
Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 249

Using Software Metrics for
Automatic Software Design Improvement

Zsuzsanna Marian, Gabriela Czibula, Istvan Gergely Czibula
Babeş-Bolyai University, 1, M. Kogălniceanu Street, Cluj-Napoca, 400084, Romania,
marianzsu, gabis, istvanc@cs.ubbcluj.ro

Abstract: In this paper we are approaching the problem of improving the quality of a software system design, an
important issue during the evolution of object oriented software systems. Starting from the fact that software metrics are
essential in measuring the software quality, we introduce a metric based high dimensional representation of the elements
of a software system (application classes and methods from the application classes) and we define a distance semi-metric
between the elements of the software system. An experimental validation of the distance semi-metric on two case studies
is provided. The obtained results illustrate that the distance function introduced in this paper can be successfully used for
improving the internal structure of software systems, highlighting this way the potential of our proposal.
Keywords: Software Metric, Software Design, Refactoring.

1. Introduction

It is well-known that maintenance and
evolution represent important stages in the
lifecycle of any software system (about 66%
from the total cost of the software systems
development). Even if a software product
efficiently performs all its specified functions,
it is very important to evaluate the software
quality. The software product may be hard to
understand and difficult to modify and this
leads to excessive costs in software
maintenance, and these costs are not trivial.
Consequently, improving the quality of a
software system design is the most important
issue during the evolution of object oriented
software systems.

Nowadays is essential to produce software with
proper quality levels, low content of residual
errors, flexible, portable and with high
reliability figures [22]. Those targets imply the
use of new techniques and models, new metrics
and the contribution of software engineering
tools [1]. Engineers and analysts frequently
need to evaluate the performance of software or
a portion of it, such as software modules in the
early stages of design or just at the end of the
development stage. It is a need to know how
complex the design is or if one design is more
complex than another [7].

Aims and relevance of our approach
Software metrics [13] are widely used to
measure the software quality. In this direction,
many tools have been already developed to
computing metrics for quality assessment.
Many researches have been conducted in order
to highlight that software metrics alone are not
enough to characterize software quality [19].

To solve this problem, most of advanced
validated quality models aggregate software
metrics, by computing averages (simple or
weighted average) of metrics.

Most of the existing software metrics are
computed individually, for each software
component, and not for the entire software
system [19]. We are studying in this paper how
multiple software metrics defined for the
components of the software system (in our
approach application classes and methods from
the application classes) can be used in order to
improve the quality of a software system.

Instead of aggregating different software
metrics, as in most existing approaches, we are
proposing, for each element of a software
system, a high dimensional representation, a
vector consisting of several relevant software
metrics and properties of the element. We are
focusing on improving the quality of the
software system design, and this should be
reflected in the high dimensional representation
of the elements from the software system.

In this paper we are considering an element
from the software system as being an
application class from the system or a method
from an application class. Further extensions
may increase the granularity level of our
approach, also considering the attributes from
the application classes, the modules or the
software components.

When considering a metric based high
dimensional representation of an element from
the software system, we have started from the
intuition that it would be useful in the
following directions.

1. First, to define a distance semi-metric
function between the elements of the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 250

software system. This distance function
may be used for:

 Identifying the refactorings [10] that would
improve the internal structure of the
software system, without altering its
external behaviour. An automatic and
scalable approach for refactorings
identification would be very useful in
assisting software developers in their daily
work of maintaining software systems. The
distance semi-metric function may be
adapted in order to identify aspect oriented
[3] refactorings, also.

 Identifying places in an existing software
system where design patterns [11] should
be introduced in order to increase the
clarity of the system and to facilitate its
further evolution.

2. The second direction that can be
approached is to use data mining
techniques [15] in order to discover
relevant patterns and rules in the software
system, i.e. high dimensional
representation of its elements. Mining the
system would be useful in identifying parts
of it that are inappropriately defined.

All the above enumerated activities may be
important steps in improving the quality of a
software system’s design and are directions that
we want to further research. We are starting our
research with investigating the first direction.
More exactly, we are focusing in this paper on
highlighting how the metric based multi
dimensional representation of an element within
the software system can be used for improving
the internal structure of the software system, by
suggesting the appropriate refactorings.

The contributions of this paper are: (i)
definition of a metric based high dimensional
representation for the elements within a
software system, using several software metrics
that were adapted to our goal, (ii) definition of
a distance semi-metric between the elements of
the software system, (iii) experimental
validation of the distance semi-metric on two
case studies.

The rest of the paper is structured as follows.
Section 2 presents an overview on software
metrics, also indicating approaches existing in
the literature that use software metrics for
improving the quality of software systems. Our
approach in defining a distance semi-metric
between the elements of the software system,

based on a high dimensional representation of
the constituting elements is introduced in
Section 3. Section 4 provides an experimental
validation on two case studies of the distance
semi-metric function previously defined. An
analysis of our approach is given in Section 5.
Section 6 presents the conclusion of the paper
and outlines directions to improve our approach.

2. Literature Review

In this subsection we will briefly present
several approaches existing in the software
engineering literature that use software metrics
for improving the quality of software systems.

Development of methods for evaluating
software quality appears to have first been
attempted in an organized way by Rubey and
Hartwick [23]. Their method was to define
code “attributes” and their “metrics”, the
former being a prose expression of the
particular quality desired of the software, and
the latter a mathematical function of parameters
thought to relate to or define the attribute.

A later study [4] performed by the authors
included the formulation of metrics and their
application in a controlled experiment to two
computer programs (approximately 400
FORTRAN statements each) independently
prepared to the same specification. In this
study, only a limited number of attributes
were considered.

Roca proposes in [21] a new method for
computing software structural complexity
based on the entropy evaluation of the random
uniform response function associated with the
so called Software Characteristic Function
SCF. The behavior of the SCF with the
different software structures and their
relationship with the number of inherent errors
is further investigated in [22]. It is also
investigated how the entropy concept can be
used to evaluate the complexity of a software
structure considering the SCF as a canonical
representation of the graph associated with the
control flow diagram. The experimental
evaluation for the metric introduced by Roca in
[21], [22] is based on several individual cases
and is carried out on five different softwares in
order to point out that complexity software
structure measured as their SCF entropy is
proportional to the number of inherent software
errors at the beginning of the debugging.

Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 251

3. Methodology

In this section we introduce a distance semi-
metric between the elements of a software
system, based on a high dimensional
representation of the constituting elements.

In the following we consider a software system
S to be a set },...,,{ 21 nsssS  , where

is ,

ni 1 can be an application class from S or a
method from an application class. An element

Ss is called an entity.

Further extensions of our approach will consider
not only the application classes, methods from
them, but also attributes from the application
classes, modules or software components.

3.1 The vector space model
As we have already mentioned, software
metrics are used as range of measurements
applied to software systems with the intent of
improving the systems [20]. Software measures
(metrics) are indicators describing complexity
of software products and processes. By their
very nature, software metrics describe a
number of complex and high dimensional data
patterns that are able to provide different
characteristics of the software systems under
investigation. Such measures are very useful in
investigating and quantifying key properties of
the systems such as reliability, readability
and maintainability.

In our approach we are focusing on
characterizing each entity from the software
system by a list of relevant features, features that
would represent discriminative characteristics
for the methods and application classes of the
software system. The key features that we are
using for characterizing an entity from the
software system are: Relevant properties (RP),
Depth in Inheritance Tree (DIT), Number of
Children (NOC), Fan-In (FI) and Fan-Out (FO).
Further improvements of our approach will
consider other software metrics that are relevant
in order to decide the quality of the internal
structure of a software system.

In the following we will briefly describe the
above mentioned five components of the vector
that will be used to characterize an entity from
the software system.

Vector Component 1. Relevant Properties
(RP). For a given entity Ss , the first
component rp(s) of the vector associated to s

represents a set of relevant properties of s and
is defined as:

 If s is a method, then rp(s) consists of: the
method itself, the application class where
the method is defined, all attributes from S
accessed by the method, all the methods
from S used by method s, and all methods
from S that overwrite method s.

 If s is an application class, then rp(s)
consists of: the application class itself, all
attributes and methods defined in the class,
all interfaces implemented by class s and
all classes extended by class s.

In considering the relevant properties of an
entity as a component of the vector space
model, we have started from the intuition that
the set of relevant properties would be useful in
defining the dissimilarity between two entities
from S (by considering the properties shared by
the entities).

Vector Co mponent 2. D epth in Inheritance
Tree(DIT). Depth in Inheritance Tree [5], or
DIT, is usually applied for a class and, as its
name suggests, it simply represents the depth of
a given class in the inheritance tree. In [17]
DIT is presented as a value ranging from 0 to a
positive integer. This meant that the DIT of the
root class has the value 0. In our
implementation the DIT of the root class is 1,
although if we take into consideration that in
Java every class has as parent the Object class
then we could say that the DIT of the Object
class is 0.

Consequently, for a given entity Ss , the
second component dit(s) of the vector
associated to s represents the DIT value, and is
a natural number defined as:

 If s is an application class, then dit(s) is the
depth of the application class in the
inheritance tree of the software system S
(ignoring any classes that are not defined in
S, for example the java.lang.Object class).
Application classes at the top of the tree
have a DIT value of 1.

 If s is a method, then dit(s) is the DIT
value of the application class s belongs to.

Vector Component 3. Number of Children
(NOC). The Number of Children, or NOC
metric is one of the metrics presented in [5], [6]
and it is designed specifically for object oriented
systems. Based on the original definition in [5],
this metric can be applied to an object or class,

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 252

and it represents the number of direct
descendants of a class in the class hierarchy.

Consequently, for a given entity Ss , the third
component noc(s) of the vector associated to s
represents the NOC value, and is a natural
number defined as:

 If s is an application class, then noc(s) is
the number of application classes that are
direct children of s in the inheritance tree of
the software system S.

 If s is a method, then noc(s) is the NOC
value of the application class s belongs to.

Vector Components 4 and 5. Fan-In (FI) and
Fan-Out (F O): Both metrics were defined as
complexity measures in [16] and both of them
were originally meant for modules or
procedures. As object-oriented metrics started to
appear, the definition of fan-in and fan-out was
slightly modified, so that they could be applied
to classes, instead of modules. In a simple
definition fan-in of a class is the number of
classes that reference that class, while fan-out is
the number of classes referenced by the class.

In [18], the fan-in and the fan-out of a method
is presented. The definition says that fan-in is
the number of distinct method bodies that
invoke a method and the fan-out is the number
of times a method invokes another methods.

No matter what it is defined for, usually a large
fan-in means a module/class/method that does
simple things that are needed often in other
places, while a large fan-out usually means a
large module/class/method, that does many
things. Having both a large fan-in and a large
fan-out, might be the sign of a poor design.

In our approach, we considered as fan-in of a
class C, the number of attributes of type C in
other classes plus the number of methods in
any other class except C that use an object of
type C. The fan-out of a class C is defined as
the number of distinct classes that have
attributes in class C - including primitive types
- plus the number of distinct classes that are
used in any method of class C.

Consequently, for a given entity Ss , the
fourth component fi(s) of the vector associated
to s represents the Fan-In value, and is a natural
number defined in the following way:

 If s is an application class, then fi(s) is the
number of application classes in the
software system S that use s. This includes

application classes that have an attribute of
type s, or have a method that uses class s.

 If s is a method, then fi(s) is the number of
other methods in the software system S that
invoke method s. When computing fi(s), only
invocations from methods from different
classes than the class of s are considered.

For the entity Ss , the fifth component fo(s) of
the vector associated to s represents the Fan-
Out value, and is a natural number computed
as follows:

 If s is an application class, then fo(s) is the
number of distinct classes from software
system S that s uses. Application class s
uses application class s if s has a field of
type s , or if a method of s calls a method
of s .

 If s is a method, then fo(s) is the number of
methods s calls.

3.2 The distance function
Considering the vector space model defined
above, each entity si, ni 1 from the software
system S will be represented as a 5-dimensional
vector:),,,,(54321 iiiii sssss where

iks)51( k

represents the value (scaled to [0,1]) of the
software metric k (RP, DIT, NOC, FI, FO)
applied to the entity

is .

Consequently, as in a vector space model, the
distance),(ji ssd between two entities

is and

js of the software system will be defined as the

dissimilarity degree between the corresponding
vectors, an adaptation of the Euclidian
distance. This distance is expressed in Formula
(1). We consider that if two entities have no
common relevant properties, their distance is
 , meaning that two entities are not cohesive
enough and should not belong to the same
application class. For generality purposes, we
will consider that the dimension of the vector
associated to an entity

is from the software

system is m, i.e.
is =),...,,(21 imii sss where

)(1 ii srps  represents the set of relevant

properties associated to
is and

iks)2(mk 

represents the value (scaled to [0,1]) of a
software metric applied to the entity

is . In our

approach m = 5 and the considered software
metrics are RP, DIT, NOC, FI, FO, i.e.

Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 253

)(2 ii sdits  ,)(3 ii snocs  ,)(4 ii sfis  ,

)(5 ii sfos  .

1 1 2

21 1

1 1

0

1
. 1 ()

(,)

m
i j

ik jk
i j ki j

i j

if i j

s s
s s

d s s m s s

if s s

otherwise

j

=

ì =ïïïï æ öï Ç ÷ï ç ÷ï ç ÷- + -ï ç ÷ï ç ÷= í Èç ÷çè øïïïï Ç ¹ïïïï¥ïî

å (1)

Considering the dissimilarity measure as
expressed in Equation (1) it is very likely that
the distance d will assign low distances to
cohesive entities that have to belong to the
same application class.

4. Experimental Validation

In order to experimentally validate the distance
semi-metric function introduced in Subsection
3.2, we will focus in this section on showing how
it can be used for automatically identifying a list
of refactorings that would be useful for improving
the internal structure of a software system.

4.1. Automatic refactorings identification
Considering that we can visualize a software
system S as a set of entities (Section 3), a
possible structure of the software system S can
be viewed as a partition of it. A cluster (group
of entities) from this partition corresponds to an
application class from the software system.

Our idea is to identify from the possible
partitions of the set S the partition that reflects a
good internal structure of the software system.
This partition will be identified based on the
distance semi-metric introduced in Section 3
using an algorithm that will be further
explained. More exactly, a partition

},,,{ 21 pKKKK  of S is provided, each

cluster iK from the partition K representing an

application class in the new structure of the
software system. The goal of this re-
partitioning is to obtain an improved structure
of the existing software system. If the newly
obtained software structure is compared with
the original structure of S, a list of refactorings,
which transform the original structure into an
improved one, can be provided.

In order to identify the partition K of the
software system that would correspond to an
improved structure of it, we proceed as
indicated below.

First, the software system S is analyzed in order
to extract from it information needed to
compute the relevant properties of the entities,
as well as the software metrics indicated in
Subsection 3.1. Using the collected data, the
high dimensional representation of the entities
from S is constructed.

The second step is to build the partition K.
After the partition is initialized with the empty
partition, the construction of K is made as
follows. For each method Sm , the
following three steps are performed:

1. We search for the application class
Sc that is closest to m (considering the

distance function d given in Formula (1)),

i.e. cSccmdcmd  ,),(),(application

class, cc  .

2. At this step possible Move Method
refactorings may be identified. If the
method m and the class c found at the
previous step are cohesive (have common
relevant properties), i.e. 1),(cmd , there
are two possibilities:

 If the class c found at the previous step
appears in a cluster k from the partition K
(a cluster corresponding to the application
class c was already created), the method m
is added to the cluster k.

 If there is no cluster in the partition that
contains the class c, a new cluster
consisting of the class c and the method m
is added to the partition K. The goal of this
step is to dispose m into the application
class that is closest to it.

3. If the distance between the method m and
all the application classes from S is  , it
means that m should not belong to any of
the existing application classes from S, and
should be extracted or added in a new
cluster (this cluster will represent a new
application class that has to be created in S
- an Extract Class refactoring). More
exactly, from the set K of clusters that do
not contain application classes existing in S
(i.e. represent new application classes that
have to be added in S) we are searching for
the method m that is closest to m. There
are two situations:

 If K or 1),(mmd (is ), a new
cluster (application class) containing the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 254

method m has to be created and added to
the partition K.

 If the method m that is closest to m was
found in K and is cohesive with m (i.e.

1),(mmd), then method m is added into

the cluster that contains m . This means
that m will be placed in the newly extracted
application class in which its closest
method belongs.

After the partition K was created, we are
searching this partition in order to identify
possible Inline Class refactorings that would be
appropriate. More exactly, SCC  ,
application classes from S, for which

1),(CCd (i.e. C and C are cohesive), we
merge in the partition K the two clusters that
contain C and C . This merging operation
means in fact that application classes C and C
have to be merged in a single application class.

We mention that the refactorings that the
algorithm that was introduced above is able to
identify are: Move Method, Inline Class and
Extract Class [10].

4.2. Results
In order to experimentally validate our proposal
for refactorings identification based on the
distance semi-metric defined between the
entities from the software system, we will
consider two case studies, which are described
in the following subsections.

Each of the systems evaluated in Subsections
4.2.1 and 4.2.2 are written in Java. In order to
extract from the systems the data needed to
compute the high dimensional representation of
the entities, we use ASM 3.0 [2]. ASM is a
Java bytecode manipulation framework. We
use this framework in order to extract the
structure of the systems (attributes, methods,
classes and relationships between all these
entities).

4.2.1 First Case Study: The first case study,
described in this subsection, contains a simple
example to provide the reader with an easy to
follow example of refactorings identification.

Let us consider the Java code example shown
below. The example is taken from [25] and is used
in order to illustrate the Move Method refactoring.

As we have indicated in Section 3, the software
system described above is represented as a set
S = {Class_A, mA1(), mA2(), mA3(),
Class_B, mB1(), mB2(), mB3()}. The actual
structure of the system illustrated in the code
example below can be viewed as the partition

1K of S, },{ 1
2

1
1

1 KKK  , where the cluster 1
1K

contains the entities from the application class
Class_A, and the cluster 1

2K contains the
entities from the application class Class_B:

 1
1K ={Class_A, mA1(), mA2(), mA3()}

 1
2K ={Class_B, mB1(), mB2(), mB3()}

Analyzing the code presented above, it is
obvious that the method mB1() has to belong to
Class_A, because it uses features of Class_A
only. Thus, the refactoring Move Method [10]
should be applied to this method, as indicated
in [25].

public class Class_A {
 public static int attributeA1;
 public static int attributeA2;
 public static void mA1(){
 attributeA1 = 0;
 mA2();
 }
 public static void mA2(){
 attributeA2 = 0;
 attributeA1 = 0;
 }
 public static void mA3(){
 attributeA2 = 0;
 attributeA1 = 0;
 mA1();
 mA2();
 }
}

public class Class_B {
 private static int attributeB1;
 private static int attributeB2;
 public static void mB1(){
 Class_A.attributeA1=0;
 Class_A.attributeA2=0;
 Class_A.mA1();
 }
 public static void mB2(){
 attributeB1=0;
 attributeB2=0;
 }
 public static void mB3(){
 attributeB1=0;
 mB1();
 mB2();
 }
}

Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 255

We show, in the following, how using the
algorithm described in Subsection 4.1, the
Move Method refactoring mentioned above is
successfully identified.

As indicated in Subsection 4.1, the first step of
our approach is to collect data from the system
and compute the multi dimensional
representation of the entities from the software
system. The high dimensional representation of
the entities from the system will be further used
to compute the distance d (Formula (1))
between the entities. These distances (with
three decimals) are given in Table 1. In this
table, for each method we highlight the class
that it is closest to.

From Table 1 the following can be observed:

 The methods mA1(), mA2 (), mA3() are
closer to Class_A than to Class_B. These
means that the methods are correctly placed
in their initial application class Class_A.

 The methods mB2(), mB3() are closer to
Class_B than to Class_A. This means that
the methods are correctly placed in their
initial application class Class_B.

 The method mB1() is closest to Class_A
than to Class_B. These means that the
method should be placed in Class_B,
instead of Class_B, and this will lead to a
Move Method refactoring.

 The distance between Class_A and
Class_B is ∞, meaning that no Inline Class
refactoring will be reported.

 All methods have to be placed in an
existing application class, meaning that no
Extract Class refactoring will be reported.

Consequently, after applying the algorithm
introduced in Subsection 4.1, the newly
obtained partition of the system is

},{ 2
2

2
1

2
2 KKK  , where the cluster 2

1K contains
the entities from the restructured application

class Class_A (also containing the method
mB1()), and the cluster 2

2K contains the
entities from the restructured application class
Class_B (without the method mB1()):

 2
1K ={Class_A, mA1(), mA2(), mA3(),

mB1()}

 2
2K ={Class_B, mB2(), mB3()}

This way, the Move Method refactoring mB1()
to Class_A is correctly identified (as indicated
in [25]).

4.2.2 Secon d Case Study: Our second
evaluation is the open source software
JHotDraw, version 5.1 [12]. It is a Java GUI
framework for technical and structured
graphics, developed by Erich Gamma and
Thomas Eggenschwiler, as a design exercise
for using design patterns. It consists of 173
classes, 1375 methods and 475 attributes.

The reason for choosing JHotDraw as a case
study is that it is well-known as a good
example for the use of design patterns and as a
good design. Our focus is to test how accurate
are the results obtained after applying the
algorithm introduced in Subsection 4.1 in
comparison to the current design of JHotDraw.
As JHotDraw has a good class structure, our
algorithm should generate a nearly identical
class structure.

After applying our algorithm for JHotDraw case
study, only Move Methods refactorings were
identified. In the obtained partition, 20 Move
Method refactorings were obtained: 9
refactorings were incorrectly identified, and
other 11 refactorings may be justified, in our
view (these 11 methods suggested to be moved
provide functionalities similar to the ones
provided by the target class [12], so, in our view,
all these refactorings are acceptable, without
altering the internal structure of JHotDraw). The
names of the methods that were incorrectly

Table 1. The distances between the entities.

 Class_A Class_B mA1() mA2() mA3() mB1() mB2() mB3()
Class_A 0 ∞ 0.329 0.397 0.528 0.471 ∞ ∞
Class_B ∞ 0 ∞ ∞ ∞ 0.482 0.555 0.239
mA1() 0.32 9 ∞ 0 0.361 0.453 0.406 ∞ ∞
mA2() 0.39 7 ∞ 0.361 0 0.596 0.464 ∞ ∞
mA3() 0.52 8 ∞ 0.453 0.596 0 0.444 ∞ ∞
mB1() 0.47 1 0.482 0.406 0.464 0.444 0 0.474 0.471
mB2() 5.49 0.555 ∞ ∞ ∞ 0.474 0 0.567
mB3() 5.5 0.239 ∞ ∞ ∞ 0.471 0.567 0

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 256

proposed to be moved is shown in the first
column of Table 2. The suggested target class is
shown in the second column.

5. Discussion

In this section we aim at providing an analysis
of the approach presented in this paper. The
effectiveness of the distance semi-metric
function introduced in Section 3 in the process
of automatic refactorings identification will be
shown below by comparing it with similar
approaches for which the obtained results are
publicly available.

Seng et al. apply in [24] a weighted multi-
objective search [14], in which metrics are
combined into a single objective function. An
heterogeneous weighed approach is applied
here, since the weight of software entities in the
overall system and refactorings cost are studied.
This approach partially gives the results
obtained on JHotDraw. The advantages of our
approach in comparison with the approach
presented in [24] are as follows. In the technique
from [24] there are 10 misplaced methods, while
in our approach there are only 9 misplaced
methods. Our technique is deterministic, in
comparison with the approach from [24]. The
evolutionary algorithm from [24] is executed 10
times, in order to judge how stable are the
results. The overall running time for the
technique from [24] is about 300 minutes (30
minutes for one run), while our approach
provides the results in about 3 minutes (the
execution was made on similar computers).

The paper [25] describes a software
visualization tool which offers support to the
developers in judging which refactoring to
apply. The authors have considered for
evaluation a simple example that was presented
in Subsection 4.2.1. On this example, the

refactoring proposed by the algorithm
introduced in this paper coincides with the one
given in [25].

In [8] an approach that uses clustering for
improving the class structure of a software system
is introduced. In this direction, a partitional
clustering algorithm, kRED was developed.
Unlike the kRED algorithm, our algorithm also
identifies the Extract Class refactoring.

Considering the results presented above, we
can conclude that our approach in defining a
distance semi-metric based on a high
dimensional representation of the entities from
a software system has potential and further
improvements can lead to valuable results.

6. Conclusions and Future Work

We have introduced in this paper a distance
semi-metric function between the elements
(application classes and methods from the
application classes) of a software system,
distance defined using a metric based high
dimensional representation of the constitutive
elements. An experimental evaluation of this
distance semi-metric is provided, illustrating
that it can be successfully used for improving
the internal structure of software systems by
identifying appropriate refactorings.

Further work will be done in order to
investigate other software metrics that would
be relevant to decide the quality of the internal
structure of a software system and to consider
other principles related to an improved design,
like: Single Responsibility Principle, Open-
Closed Principle, Interface Segregation
Principle, Common Closure Principle [9]. We
will also focus on increasing the granularity
level of the proposed approach, also
considering attributes from the application

Table 2. The incorrectly reported Move Method refactorings for JHotDraw

 Method Target Class
1 DrawApplet.toolDone ToolButton
2 DrawApplication.createColorMenu ColorMap
3 DrawApplet.setupAttributes ColorMap
4 DrawApplet.createColorChoice ColorMap
5 DrawApplication.createEditMenu CommandMenu
6 DrawApplication.createAlignmentMenu CommandMenu
7 DrawApplication.selectionChanged CommandMenu
8 PertFigure.asInt NumberTextFigure
9 PertFigure.setInt NumberTextFigure

Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 257

classes, modules or software components.
Further experiments on real software systems
will be considered for validating the introduced
distance function.

REFERENCES

1. ASAM, R., N. DRENKARD, H. MAIER,
Qualitatsprufung von Software-
produkten, Siemens AG Verlag,
Berlin, 1986.

2. ASM: (ObjectWeb: Open Source
Middleware) http://asm.objectweb.org/.

3. BABAMIR, S. M., Active Program
Analysis using Rule-based Modification
and Aspecta tion, Studies in Informatics
and Control, vol.20 (4), 2011, pp. 381-392.

4. BROWN, J. R., M. LIPOW, The
Quantitative Measurement of Software
Safety and Reliability , Technical Report
TRW Report No. SDP-1776, TRW
Software Series, 1973.

5. CHIDAMBER, S. R., C. F. KEMERER,
Towards a Metrics S uite for Object-
oriented Design , Conference Proceedings
on Object Oriented Programming Systems,
Languages, and Applications, 1991,
pp. 197-211.

6. CHIDAMBER, S. R., C. F. KEMERER, A
Metrics Su ite for Object Orie nted
Design, IEEE Transactions on Software
Engineering, no. 20, 1994, pp. 476-493.

7. CURTIS, B., S. B. SHEPPARD, P.
MILLIMAN, M. A. BORST, T. LOVE,
Measuring the Psychological Complexity
of Software Maintenance Tasks with the
Halstead and McCabe Metrics , IEEE
Transactions on Software. Engineering, no.
5, 1979, pp. 96-104.

8. CZIBULA, I., G. SERBAN, Improving
Systems D esign using a Cluste ring
Approach, International Journal of
Computer Science and Network Security,
no. 6, 2006, pp. 40-49

9. DEMARCO, T., Structured Analysis and
System Spec ification, Software pioneers:
contributions to software engineering,
2002, pp. 529-560

10. FOWLER, M., Refactoring: Im proving
the De sign of Existing Code , Addison-

Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

11. GAMMA, E., R. HELM, R. JOHNSON, J.
VLISSIDES, De sign Patterns:
Abstraction and Reu se of Object-
oriented Design, 2002, pp. 701-717.

12. GAMMA, E., (JHotDraw P roject)
http://sourceforge.net/projects/jhotdraw.

13. GRADY, R. B., Practical Software
Metrics for Project M anagement and
Process I mprovement, Prentice Hall
Press, 1992.

14. GZARA, M., A. ESSABRI, Balanced
Explore-Exploit Clustering based
Distributed Evolutionary Algorithm for
Multi-objective Optimi sation, Studies in
Informatics and Control, no. 20, 2011,
pp. 97-106.

15. HAN, J., Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

16. HENRY, S., D. KAFURA, Software
Structure Metrics based on Information
Flow, IEEE Transactions on Software
Engineering, no. 7, 1981, pp. 510-518.

17. LI, W., S. HENRY, Object Ori ented
Metrics whi ch Predi ct Maintainability,
Journal of Systems and Software, no. 23,
1993, pp. 111-122.

18. MAISIKELI, S.G., Aspect Mining using
Self-Organizing Maps with Method
Level Dynamic Softwa re Metri cs as
Input Vectors , PhD thesis, Nova
Southeastern University, 2009.

19. MORDAL-MANET, K., J. LAVAL, S.
DUCASSE, N. ANQUETIL, F. BALMAS,
F. BELLINGARD, L. BOUHIER, P.
VAILLERGUES, T. J. MCCABE, An
Empirical Model for Continuous and
Weighted Metric Aggregation ,
Proceedings of CSMR ’11, Washington,
DC, USA, IEEE Computer Society, 2011,
pp. 141-150.

20. PRESSMAN, S., Software Engineeri ng:
A Practitioner’s Approach, McGraw-Hill
Education, 2005.

21. ROCA, J. L., An Entropy-based Method
for Compu ting Software Struct ural
Complexity, Microelectronics and
Reliability, no. 36, 1996, pp. 609-620.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 258

22. ROCA, J. L., A New Entropy based
Method for Compu ting Software
Structural Complexity , Technical Report
ARN-PI-2002-8, Autoridad Regulatoria
Nuclear, Buenos Aires, 2002.

23. RUBEY, R. J., R. D. HARTWICK,
Quantitative Measurem ent of Program
Quality, Proceedings of ACM ’68, New
York, NY, USA, ACM, 1968, pp. 671-677.

24. SENG, O., J. STAMMEL, D.
BURKHART, Search-based
Determination of Re factorings for
Improving the Clas s Structu re of
Object-oriented Syste ms: Proceedings of
GECCO ’06, New York, ACM Press,
2006, pp. 1909-1916.

25. SIMON, F., F. STEINBRUCKNER, C.
LEWERENTZ: Metrics ba sed
Refactoring: Proceedings of CSMR ’01,
Washington, DC, USA, IEEE Computer
Society, 2001, pp. 30-38.

