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SUMMARY

Smoothing spline ANOVA (ANalysis Of VAriance) methods provide a flexible alternative to the standard
parametric GLIM (generalized linear models) methods for analysing the relationship of predictor variables
to outcomes with data from large epidemiologic studies. These methods allow the visualization of relation-
ships not readily fit by simple GLIM models, and provide for the ability to visualize interactions between the
variables. At the same time, they reduce to GLIM models if the data suggest that the added flexibility is
unwarranted. Using this method, we investigate risk factors for incidence and progression of diabetic
retinopathy in a group of patients with older onset diabetes from the Wisconsin Epidemiological Study of
Diabetic Retinopathy. We carry out four analyses to illustrate various properties of this class of methods.
Some of the results confirm previous findings with use of standard methods, while others allow the
visualization of more complex relationships not evident from the application of parametric methods. ( 1997
by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many demographic medical studies collect data of the form My
i
, t(i ), i"1,2nN, where i indexes

the ith study participant, y
i
is 1 or 0, indicating whether a medical condition of interest is present

or absent at follow-up, and t(i )"(t
1
(i), 2 , t

d
(i )) is a vector of d predictor variables at baseline,

that may or may not relate to the likelihood that y
i
is a 1. From these data we wish to estimate

p(t)"ProbMy"1 D tN, the probability that a person with predictor vector t presents with the

condition of interest at follow-up. We use such estimates for the prevalence of the condition of

interest in general populations and to study the sensitivity of p to the predictor variables, or, if
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possible, to combinations of them. The traditional GLIM models1 do this by defining f (t), the

logit, as

f (t)"log[p(t)/(1!p (t))] (1)

and assuming that f is a simple parametric function of the components of t. When the t
a

are

continuous variables, the most commonly used model is linear in the components of t

f (t)"f (t
1
, 2 , t

d
)"k#

d
+
a/1

b
a
t
a

(2)

but sometimes one uses second or even third degree polynomials if it appears that a linear model

is inadequate. If some of the t
a
are categorical variables, then we can use indicator functions. More

generally, given M parametric functions /
l
, l"1, 2 , M subject to some identifiability condi-

tions, f is modelled parametrically as

f (t)"
M
+
l/1

b
l
/

l
(t). (3)

Then (k and) the b’s are obtained by minimizing the negative log-likelihood L(y, f ) given by

L(y, f )"
n
+
i/1

[y
i
f (t(i ))!log(1#ef(t(i)))] (4)

with (2) or, more generally, (3), substituted for f. If the ‘true but unknown’ f is actually some linear

combination of the specified /
l
then this is, of course the correct procedure. Unfortunately, as we

examine large data sets more closely, it becomes clear that linear models, or even quadratic or

cubic models, are often inadequate. What happens if, for example, the dependence on t
a

is ‘J’

shaped, or, even has two peaks, possibly representing two distinct subpopulations? If the ‘true’ log

odds ratio f is not well approximated by some function of the specified form, then we may have

large biases in the estimates of f. Furthermore, the common statistical hypothesis tests, confidence

intervals, P-values, etc. are not necessarily valid if f is not of the specified form. In this paper we

describe and demonstrate the use of smoothing spline ANOVA (SS-ANOVA) methods to

estimate f. These methods avoid many of the above difficulties, yet they provide the ability to

visualize some of the relationships between the variables not easily observed with use of more
traditional methods. We demonstrate their use to examine the relation of risk factors to the

incidence and progression of diabetic retinopathy, using data from the Wisconsin Epidemiologi-

cal Study of Diabetic Retinopathy (WESDR).
The analysis here is based on (a special case of ) the smoothing spline ANOVA method for

modelling and estimating f that appears in Wahba, Wang, Gu, Klein and Klein2 (WWGKK),

and we have implemented the analysis via the publicly available code GRKPACK described in

Wang.3 The code itself is available from netlib@research.att.com in the gcv directory there,

and through statlib@lib.stat.cm u.edu.

An SS-ANOVA estimate is a form of penalized likelihood estimate. We first note two

important penalized likelihood estimates that appear in the literature. Then, in the remainder of

this introduction, we describe the main features of SS-ANOVA in general and the details of the
SS-ANOVA models in particular that we apply to the WESDR data.

Major precursors of the work under discussion include O’Sullivan4 and O’Sullivan et al.,5 who

proposed a penalized log-likelihood estimate for f based on thin plate splines. These splines are

useful in many contexts, and one can incorporate them in an SS-ANOVA model;6,7 we do not

employ them in the present work.
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Hastie and Tibshirani8 (see also other references there) discussed estimates of f of the form

f (t)"f (t
1
, 2 , t

d
)"k#

d
+
a/1

f
a
(t
a
) (5)

where the f
a

are ‘smooth’ functions obtained by some smoothing process, including the use of

cubic smoothing splines. The S code (Chambers and Hastie9) provides the facility for fitting

models of the form (5). They also note that some of their work extends to the SS-ANOVA

methods that we consider here. The varying-coefficient models of Hastie and Tibshirani10 are

a very interesting sub-family of the SS-ANOVA models. Cubic smoothing splines for the f
a
in (5)

are the solution to the minimization problem: find f
a

(in an appropriate function space), and

subject to some identifiability criteria such as : f
a
(t
a
)dt

a
"0, to minimize the penalized log-

likelihood functional

I
j
(y, f )"L(y, f )#

d
+
a/1

j
a
J
a
( f

a
) (6)

where we define the penalty functionals J
a
by

J
a
( f

a
)"P

1

0

( f @@
a
(t
a
))2 dt

a
. (7)

As the smoothing parameter j
a

tends to infinity, f
a

tends to a linear function in t
a
, so that the

minimizer of (6) tends to the linear function as in (2) if all the j
a
’s become large. Penalized

likelihood methods with more general penalty functionals and unpenalized terms are discussed in

reference 11.

Recent research has focused on more general models for f that allow the explicit modelling and

visualization of possible interactions between variables, via functional analysis of variance

decompositions (to be described) and SS-ANOVA estimation methods. Given a fairly arbitrary

function f (t
1
, 2 , t

d
) of several variables, we can define a (functional) ANOVA decomposition of

f (generalizing ideas from parametric ANOVA) as

f (t
1
, 2 , t

d
)"k#

d
+
a/1

f
a
(t
a
)# +

a:b

f
ab

(t
a
, t

b
)# 2 #f

1,2 ,d
(t
1
, 2 , t

d
) (8)

where the f
a

are the main effects, f
ab

are the two factor interactions, etc. The components are

uniquely determined given a set of averaging operators E
a
, which average functions over the t

a
in

some specified way. For example, if t
a

is a continuous variable in the interval [0, 1], then
a possible choice for E

a
is

(E
a
f ) (t

1
, 2 , t

a~1
, t

a`1
, 2, t

d
)"P

1

0

f (t
1
, 2 , t

d
) dt

a
. (9)

Then the mean is k"<d
a/1

E
a
f , the main effects are f

a
"(I!E

a
)<

bOa
E
b
f , the two factor

interactions are f
ab

"(I!E
a
) (I!E

b
)<

c/a,b
E
c
f, etc. Since E

a
E
a
"E

a
, we can see that the terms

in the functional ANOVA decomposition satisfy side conditions analogous to those in ordinary

parametric ANOVA, for example, E
a
f
a
"0. In general, for model fitting purposes, we eliminate

higher order terms in the functional ANOVA decomposition and we estimate some or all of the
lower order terms by finding k, and (some of ) the f

a
, f

ab
, etc. to minimize a penalized log-

likelihood functional I
j
(y, f ) given by an expression that generalizes (6), with a separate penalty

functional for each independently smoothed term in the model. We can also incorporate in the

SMOOTHING SPLINE ANOVA 1359

( 1997 by John Wiley & Sons, Ltd. Statist. Med., Vol. 16, 1357—1376 (1997)



model indicator functions for categorical variables. Other averaging operators include weighted

sums over possible or observed values of t
a
.

It is well known11 that solutions to variational problems like the minimizer of I
j
(y, f ) and

generalizations to I
j
(y, f ) with f containing interaction terms as in (8) have a representation as

a linear combination of the unpenalized terms in the model plus n (basis) functions, that we can

construct from the t(i) , the reproducing kernels associated with the penalty functionals, and the

smoothing parameters, see references 3, 4, 11—14. Given the smoothing parameters, the numerical

problem of computing the minimizer f
j
reduces to finding the coefficients of a representation for it

as a linear combination of the unpenalized terms and the above mentioned basis functions. We

can solve the numerical problem for the coefficients with a Newton—Raphson iteration in

conjunction with matrix decompositions. The history of these numerical methods includes

references 4, 5, 11, 15—18. There are various approximate numerical methods available and under

development for data sets that are too large for matrix decomposition methods; these, however,

are beyond the scope of this article.

Objective methods for choosing the smoothing parameters are desirable. This paper and the

code GRKPACK employ the iterative unbiased risk method given in Gu15,16 for the non-

Gaussian case and extended to the p smoothing parameter case j"(j
1
, 2 , j

p
) in Wang19 and

WWGKK. This method is a computable proxy for the Kullback—Liebler information distance

from the estimate to the ‘truth’, see references 2, 16, 20 and 21. Thus, the method attempts to

choose the smoothing parameters to minimize the Kullback—Liebler information distance from

the estimate f
j

and the unknown ‘true’ f. Other related references are 22—24.

As with any estimation method, it is important to have some indication of its accuracy.

It is particularly important in the case here of non-parametric regression with Bernoulli data

derived from medical records because these data tend to be irregular, and may contain influential

outliers. The rigidity of parametric models may mask the effect of outliers, as well as obscure the

fact that we sometimes make inferences in fairly data-sparse regions. The non-parametric

estimates may be more sensitive to outliers, and it is important to be able to delineate a region in

the predictor variable space where we can rely upon the estimate, as well as where we can provide

some sort of confidence statement. In this work we use the Bayesian ‘confidence intervals’

proposed in reference 25, adapated to the component-wise multiple smoothing parameter case in

reference 7, to non-Gaussian data in reference 26, and to the multiple smoothing parameter

non-Gaussian case in reference 19 and WWGKK. We use the Bayesian ‘confidence interval’
for f

j
to delineate the region in predictor variable space for which we deem the overall estimate

as reliable, by computing an appropriate level curve in a contour plot of the width of the

confidence interval, and using this to enclose a ‘reliable’ region. We also use it in conjunction
with cross-sectional plots so that we can visualize the accuracy estimates. We have used the

component-wise confidence intervals to eliminate some terms that we cannot distinguish from

noise, by deleting terms whose confidence intervals contain 0 over most of their domain. We

remark that we base these confidence intervals on an across-the-function property, that is, a 95

per cent confidence interval has the property that (approximately) we expect the confidence
intervals to cover the true curve at about 95 per cent of the n data points, see references 3, 21

and 26.

We now proceed to the details of the particular models employed in the analysis of the
WESDR data. We carry out four analyses, each of which illustrates some particular feature of this

class of models. In each case we have rescaled the (continuous) predictor variables t
1
, 2 , t

d
to

[0, 1], and we use the averaging operatorE"E
a
defined in (9). We consider only main effects and

two factor interactions. We employ the penalty functional J
a
of (7) and a two-dimensional relative

J
ab

defined below. If we eliminated all of the two factor interactions, then the models described
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immediately below reduce to the form (5) as studied by Hastie and Tibshirani,8 although our

estimation method is different.

We require some definitions to define the terms in the particular ANOVA decomposition (8)

that we use. Define the (linear) ‘trend’ function / (u)"u!1/2 for u3[0, 1], and, for continuous

functions g defined on [0, 1] let Bg stand for Bg"g(1)!g(0) . For future reference note that

E/,:1
0

/ (u) du"0 and B/"1. We use E and B to define ANOVA and identifiability side

conditions. A subscript a on E or B means that it applies to what follows considered as a function

of t
a
. The typical main effect term f

a
(t
a
) in this set up has a decomposition of the form

f
a
(t
a
)"d

a
/(t

a
)#f

4a
(t
a
) (10)

where d
a
/ (t

a
) is the linear and unpenalized part of f

a
and f

4a
is the (detrended) ‘smooth’ part of f

a
.

f
4a

satisfies the side conditions E
a
f
4a

"B
a
f
4a

"0 and appears inside a penalty functional as J
a
( f
4a

).

Due to the side conditions on f
a
, J

a
( f
4a

)"0 implies that f
4a

"0.

The two factor interaction f
ab

(t
a
, t

b
) has an analogous decomposition into four interaction

terms, namely

f
ab

(t
a
, t

b
)"d

ab
/(t

a
)/(t

b
)#/(t

a
) f (a)

4b
(t
b
)#/(t

b
) f (b)

4a
(t
a
)#f

4ab
(t
a
, t

b
) (11)

where the ‘smooth’ factors of the trend]smooth interactions satisfy the side conditions

E
a
f (b)
4a

"B
a
f (b)
4a

"E
b
f (a)
4b

"B
b
f (a)
4b

"0 and the ‘smooth—smooth’ interaction term satisfies

(E
a
f
4ab

) (t
b
)"(B

a
f
4ab

) (t
b
)"(E

b
f
4ab

) (t
a
)"(B

b
f
4ab

) (t
a
)"0, for all t

a
, t

b
. Letting J

ab
( f
4ab

)"

:1
0

:1
0

( L4

Lt2aLt2b
f
4ab

(t
a
, t

b
))2 dt

a
dt

b
, then one can show that the side conditions insure that J

ab
( f

4ab
)"0

implies that f
4ab

"0. Letting j"(j
a
, j

b
, j(b)

a
, j(a)

b
, j

ab
) and

J
j
( f )"j

a
J
a
( f
4a

)#j
b
J
b
( f
4b

)#j (b)
a

J
a
( f (b)

4a
)#j (a)

b
J
b
( f (a)

4b
)#j

ab
J
ab

( f
4ab

) (12)

we estimate f by finding k, d
a
, d

b
, d

ab
, and f

4a
, f
4b

, f (b)
4a

, f (a)
4b

and f
4ab

to minimize

I
j
(y, f )"L

j
(y, f )#J

j
( f ). (13)

Due to the side conditions, as a component of j becomes large, the estimate of the ‘smooth’ term

that it multiplies becomes small. Thus, a good method for choosing the components of j from the

data effectively eliminates unneeded terms in the expansion if one estimates their companion

smoothing parameters as large.

We can include categorical variables in the model, by, for example, letting

f (t
a
, t

b
, z)"k#f

a
(t
a
)#f

b
(t
b
)#f

ab
(t
a ,b

)#
K
+
k/2

c
k
I
k
(z) (14)

where z is a variable with K possible values z
1
, 2 , z

K
and I

k
(z)"1 if z"z

k
and 0 otherwise. We

then include the c’s in the minimization of (13).

The mathematics behind the representation of f, the numerical method for the minimization of
I
j
, the data-based choice of j according to the iterative unbiased risk method, and the calculation

of the confidence intervals are described in WWGKK. Further details appear in reference 3 and

the documentation for GRKPACK. In the four analyses that we carry out below, there are

between d"2 and d"4 predictor variables. In the d"4 case, considering the penalty functional

in (12), and including all of the possible main effects and two factor interaction terms with their
own smoothing parameters, the result is 4 main effects smoothing parameters (j

a
), 12

trend]smooth smoothing parameters (j (b)
a

) and 6 smooth]smooth parameters (j
ab

), more than
we would want to fit simultaneously with the sample sizes here (all less than 500). We reduced the
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number of terms with smoothing parameters to a maximum of 7 based on previously published

analyses of these data by more traditional methods, by extensive pre-screening, by fitting

parametric polynomial GLIM models with terms as high as cubic order to detect and delete terms

that failed to give any evidence of significance, and by fitting some marginal SS-ANOVA models

as demonstrated in Section 6. Exploration of more systematic pre-screening methods is an area of

active research. Once we had reduced the number of smoothing parameters to 7 or less, we used

informal model selection methods as discussed in WWGKK. These included the deletion of

component terms too small to have an observable effect on cross-sectional plots of f, and the

deletion of terms whose componentwise confidence intervals included the 0 function. Further

details specific to each analysis appear below. Leaving-out-one-third model selection procedures

have been discussed in reference 20, but we have not used them here.

Section 2 discusses the Wisconsin Epidemiologic Study of Diabetic Retinopathy, and

Sections 3, 4, 5 and 6 discuss four analyses of this study. Section 7 is a summary and conclusion.

2. WISCONSIN EPIDEMIOLOGIC STUDY OF DIABETIC RETINOPATHY (WESDR)

The WESDR is an ongoing epidemiologic study of a cohort of patients who receive their medical

care in an 11-county area in southern Wisconsin, who were first examined in 1980—1982, then

again in 1984—1986 and 1990—1992. At this writing a third follow-up is currently in progress.

Detailed descriptions of the data have appeared in references 27 and 28 and references there. In

brief, a sample of 2990 diabetic patients was selected in an 11-county area in southern Wisconsin.

This sample consisted of two groups. The first group was 1210 patients diagnosed as diabetic

before they were 30 years of age and who took insulin (‘younger onset group’). The second group

consisted of 1780 patients diagnosed with diabetes after 30 years of age. Of these, 824 were taking

insulin (‘older onset group taking insulin’) and 956 were not (‘older onset group not taking

insulin’). Of the 2990 eligible patients, 2366 participated in the baseline examination from 1980 to

1982.

A large number of medical, demographic, ocular and other covariates were recorded at the

baseline and later examinations along with a retinopathy score for each eye (to be described).

Relations between various covariates and the retinopathy scores have had extensive analysis with

standard statistical methods including categorical data analysis and linear logistic models, with

results reported in a series of WESDR manuscripts 29—35. We applied SS-ANOVA methods to

a subset of the data from the younger onset group in WWGKK in conjunction with an extensive
technical account of the mathematical theory and numerical methods behind the method. It is the
purpose of this account to carry out four SS-ANOVA analyses on data from the older onset

WESDR group, and in the process, to illustrate some of the more important features of the

method. Our goal is to explain the possible results, advantages and disadvantages in a less
technical manner, aimed at clinicians and medical researchers.

We limited the present study to the construction of predictive models for incidence and for

progression (to be defined) of diabetic retinopathy at the first follow-up, as a function of some of

the covariates available at baseline. We do this both for the ‘older onset group taking insulin’ (ID

group) and the ‘older onset group not taking insulin’ (NID group). We analyse both ‘incident
events’ and ‘progression events’ for both the ID and the NID groups. We only list the covariates

pertinent to our analysis:

1. Age: age at the examination (years);
2. Duration: duration of diabetes at the examination (years);

3. Glycosylated haem oglobin: a measure of hyperglycaemia (%);8
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4. Body mass index (bm i): weight in kg/(height in m)2;

5. Pulse rate counted for 30 seconds;

6. Baseline retinopathy severity levels (base-retinopathy-level). See explanation below.

At the baseline and follow-up examinations, each eye was graded as one of the 6 levels:

10, 21, 31, 41, 51 and 60#, in order of increasing retinopathy severity with 10 indicating no

retinopathy and 60# indicating the most severe stage, proliferative retinopathy. We derived the

retinopathy level for a participant by giving the eye with the higher level (more severe re-

tinopathy) greater weight. For example, we specify the level for a participant with level 31

retinopathy in each eye with the notation ‘level 31/31’; for a participant with level 31 in one eye

and less severe retinopathy in the other eye the notation is ‘level 31/(31’. This scheme provided

an 11-step scale: 10/10; 21/(21; 21/21; 31/(31; 31/31; 41/(41; 41/41; 51/(51; 51/51;

60#/(60#, and 60#/60#. Participants in the analysis for incidence consisted of subjects with

level 10/10 at the baseline and no missing data. The model provides an estimate of the incidence

rate, defined as the probability that such a participant has level 21/(21 or worse at the follow-up

examination. Participants in the analysis for progression consisted of subjects with no or

non-proliferative retinopathy at baseline and no missing data. The model provides an estimate of

the progression rate, with progression defined as an increase in baseline level by two steps or more

(10/10 to 21/21 or greater, or 21/(21 to 31/(31 or greater, for instance). These analyses

correspond to analyses previously carried out by traditional methods in some of the WESDR

references cited. Note that this allows subjects included in the incidence analysis also to be part of

the progression analysis.

3. INCIDENCE IN THE OLDER ONSET GROUP NOT TAKING INSULIN

After excluding participants with missing values, there were 297 participants in the older onset

NID group with a baseline score of 10/10, thus qualifying them for inclusion in the NID

‘Incidence’ analysis. There was one observation of glycosylated haem oglobin recorded as 23·6

per cent, much greater than the others. We decided to delete this influential observation. Our

conclusions would remain the same if we included this observation in the analysis.

Klein et al.27 found, using linear logistic models, that glycosylated haem oglobin is the only

statistically significant predictor of incidence of retinopathy in older onset patients. Using linear

logistic models as a screening tool, we found that the effect of age is not linear and that there is
a strong interaction between age and glycosylated haem oglobin.

We first fit an SS-ANOVA model with the main effects of age and glycosylated

haem oglobin and all three interaction terms. The main effect of glycosylated haem oglobin

is linear. All interaction terms except trend(glycosylated haem oglobin)]smooth(age) are near

zero. The final model is

f (age,glycosylated haem oglobin)

"k#f
1
(age)#a

1
]glycosylated haem oglobin

#trend(glycosylated haem oglobin) ]smooth(age). (15)

We plot age versus glycosylated haem oglobin on Figure 1(a). We have marked those

participants with incident retinopathy as solid circles and those without as open circles. We

superimpose the contour lines of estimated posterior standard deviations. These contours agree
well with the distribution of the observations. Thus we can use them to delineate a region in which
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Figure 1. NID ‘Incidence’ analysis: (a) data and contours of constant posterior standard deviation. Solid circles indicate
incidence and open circles indicate non-incidence; (b) estimated probability of incidence in the defined region, as a function

of age and glycosylated haem oglobin
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Figure 2. NID ‘Incidence’ analysis. Cross-sections of estimated probability of incidence as a function of age, with their 90
per cent Bayesian confidence intervals, at four quantiles of glycosylated haem oglobin. q1, q2, q3 and q4 are the

quantiles at 0·125, 0·375, 0·625 and 0·875

we deem the estimate of the probability function as reliable. We decided to use the region with

estimated posterior standard deviations less than or equal to 1, in the logit scale.
We plot the probability function estimate on Figure 1(b). Figure 2 gives cross-sections of the

estimated probability of incidence as a function of age with their 90 per cent Bayesian confidence

intervals at the cross-sections, at four quantiles of glycosylated haem oglobin. The width of

the confidence intervals suggests that the small bumps are probably an artifact. The general shape

of the response, however, is evident, and it appears that the age effect is not particularly well
modelled with a second or even a third degree polynomial.

The risk for incidence of retinopathy increases with increasing glycosylated haemoglobin. The

risk increases with increasing age for lower glycosylated haemoglobin. This increase might result
from the development of other conditions such as hypertension and atherosclerotic vascular disease

in older compared to younger subjects and that leads to increased risk of retinopathy, even when

the glycosylated haemoglobin level is relatively low. The risk decreases with increasing age for

higher glycosylated haemoglobin. This decrease may result from mortality since an old participant

with high glycosylated haemoglobin has a higher mortality risk during the observation period.36
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Figure 3. NID ‘Progression’ analysis. Main effects estimates of glycosylated haem oglobin and bm ialong with their
component-wise 90 per cent Bayesian confidence intervals, logit scale

4. PROGRESSION OF THE OLDER ONSET GROUP NOT TAKING INSULIN

After excluding participants with missing values, there were 432 participants in the older onset

NID group qualified for inclusion in the ‘Progression’ analysis. Klein et al.27 found that age,

duration, and glycosylated haem oglobin were statistically significant in a linear logistic

model. Using linear logistic models, we found that the duration main effect of polynomials up to

the cubic is significant and the bm imain effect of polynomials up to the quartic is significant. We

also found that the multiplication interaction between age and polynomials up to cubic of

duration is significant. These indicate that a linear logistic model with lower order polynomials

may be inadequate. We decided to fit the SS-ANOVA model:

f (age,duration,glycosylated haem oglobin,bm i)

"k#f
1
(age)#f

2
(duration)#f

1,2
(age,duration)

#f
3
(glycosylated haem oglobin)#f

4
(bm i). (16)

Figure 3 plots the main effects estimates and their 90 per cent Bayesian confidence intervals for

glycosylated haem oglobin and bm i. We see that the effect of glycosylated haem oglobin is

strong. The effect of bm iis small, and 0 is contained within its confidence interval. The estimates

are effectively linear on a logit scale even though we allowed a ‘smooth’ term for each of them in

the model. This illustrates the ability of the method to reduce to a partially parametric form if
warranted by the data.

The effects of glycosylated haem oglobin and bm iare additive in the logit scale. In the

remaining plots, we fix glycosylated haem oglobin and bm iat their median values.
We plot age versus duration on Figure 4(a). Participants who had progression of retinopathy

appear as solid circles and those with no progression as open circles. We superimpose contour

lines of the estimated posterior standard deviations as a function of age and duration with

glycosylated haem oglobin and bm ifixed at their median values. These contours agree well

with the distribution of the observations. We decided to use the region with estimated
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Figure 4. NID ‘Progression’ analysis: (a) data and contours of constant posterior standard deviation as a function of age
and duration at the median value of glycosylated haem oglobin and bm i. The dotted line is age!duration"30
years; (b) estimated probability of progression in the defined region, as a function of age and duration, at the median

value of glycosylated haem oglobin and bm i
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Figure 5. NID ‘Progression’ analysis. Cross-sections of estimated probability of progression as a function of age and
duration, at the median value of glycosylated haem oglobin and bm i

posterior standard deviations less than or equal to 0·5. A plot of the probability function estimate

appears on Figure 4(b).

To see more clearly how the probability of progression depends on age and duration, we plot

the cross-sections of the estimate in Figure 5. The cross-sections with their 90 percent Bayesian

confidence intervals appear in Figures 6 and 7. From these plots, we see that the risk of

progression of retinopathy decreases with increasing age and the shapes differ between the fourth

and other quantiles of duration. The risk increases with increasing duration up to about 17

years and does not increase after that. Increased mortality of those with longer duration and more

severe retinopathy may explain, in part, this finding. Table I gives the correspondence between

the percentiles and the physical units.

Plots in Figure 4 indicate that participants diagnosed with diabetes just above 30 years of age

(points just below the dotted line in the left panel) are at higher risk of progression of their

retinopathy than those diagnosed later in life.

5. INCIDENCE IN THE OLDER ONSET GROUP TAKING INSULIN

After excluding participants with missing data, there were 143 participants in the older onset ID
group that had a baseline score of 10/10, and hence are included in ID ‘Incidence’ analysis. This
sample size is probably not large enough to estimate interactions well. Klein et al.28 found that

age and glycosylated haem oglobin are significant using a linear logistic model. We found

that quadratic terms of duration and pulse are significant using a linear logistic:

logit(p(age, duration, glycosylated haem oglobin, pulse))

"k#a
1
]age#a

2
]duration#a

3
]duration2

#a
4
]glycosylated haem oglobin#a

5
]pulse#a

6
]pulse2. (17)

Fitting an SS-ANOVA model with main effects of age, duration, glycosylated

haem oglobin and pulse, we found that the main effects of age and glycosylated

haem oglobin are linear. Then we fitted the model:

f (age,duration,glycosylated haem oglobin,pulse)

"k#a
1
]age#f

1
(duration)#a

2
]glycosylated haem oglobin#f

2
(pulse). (18)

1368 Y. WANG E¹ A¸.

Statist. Med., Vol. 16, 1357—1376 (1997) ( 1997 by John Wiley & Sons, Ltd.



Figure 6. NID ‘Progression’ analysis. Cross-sections of estimated probability of progression as a function of age with
their 90 per cent Bayesian confidence intervals, at four quantiles of duration, at the median values of glycosylated

haem oglobin and bm i

The estimates of the main effects and their 90 percent Bayesian confidence intervals appear in
Figure 8. We believe the ups and downs in the middle of the main effect of duration are caused

by the poor choice of the smoothing parameter (too small) due to the small sample size, but the

pattern of the main effect of duration is reliable and agrees with the previous conclusion. That is,

the risk increases with increasing duration up to about 6 years and thereafter does not increase
any more. From the main effect of pulse, we conclude that the risk is higher for participants with

higher pulse rate. Higher resting pulse rate may be secondary to diabetic neuropathy involving

the autonomic nervous system, a condition postulated as involved in the development of diabetic
retinopathy. The fits from model (17) are well inside the Bayesian confidence intervals of the

SS-ANOVA estimates. It is difficult to distinguish between these two models with such a small

sample size. The quadratic form of the linear logistic model for pulse is necessarily symmetric

about its minimum at around 35 and suggests that the risk is increasing as pulse decreases below

35 while the SS-ANOVA model suggests that the minimum is a little higher, and the curve flattens
out below its minimum.

The SS-ANOVA method needs relatively large sample sizes to obtain good estimates of

multiple smoothing parameters. Our experience with real data and simulations suggests that
about 100 observations for each smoothing parameter gives fairly reliable estimates.
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Figure 7. NID ‘Progression’ analysis. Cross-sections of estimated probability of progression as a function of duration,
with their 90 per cent Bayesian confidence intervals, at four quantiles of age and at the median values of glycosylated

haem oglobin and bm i

Table I. Percentiles used in plots

Percentile 12·5 37·5 62·5 87·5

Age (yr) 53·0 63·5 69·8 78·2
Duration (yr) 2·5 4·2 7·8 16·7

6. PROGRESSION OF THE OLDER ONSET GROUP TAKING INSULIN

Due to its flexibility, we can use the SS-ANOVA method in several stages of data analyses. In the

previous sections, we explained the SS-ANOVA method as a tool for model building and
estimation. In practice, we can also use the SS-ANOVA method to explore the behaviour of raw

data. For example, we can obtain a marginal estimate for each covariate to investigate whether

a covariate has a marginal non-linear effect. Alternatively, we can obtain some marginal estimates
of pairs of two or more covariates to investigate their interactions. Furthermore, we can use the

SS-ANOVA method as a diagnostic tool.37
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Figure 8. ID ‘Incidence’ analysis. Estimates of the main effects for incidence, logit scale. Dashed lines are componetwise
90 per cent Bayesian confidence intervals

After deleting participants with missing data, there were 374 participants in the older onset ID

group qualified for inclusion in the analysis for ‘Progression’. Klein et al.27 found that age,

duration,glycosylated haem oglobin and base-retinopathy-levelare significant using
a linear logistic model. They concluded that the risk of progression is higher if duration is longer
and if base-retinopathy-levelis lower (less severe). To investigate whether a linear logistic

model is appropriate, we obtained SS-ANOVA estimates for age,duration,glycosylated

haem oglobin and bm i separately. Figure 9 plots these marginal estimates and proportions

within each decile on the logit scale. These plots suggest that the effects of duration and bm i

may be non-linear. Of course we can only use these marginal analyses as a preliminary tool. Our

goal is to build a full model with all covariates. The effects of covariates in the marginal analyses

may be different from those in the full model. Using linear logistic models, we find that the effect
of age is non-linear (significant up to 4th order of polynomials). The effect of bm iis borderline

significant and non-linear (a 4th order polynomial has a p-value of 0·0609).

This analysis provides an opportunity to include base-retinopathy-levelas a categorical

variable in the model. We divided base-retinopathy-level into five categories: 10/10 as

category 1; 21/(21 and 21/21 as category 2; 31/(31 and 31/31 as category 3; 41/(41 and 41/41
as category 4; 51/(51 and 51/51 as category 5. We first fit an SS-ANOVA model with main

effects of age,duration,glycosylated haem oglobin,bm iand base-retinopathy-level.
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Figure 9. ID ‘Progression’ analysis. Separate estimates of the marginal effects. Solid lines: SS-ANOVA estimates;
segments: the logit of proportions within each decile

We found that the main effect of age and glycosylated haem oglobin are linear. Finally, we

fitted the model:

f (age,duration,glycosylated haem oglobin,bm i,base-retinopathy-level)

"k#a
1
]age#f

1
(duration)#a

2
]glycosylated haem oglobin#f

2
(bm i)

#
5
+
k/2

c
k
I
k
(base-retinopathy-level). (19)

Figure 10 plots the estimates of the main effects and their 90 per cent Bayesian confidence

intervals. The estimates of c
2
, c

3
, c

4
, c

5
and their posterior standard deviations (inside paren-

theses) are 0·73(0·35) , !0·68(0·37), !1·05(0·40) and !0·17(0·51). Our conclusions basically
agree with Klein et al.27 with the following modifications:

1. The risk of progression of retinopathy increases with increasing duration of diabetes up to

around 8 years and does not increase after that.

2. The effect of body mass index is small.

3. Baseline level has a significant effect on progression of retinopathy, but not monotonically.
A subject with baseline level 10/10 has about the same risk as a subject with baseline level

1372 Y. WANG E¹ A¸.

Statist. Med., Vol. 16, 1357—1376 (1997) ( 1997 by John Wiley & Sons, Ltd.



Figure 10. ID ‘Progression’ analysis. Estimates of the main effects for progression. Dashed lines are componetwise 90 per
cent Bayesian confidence intervals

51/(51 or 51/51. A subject with baseline level 10/10 has higher risk than a subject with

baseline level 31/(31 to 41/41. A subject with baseline level 10/10 has lower risk than

a subject with baseline level 21/(21 and 21/21. This may reflect the arbitrary division of the

levels that may not be evenly spaced, or, persons with more severe retinopathy may progress
more rapidly, but those who progress may less likely survive to be examined at follow-up.

7. CONCLUSIONS

We first summarize the new findings from our anlayses, and then make some concluding

remarks concerning the SS-ANOVA estimation methods.

1. Age effects are non-linear and different for different groups. For progression of the older

onset ID group, the risk decreases with increasing age. Since mortality may change the
population under study, especially for the older onset group, more frequent follow-up of

a cohort (perhaps yearly) might provide further understanding of this relation.

2. The effect of duration is consistent in all groups. The risk generally increases with

increasing duration up to a certain point and does not increase after that. This indicates

that if a person with older onset diabetes has not had an event (incidence or progression of
retinopathy) after some years of diabetes, the risk will not substantially increase after that,

although it remains higher than that for newly diagnosed persons.
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3. The effect of glycosylated haem oglobin is large, which agrees with previous studies. We

find that there is a strong interaction between age and glycosylated haem oglobin for

incidence in the lower onset NID group.

4. The effect of body mass index (bm i) is small.

5. Pulse rate has a moderate effect on the incidence of retinopathy in the older onset ID group.

In a main effects model which also included age, duration, and glycosylated

haem oglobin, the main effect for pulse rate is constant for lower pulse rates and then veers

upward linearly (in the logit scale) for higher pulse rates.

6. Baseline retinopathy severity level (base-retinopathy-level) has a significant effect on

progression in the older onset ID group in a main effects model that also included age,

duration, glycosylated haemoglobin and body mass index, but the effect was not monotonic.

Participants with baseline level 21/(21 and 21/21 had the highest risk and participants with

baseline levels 31/(31 to 41/41 had the lowest risk of progression.

The SS-ANOVA models has provided us with a family of flexible penalized log-likelihood

estimates, which specifically include the possible fitting of interaction terms, as well as allowing

for combinations of continuous and categorical variates, which, moreover, reduce to standard

GLIM models as the smoothing parameters tend to infinity. These models are well adapted to the

irregular distribution of multiple predictor variables commonly found in demographic data. The

data-based method for estimating smoothing parameters allows the data to suggest when the

flexible or ‘smooth’ components of the model are unnecessary. This family of models allows the

user to visualize complex relationships between variables otherwise not evident with the use of

purely parametric GLIM models. For example, the analysis here leads to new questions regard-

ing why higher glycosylated haemoglobin in the younger subjects in the NID incidence group

leads to increased risk compared to higher glycosylated haemoglobin in the older subjects in this

group. None of the SS-ANOVA models built for WESDR data in this paper can be easily well

approximated by a parametric GLIM model. Some SS-ANOVA models (for example, incidence

in the younger onset group in reference 19) can be reduced to parametric GLIM models.

Therefore the same conclusions can be reached if appropriate terms are included in the paramet-

ric GLIM model. Even in these cases SS-ANOVA methods are very useful in deciding the

appropriate terms.

SS-ANOVA models also provide measure of risk which the clinicians are particularly interest-
ed in.38

As with any non-parametric function estimation method, we must make various assumptions
about the function estimated. The primary assumption in the models of this paper is that f is

‘smooth’ as measured by the integrals of (L2 f /Lt2
a
)2, (L2 f /Lt2

b
)2, and (L4 f /Lt2

a
Lt2

b
)2 (which give the

five terms in the penalty functional of (12)).

There is a limit to the number of smoothing parameters that we can estimate reliably with the

sample sizes here. Some of the local ‘wiggles’ are probably a manifestation of that, particularly, in

Figure 8. The Bayesian confidence intervals, however, do suggest when bumps are not ‘real’.
When used for exploratory purposes, one may use the smoothing parameters chosen by the

automatic method here as starting guesses for ‘eyeball’ or subjective smoothing parameter

choices.
One drawback of this family of methods (aside from the fact that one requires larger data sets

than for standard purely parametric models) is the fact that the publicly available software for

their use is, at the present time, not quite at the ‘cookbook’ level. If a sample program for the

particular model of interest is unavailable, the user must write a driver that contains details of

their model. Examples of drivers for three models, including the one used in WWGKK, are
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packaged with GRKPACK. Interested readers may obtain drivers for the four SS-ANOVA

models used in this paper from the first author. Since the GRKPACK code is based on matrix

decompositions, it is relatively slow, and requires a relatively large amount of storage, placing an

upper limit on the sample sizes one can analyse. Approximate numerical methods that will reduce

both the time and space required for a given sample size are an area of active research at the

present time. In the meantime, we believe that the present methods represent an important new

approach to the analysis of demographic data sets similar to those analyzed here.
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