNB.

Both tiers use the same bandwith B. All the parameters of the

simulations are summarized in Table I and are taken from [43].

We consider a channel model with Friis path loss and log-

normal shadowing. Let PH
RX be the received power at the

UE side from the HeNB, with H ∈ {M,F}, and PH
TX the

transmission power of the HeNB. Then

PH
RX(t) = PH

TX(t)ΨSHα(t)h(f0, β, d), (4)

where ΨSH is the shadowing gain, which is distributed as

N (0, σ) when measured in dB, and α(t) is the multipath

Parameter Value Description

PM
TX 46 MeNB transmission power [dBm]

PF
TX 26 FeNB transmission power [dBm]

fM
0 900 MeNB carrier frequency [MHz]

fF
0 1800 FeNB carrier frequency [MHz]
B 20 Bandwidth [MHz]
dM−F 40 Distance between MeNB and FeNB [m]
dF−UE 10 Distance between FeNB and UE [m]

σ2

M 8 MeNB log-normal shadowing variance

σ2

F 4 FeNB log-normal shadowing variance

β2

M 4.28 MeNB pathloss exponent

β2

F 3.76 FeNB pathloss exponent

Table I: Parameters used in the simulation.
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Fig. 6: γM (t) and γF (t) with a UE speed of 10 m/s. Multipath fading is not
considered in this figure for visual clarity.

fading gain. The channel gain h(f0, β, d) accounts for the path

loss attenuation with exponent β, and is given by

h(f0, β, d) = A

(

c

4πf0

)2 (

d

d0

)−β

, (5)

where c is the speed of light, d0 is the reference distance of

the far field model [44], and A is a constant. Finally, γH(t)
denotes the Signal to Noise Ratio (SNR) at time t for the

HeNB and is given by

γH(t) =
PH
RX

N0B
, H ∈ {M,F}, (6)

where N0 = −143.82 dBW/MHz is the noise power spectral

density.

For the sake of simplicity, we assume that one UE is

attached in the MeNB, moving as in Fig. 5 with constant speed

v. The UE speed at any time is derived from the TfL data as

explained in Sec. III; the average speed over the whole day is

shown in Fig. 2. We consider the UE to move at the average

speed of the traffic around it.

The SNR at the UE while moving depends on its distance

from the Macro and Femto eNBs. As we can see in Fig. 6,

the SNR from the FeNB is higher than that from the MeNB

when the UE is close to the FeNB. The coverage area of the

FeNB is defined as the area in which its SNR is higher than

that of any other cell.

In this scenario, the UE has to start a handover procedure

towards the FeNB when the condition

PF
RX(t) + γth > PM

RX(t) (7)

holds for a period of time equal to the TTT, as specified

in [45]. Note that in the simulation we have assumed γth = 0
for the sake of simplicity. We hence set TTT = 256 ms [31],

which is large enough to avoid the ping-pong effect but small

enough to minimize the handover delay.

This TTT value improves the performance of the system

considerably when the traffic is moving slowly, but reduces

the Theoretical Spectral Efficiency ν = log
2
(1 + γ) when

the UE speed is too high. This is because a fast-moving UE
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Fig. 7: γM (t) and γF (t) with a UE speed of 16 m/s. Multipath fading and
shadowing are not considered in this figure for visual clarity.

exploits the advantages of the FeNB for just a short time, while

it remains in the FeNB for TTT seconds after the condition (7)

is reversed.

To make sure that the UE starts the handover towards the

FeNB as soon as (7) is verified, an asymmetrical handover

bias can be applied to PF
RX . When the handover is towards the

FeNB, the bias needs to be positive to anticipate the beginning

of the procedure, while when the handover is from the FeNB

to the MeNB, the bias must be negative. We define the SNR

difference in position x along the trajectory as

∆(x) = γ̄F (x)− γ̄M (x); (8)

where γ̄F (x) and γ̄M (x) are the average SNRs from the two

eNBs when the UE is in position x. Moreover, the trajectory of

the UE draws a chord within the coverage area of the FeNB,

with linear coordinates −r and r with respect to the central

point of the chord, as shown in Fig. 5. The optimal value of

the bias is then given by

B1 = ∆(−r − vTTT ) (9)

B2 = −∆(r − vTTT ). (10)

If the FeNB uses the optimal bias, the handover will be

performed exactly at the edge of its coverage area.

By applying B1 and B2 to PF
RX , (7) becomes

PF
RX(t) +B1 > PM

RX(t) (11)

while the condition to leave the FeNB is

PM
RX(t) +B2 > PF

RX(t) (12)

The difference between γ̄(x) with or without bias can be

viewed in Fig. 7. Since the Theoretical Spectral Efficiency

ν depends logarithmically on γ̄(x), using this asymmetrical

handover bias will increase ν, fully exploiting the FeNB.

However, the bias from (9) and (10) does not take shadow-

ing and fading into account: while this is optimal in an ideal

situation, real channels often experience deep fading, and a

bias value tailored to the path loss difference between the two

base stations does not protect the UE from them. In order
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Fig. 8: Theoretical Spectral Efficiency as a function of the vehicular traffic
speed v.

to avoid resetting the timer every time the fading envelope

exceeds the path loss-based bias, we can add an additional

bias term Bf , which does not depend on the speed of the UE.

Bf = 10 log
10

(

min

{

B : p

(

ψMαM

ψFαF

≥ B

)

≤ 1− pthr

})

(13)

B′
1
= B1 +Bf (14)

B′
2
= B2 +Bf . (15)

The parameter pthr in (13) represents the amount of protection

against deep fading offered by the extra bias term Bf : a higher

value of pthr will reset the TTT timer less often, but a higher

bias will lead to stronger ping-pong effects. For this reason, we

limit the total handover bias B′
i, i ∈ {1, 2} to a maximum of

7 dB. The value of Bf is shown in Table II for different pthr,

which correspond to different percentiles. In the performance

evaluation we used pthr = 0.68, which is equivalent to one

standard deviation in the normal approximation.

The improvement obtained by setting an asymmetric han-

dover bias can be seen in Fig. 8. This figure is obtained

calculating the average ν over 100 Monte Carlo simulations

with independent shadowing and fading for a UE speed from

4 m/s to 20 m/s.

In the simplest case, in which there is no FeNB and the UE

is always attached to the MeNB, νMeNB is essentially indepen-

dent of the UE speed. The second case is a legacy handover

with no bias: as the plot shows, νnoBias decreases drastically

as speed increases, as the delay in the handover caused by the

TTT wastes most of the performance improvement from the

FeNB. If the UE speed is higher than 6 m/s, the handover is so

late that the UE would do better to disregard the existence of

the FeNB completely: as soon as the UE finishes the handover

process, it has to start it again since it has already moved

pthr 0.5 0.68 (σ) 0.75 0.95 (2σ) 0.99 (3σ)

Bf [dB] 0 3.8 5.4 13.7 21.4

Table II: Values of Bf for different threshold probabilities.
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Fig. 9: Optimal handover bias throughout the day for January 23, 2015.

outside of the FeNB coverage area. The improvement given

by the fading-aware bias is clear: the FeNB can be exploited if

the speed is lower than 16 m/s, and there is a clear performance

gain compared to the legacy scheme. The path loss-based bias

shows a smaller performance improvement with respect to

the legacy scheme, and handing over to the FeNB is already

detrimental to the UE at 10 m/s. This is due to the handover

happening too late, as even a large bias is not enough to

balance the variations of the channel due to fading. In general,

νBias decreases when the speed increases, since the time in the

FeNB coverage area gets shorter, but the FeNB is always fully

exploited. Note that the effect of the 7 dB cap is only relevant

at a speed of 20 m/s.

The presence of the FeNB is detrimental to vehicular UEs in

the legacy scenario (no handover bias) if the speed of traffic

exceeds 6 m/s, since νnoBias ≤ νMeNB. However, setting the

optimal asymmetrical handover bias allows network operators

to keep the FeNB switched on until the speed reaches 16 m/s,

benefiting both pedestrian and vehicular UEs, since νBias ≥
νMeNB.

We also performed a sensitivity analysis by adding a

normally distributed error with standard deviation σv to the

velocity estimate used to determine the bias and performing

multiple independent simulations. The metric we consider

is the maximum value ∆ν of the difference in the spectral

efficiency for all the considered velocities. As shown in

Table III, the effects of the errors in the speed estimation are

negligible when compared to the randomness of the channel

(represented by the standard deviation σ̂ in the Table). This

makes the system robust to small variations of the speed of the

flow of traffic, as well as protecting it from imprecisions due

to vehicles of different lengths (i.e., the parameter L in (1)).

The optimal asymmetrical handover bias over the course of

a day for a specific intersection can be calculated from the

TfL data as explained in Sec. III; the speed evolution shown

σv/v 0.1 0.2 0.3

∆ν 0.05σ̂ 0.07σ̂ 0.09σ̂

Table III: Effect of errors in the speed estimate on the system performance.
σ̂ is the standard deviation of ν across independent channel realizations.

in Fig. 2 results in the bias shown in Fig. 9. As expected, the

handover bias is higher at nighttime, as the average speed of

traffic is far higher than during the day. For this reason we

can fix a threshold for the handover bias beyond which FeNB

can be shut down in order to save energy, leaving all traffic

to the MeNB. If we fix this threshold to 3 dB, then the FeNB

will only turn off in the middle of the night, when the load

on the MeNB is very light.

B. Adaptive vMME Allocation

As already mentionded in Sec. II, NFV allows to dynam-

ically allocate the resources needed by a cellular network.

In traditional mobile networks a single dedicated MME is

typically used to manage millions of end users, such as those

in the London metropolitan area [41]. With the NFV approach,

instead, it is possible to change the number of vMME instances

on the fly, adapting to the number of handovers that are

expected to happen in a certain interval.

In this application, we use data processed as in Sec. III

to determine the number of handovers that happen in the

London area during a typical day. We distinguish between

the two kinds of handovers that may happen in LTE net-

works [46], i.e., intra MME (X2–based) and inter MME (S1–

based) handovers, since they require different procedures and

different interactions with the MMEs. The X2–based handover

happens when the UE remains in an area managed by the

same MME and changes the eNB to which it is attached. The

S1–based procedure, instead, is used when the UE performs

a handover between two eNBs managed by different MMEs.

The two procedures are described in detail in [46]. In this

paper, we consider the duration of a handover procedure as

the interval from the instant in which the source eNB (SeNB)

triggers the handover to the instant in which SeNB receives the

RELEASE_RESOURCES command. During this period the UE

first experiences a degraded channel, and then receives packets

with an increased latency, thus the Quality of Service perceived

by the final user decreases. The goal of this application is to

minimize the duration of these intervals, while using as few

vMME instances as possible.

In particular, we model the duration of an X2–based han-

dover handled by vMME i as a function of the number of

vMMEs N and of the total number of handovers Ii that involve

that vMME during an interval Tper:

tX2

HO(N, Ii) = 3tSe−Te + 2tTe−SM (N) + tHR + τ(Ii) (16)

while the time required to complete an S1–based handover

that involves vMMEs i and j also depends on the number of

handovers Ij that are served by the target vMME j:

tS1

HO(N, Ii, Ij) =τ1(Ii) + 3τ2(Ij)+

4tSe−SM (N) + 4tTe−TM (N)+

2tSM−TM (N) + max{tTM−SM (N)+

tSM−Se(N) + tHR, tTM−Se(N)}+

max{tTM−SM (N) + τ1(Ii), tTM−Se}
(17)
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Fig. 10: Average number of X2–based and S1–based handovers per vMME
instance, for a different N and different time slots, during January 23, 2015.

In Eqs. (16) and (17), tA−B(N) with A,B ∈
{Te, Se, SM, TM}1 is the latency between element A
and element B of the network. Unless both A and B
represent eNBs, we have

tA−B(N) = ttx +
dN (A,B)

vf
, (18)

where ttx = 5 ms is a factor that models the time spent in

middleboxes and tPROP = dN (A,B)/vf is the propagation

delay, given by the ratio of the distance between the two

devices and the speed of light inside optical fibers2 (i.e.,

vf = 2 · 108 m/s). The dependence on the number of vMMEs

N is in the distance dN (A,B) between two network elements,

that changes according to the allocation of eNBs to the

vMMEs. Instead, tTe−Se is the latency between two adjacent

eNBs and does not depend on the relative position between

the eNBs and the MMEs, therefore, as in [47], it is modeled

as a constant latency tTe−Se = 2.5 ms. tHR is the duration

of the interval from when the UE actually disconnects from

the SeNB to when it connects to the TeNB. In [48], tHR is

estimated to be in the order of 50 ms.

Finally, τ(Ii) is the time that a vMME takes to process the

received command. In [41] the process of handover requests

is modeled as a Markov process. We adopt the same approach

and in particular we model the vMME as an M/D/1 queue, as-

suming a Poisson arrival process with arrival rate λ = Ii/Tper
and a deterministic service time Ts. Given these assumptions,

it is possible to compute the value of τ as the system time of

an M/D/1 queue:

τ =
1

µ
+

ρ

2 · µ · (1− ρ)
, (19)

where µ = 1/Ts and ρ = λT are the service rate and the

loading factor of the vMME. The study in [39] uses the

value Ts = 110 µs as service time of a vMME, requiring

considerable computational resources. Since our work only

considers vehicular UEs, and the adaptive nature of our

system, overdimensioning each vMME would be a waste of

resources: a number of slow vMMEs can provide the same

1Te stands for Target eNB, Se stands for Source eNB, TM stands for
Target MME and SM stands for Source MME

2We assume that the backhaul network uses fiber-optic links.
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Fig. 11: Average service time τ for different N , during January 23, 2015.

performance as a single powerful vMME during rush hour,

and the additional vMMEs can be turned off at less congested

times, with a substantial reduction in server management

costs and energy requirements. For this reason, we limit

the processing power of our vMMEs dedicated to vehicular

handovers to the value of µ = 1000 handovers per second.

Since our goal is to find the optimal number of vMMEs N
that minimizes the total duration of the handovers, we consider

the objective function

JTper
(N) =

N
∑

i=1

(Ii −
N
∑

j=1

j 6=i

Si,j)t
X2

HO(N, Ii)

+
N
∑

i=1

N
∑

j=1

j 6=i

Si,jt
S1

HO(N, Ii, Ij) + C(N),

(20)

where the sums consider all the handovers in a time slot Tper

of one hour, and C(N) is a penalty function representing the

operational cost of N vMMEs. We consider it to be a linear

function of the number of vMMEs N , i.e., C(N) = kN .

The optimization problem uses the vehicular traffic data

processed as in Sec. III to compute the value of Ii, Si,j

and λ(Ii) = Ii/Tper for each vMME i, j ∈ {1, · · · , N} and

computes

Nopt = min
N

JTper
(N) (21)

for each interval Tper during a certain day.

In the following results we consider the data of January 23,

2015. Fig. 10 shows the average number of handovers inside

a single vMME in different time slots. Notice that since we

consider only the inter MME handovers for the London area

MMEs, then Sij is zero for N = 1. The number of handovers

in different time slots changes greatly, from 1.5 · 106 per hour

during the night to more than 7 · 106 at midday. This justifies

a dynamic allocation of resources; a single and dedicated

MME that targets the worst case scenario at midday would

be wasted during the night. Instead the adaptive approach

allows the use of less powerful vMMEs, which are able to
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serve a smaller number of handover requests, and have lower

operational expenses than dedicated hardware [37], but can be

instantiated on the fly according to the control traffic intensity.

In Fig. 11, the average service time of the vMME instances

is shown for different values of N . It can be seen that during

the night the values have a small difference, but one or two

vMME instances are not enough to handle the load during the

day. Fig. 12, instead, shows the value of the objective function

J(N) throughout the whole day, assuming a cost factor k = 0.

In this case, one vMME instance is enough only from midnight

to 5 AM, and more instances (up to 3) must be allocated during

the day to meet the vehicular handover traffic load.

If we increase the value of k, as shown in Fig. 13, the

optimal number of vMMEs changes. At certain times using a

lower number of vMMEs becomes more convenient, because

of the operational cost which is now accounted for.

The adaptation of the number of vMMEs significantly

improves the efficiency of the system: while a worst-case

dimensioned system would need 3 vMMEs at all times, the

average number of active vMME instances for the most

aggressive adaptive system (k = 0) is 2.42, while a more

conservative system (k = 100000) only uses an average of

2.17 vMMEs. This translates into a lower operating cost for

the network provider because of a reduced energy consumption

and of the need of using fewer virtual functions.

V. CONCLUSION AND FUTURE WORK

In this work, we presented two optimization methods that

exploit road traffic data to adapt several parameters in a

cellular network. Our focus was mostly on handovers, and we

showed that a knowledge of the traffic on each road and its

speed can help improve the handover performance. A tighter

integration between the smart city and the cellular network

that serves it might be one of the most promising approaches

towards Self-Organizing Networks.

In particular, we exploited our knowledge of the speed of

the traffic at any intersection to adapt the femtocell range

expansion bias and mitigate the inefficiency caused by the TTT

without incurring in the ping pong effect. Since the calculation

is simple, this can be easily implemented in real time. We

also use the traffic flow data to adaptively provision virtual

resources and add or remove virtual MMEs, reducing operat-

ing costs without impacting the performance with respect to

a worst-case dimensioned system. The performance benefits

of the scheme can further increase as the integration of smart

city data in the network optimization progresses: for example,

data about public transport networks such as buses and the

subway system can be exploited to provide a more accurate

estimation of the metrics we considered. Moreover, periodic or

forecastable events (i.e., holidays and changes in the weather

conditions) that impact mobility patterns can be added to the

model in order to improve its accuracy.

The two techniques we used in this work are just two

examples of the possible benefits that smart city data can

provide to cellular networks: in the future, we plan to sys-

tematize this approach and integrate existing and new SON

techniques, studying and optimizing their interactions using

data from both the cellular network itself and the smart city

around it. Another challenge for future systems of this kind

is the integration with novel technologies such as mmWave,

which requires intelligent mobility management.
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