
USING SOFTWARE TRANSACTIONAL MEMORY

IN INTERRUPT-DRIVEN SYSTEMS

by

MICHAEL J. SCHULTZ, B.S.

A Thesis submitted to the Faculty

of the Graduate School, Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Milwaukee, Wisconsin, USA

May 2009

Abstract

Transactional memory presents a new concurrency control mechanism to handle synchro-

nization between shared data. Dealing with concurrency issues has always been a difficulty when

writing operating system software and using transactions aims to simplify matters. This thesis

presents a framework for understanding how interrupt-driven device drivers can benefit from us-

ing transactional memory. A method for integrating software transactional memory (STM) into

an operating system kernel is also developed and applied. This kernel uses STM over hardware

transactional memory (HTM) because HTM requires modifications only implemented in simulated

systems. By using STM, it is possible to build upon existing kernels and deploy operating systems

onto commodity machines with communication peripherals.

At the core is a modernized version of the Embedded Xinu operating system that has been

ported to the Intel IA-32 architecture and modified to use a publicly available, production quality

compiler and STM library available from Intel Corporation. The implementation of the Embed-

ded Xinu kernel required several modifications to make use of the transactions offered by a library

designed for use with user-level threads executing in Linux. Integrating the STM library into the

kernel presents several challenges when dealing with a system that allows interrupts to enter at

any time. By using transactions in device drivers, synchronization can be performed automatically

and with greater granularity than traditional synchronizations methods. This may be used to to re-

duce the jitter—variations in interrupt handling—occurring in interrupt-driven device drivers when

sharing data between the upper and lower halves, however this implementation does not show any

conclusive results.

This thesis discusses and presents the prototype implementation of “Transactional Xinu.”

The prototype runs on standard hardware that exists today and provides a framework for future

experimentation.

i

Acknowledgments

Many thanks are due to the people who have been involved with me and this thesis over the past few

years, so I would like to give thanks to the following people:

• Dennis Brylow, my imperious leader, a great researcher, friend, and advisor who gave me the

opportunity to work on this interesting project;

• Praveen Madiraju and Craig Struble, my two committee members from Marquette who suc-

ceeded in pushing me to finish on time;

• Adam Welc, my external committee member who, despite living two timezones away, pro-

vided crucial support in integrating Intel’s STM library with Embedded Xinu;

• Timothy Blattner, Aaron Gember, Paul Hinze, Adam Koehler, Zachary Lund, Adam Mallen,

Mohammad “Meraj” Molla, Justin Picotte, and everyone else affiliated with the systems lab-

oratory for listening to me and providing 100% awesome entertainment;

• My parents, Charles and Theresa, for offering support when I needed it; my sister and brother-

in-law, Jennifer and Stefan, for giving me a place to sleep when I needed a break; and the rest

of my family for not mocking me too much as I continue my educational endeavors; and

finally,

• Lyndsie Schwanebeck, my fiancée and best friend, for her understanding when I worked late,

constant support, and persistent belief that I could finish successfully and on time.

ii

Contents

List of Figures . iv

List of Terminology . v

1 Introduction 1

1.1 Thesis Statement . 1

1.2 Overview . 1

1.3 Operating Systems . 2

1.3.1 Interrupt-Driven Systems . 3

1.4 Contributions . 4

2 Related Work 6

2.1 Atomic Regions . 6

2.2 Transactional Memory . 7

2.2.1 Hardware Transactional Memory . 8

2.2.2 Software Transactional Memory . 9

2.2.3 Hybrid Transactional Memory . 10

2.3 Operating Systems . 10

2.4 Tools . 11

2.5 Summary of Related Work . 12

3 Framework 14

3.1 Device Driver Structure . 15

3.2 Critical Sections . 16

3.3 Interrupt Handling . 17

3.4 Programming considerations . 19

3.5 Non-Transactional Input/Output . 19

3.6 Summary of Framework . 20

4 Implementation Notes 22

4.1 Original System . 22

4.2 Transactional System . 22

4.2.1 Transactional Library . 23

4.2.2 Interrupt-local storage . 27

4.2.3 Additional Components . 28

4.3 Thread Level Transactions . 28

4.4 Transactional Device Drivers . 30

4.5 Code Size Differences . 31

4.6 Summary of Implementation Notes . 32

iii

5 Performance Analysis 33

5.1 Measurements . 34

5.2 Ethernet Device . 35

5.2.1 Ping Testing Methodology . 35

5.2.2 Timing Test Methodology . 40

5.3 Summary of Performance Analysis . 41

6 Summary and Future Work 43

6.1 Summary . 43

6.2 Future Work . 46

Bibliography 49

A Ethernet Read Source Listing 54

B Ethernet Write Source Listing 56

C Ethernet Interrupt Source Listing 58

iv

List of Figures

1.1 Example of a potentially unsafe memory access 4

1.2 Code from Figure 1.1 in MIPS assembly . 4

3.1 Logical separation of device driver halves . 15

3.2 Circular deadlock caused by incorrect lock acquisition 16

3.3 Jitter introduced by disabled interrupts . 18

4.1 Code segment showing transactional to SGLA semantics 24

4.2 Reader and writer code examples . 25

4.3 POSIX Thread API under Transactional Xinu . 28

4.4 Code snippet without synchronization . 29

4.5 Code snippet using traditional synchronization . 29

4.6 Code snippet using transactional memory . 30

4.7 Transactional version of upper half Ethernet device 30

4.8 Transactional version of lower half Ethernet device 30

4.9 Kernel code size overhead incurred, in bytes . 32

5.1 Transferring the Transactional Xinu kernel to the back-end machine. 34

5.2 Ping results after 100 pings with a 1000 millisecond interval 37

5.3 Ping results after 100 pings with a 500 millisecond interval 37

5.4 Ping results after 100 pings with a minimal interval (flood ping) 38

5.5 Roundtrip ping times measured in milliseconds 38

5.6 Timestamp counter measures for ping with a 1000 millisecond interval 39

5.7 Timestamp counter measures for ping with a 500 millisecond interval 39

5.8 Timestamp counter measures for ping with a minimal interval (flood ping) 40

5.9 Jitter Reduction measured in micro-operation cycles 41

v

List of Terminology

2PL Two-Phase Locking—A locking protocol that ensures the order of lock acqui-

sition/release cannot cause deadlock.

ACI Atomicity, Consistency, and Isolation—A subset of the ACID properties that

TM system provide.

ACID Atomicity, Consistency, Isolation, and Durability—Properties that ensure a

transaction is executed reliably.

ANSI American National Standards Institute—Defines standards for various prod-

ucts, such as the C programming language.

API Application Programming Interface—A set of routines provided by the oper-

ating system and software libraries.

BIOS Basic Input/Output System—First stage of booting a personal computer, can

run very basic services.

CAS Compare-and-Swap—An operation that atomically compares a single known

value with the stored value and swaps in a new value if there is a match.

DCAS Doubleword Compare-and-Swap—A CAS operation that works on two ma-

chine words.

DHCP Dynamic Host Configuration Protocol—A mechanism to automatically con-

figure a network interface.

DMA Direct Memory Access—A mapping of physical memory addresses that is

shared between the operating system and hardware devices.

ELF Executable and Linkable Format—Standard format for storing binary files.

HTM Hardware Transactional Memory—Transactional memory that is imple-

mented entirely in physical hardware.

IA-32 Intel Architecture, 32-bit—The 32-bit version of Intel’s standard architecture,

sometimes called x86, x86-32, or i386.

ILS Interrupt-Local Storage—A private block of memory that every interrupt han-

dler can access.

I/O Input/Output—Communication between a computer and external manipulator.

LL/SC Load Linked/Store Conditional—A set of opcodes that guarantees an atomic

update of a memory location.

micro-op Micro-operation Cycle—A subdivision of an operation that the processor rec-

ognizes.

opcode Operation Code—A single machine language instruction that specifies what

operation to perform.

O/S Operating System—The interface between hardware and application level

code.

vi

POSIX Portable Operating System Interface for Unix—A collection of operating sys-

tem standards, available through an API.

SGLA Single Global Lock Atomicity—A transaction semantic that allows a transac-

tion to operate as though there is a single global lock in the system.

SIMD Single Instruction, Multiple Data—Allows a streaming processor to execute a

single instruction over many separate pieces of data, in parallel.

SSE Streaming SIMD Extensions—An additional set of instructions on the IA-32

architecture that enables vector operations.

STM Software Transactional Memory—Transactional memory that is implemented

entirely in software libraries.

TFTP Trivial File Transfer Protocol—Simple tool to send files across a network.

TLS Thread-Local Storage—A private block of memory that every thread can ac-

cess.

TM Transaction Memory—A concurrency control mechanism that allows a set of

memory instructions to occur in an atomic fashion.

TSC Timestamp Counter—A performance measure on IA-32 that counts the num-

ber of micro-operation cycles since the processor reset.

1

Chapter 1

Introduction

1.1 Thesis Statement

Software transactional memory can be used in interrupt-driven device drivers as a method to auto-

mate and provide fine-grained synchronization between the upper and lower halves.

1.2 Overview

In this thesis, a discussion of using software transactional memory (STM) in interrupt-driven device

drivers is presented. This is substantial because software transactional memory has not (to this

author’s knowledge) been used at the operating system level before. One of the primary goals of

this research is to implement a prototype operating system augmented with STM on actual hardware

that can be purchased at the time of writing. Prior work has used hardware transactional memory to

manage concurrency at the operating system level. These works, while novel, make use of hardware

simulators and still rely on spinlocks in certain instances. One difficulty that arises from using

transactions in interrupt-driven systems is non-linear code execution, where the operating system

can arbitrarily change the code that the processor is executing.

This research presents three major outcomes. First, there is a discussion of how operating

systems can benefit from applying a software transactional memory (STM) library to interrupt-

driven device drivers. Transactions were developed with multi-core systems in mind, but their

properties also present a natural union with device driver structure in uniprocessor systems. Sec-

2

ond, there is an explanation of methods for integrating an existing Linux based STM library into

a non-Linux operating system kernel and drivers. While STM introduces a new set of problems

to operating system design, it can minimize the difficulty in thinking about device drivers while in-

creasing the scalability of operating system code as computing moves toward multi-core processors.

Finally, there is a presentation of the performance results of using software transactional memory in

an interrupt-driven device driver versus the non-transactional equivalent. These results demonstrate

that transactional device drivers can be used without a significant impact to performance times.

The overall structure of this document is as follows.

• Chapter 1 is an introduction to the topics presented in this document and outlines the contri-

butions of this work.

• Chapter 2 provides an overview of related work.

• Chapter 3 presents a framework for handling atomic sections in normal execution mode, in-

terrupt handling, and input/output (non-revocable) portions of the O/S.

• Chapter 4 details the specifications and implementation process for “Transactional Xinu.”

• Chapter 5 provides results and a discussion of the performance of the prototype system.

• Chapter 6 summarizes this work and discusses future research and contributions.

1.3 Operating Systems

An operating system (O/S) is software that runs at the lowest level of a computer once the system

has completed the boot process. This software consists of two important sections: device drivers

and the application programming interface.

A driver is the software that facilitates interaction between high-level O/S functions and

low-level hardware communications. As such, the driver is broken down into two parts: the upper

half and the lower half. The lower half interacts directly with the physical hardware and the upper

half presents a standard programming model for an application developer to use to interact with the

device. Drivers must communicate incoming data from the lower half to the upper half and vice

versa for outgoing data.

3

The application programming interface (API) provides the standard high-level methods that

an application programmer can use as a means to interface with the O/S, to interact with a user of

the system, or to obtain data that has been generated for the application to use.

1.3.1 Interrupt-Driven Systems

One class of operating systems is called interrupt-driven systems, which includes almost every

modern system from desktop computers to embedded routers to computerized thermostats. These

are capable of receiving signals from outside the processor and causing the operating system to

change the current path of execution to the code for handling interrupts. The operating system is

able to ignore an incoming interrupt if the O/S is processing something that cannot be interrupted.

However, the incoming interrupt request may be more important than the non-interruptible process

the O/S is currently executing, and this behavior can lead to a crucial interrupt handler being deferred

for an arbitrary amount of time.

In operating system terms jitter refers to the variations in the delay of interrupt handling

caused by deferral. Jitter should be avoided in systems programming because it adds unpredictable

behavior to the system. Unpredictable behavior is particularly troublesome in real-time systems,

when results must be achieved within some fixed amount of time; jitter in interrupt handling may

cause a necessarily predictable system to miss deadlines.

One common avoidance method is to minimize the length of time and/or amount of code

that must disable interrupts in the system. This takes the time and effort of a “good” systems pro-

grammer who may still make errors in situations that are difficult to reason about or in a sufficiently

complex system. Since the definition of a “good” systems programmer is loose, computer scientists

aim to find more concrete solutions to these problems to reduce programmer errors. One obvious

solution is to simply never disable interrupts in the O/S, but this can cause problems in certain cases;

the simple piece of code in Figure 1.1 exemplifies an error that is likely to occur with that approach.

On line (1), the programmer declares the variable our var to be global (i.e. it can be

modified by any process at any time). On line (4), that variable is then incremented by 1. From a

high level, this function may look safe. However, if the corresponding machine code (Figure 1.2)

runs on a multi-threaded or multi-processing O/S, there is the possibility of a contention error. This

4

(1) global integer our_var = 1

(2)

(3) function increment(void)

(4) our_var++

Figure 1.1: Example of a potentially unsafe memory access

(1) .data

(2) .globl our_var

(3) our_var: 0x0001 # stored at memory location 0x4c

(4)

(5) .text

(6) increment:

(7) lw s0, 0x4c(zero) # load ‘our_var’ into register ‘s0’

(8) addiu s0, s0, 1 # increment value in ‘s0’ by 1

(9) sw s0, 0x4c(zero) # save register ‘s0’ to ‘our_var’

(10) j ra # return to calling functions

Figure 1.2: Code from Figure 1.1 in MIPS assembly

error is referred to as a “race-condition” where two separate instances of the code try modifying the

same variable at the same time with unpredictable results.

In line (3), our var is created with a (fictional) location of 0x4c in main memory. In

order to perform the increment operation, the processor must load the variable from main memory

into a register, increment the register, and finally store the updated value back into main memory.

In the interrupt-driven paradigm, if an interrupt is raised anywhere between lines (7) and (9), it is

possible that the value stored in location 0x4c has changed. If this happens when the code from

Figures 1.1 and 1.2 complete, the value saved in memory is not correct.

1.4 Contributions

This thesis provides a discussion about using software transactional memory in the interrupt-driven

device drivers of an operating system. Software transactional memory (STM) provides a simple

interface for handling concurrency issues between separate threads of execution while still allowing

interruptions. Adding software transactions to an operating system allows the exploration of new

5

transactional technology in combination with existing operating system constructs with the goal of

finding a balance between the two. Specifically, by using STM in device drivers, it may be possible

to reduce jitter introduced by entering critical sections of code that have disabled interrupts. This

allows the arrival time of interrupts into the system to be more predictable—a very useful property

when dealing with system deadlines.

This theory is examined by developing a method for integrating a publicly available, pro-

duction quality STM library—designed for Linux—into a small embedded operating system. This

author ports Embedded Xinu—a modernized revision of the Xinu kernel—to the IA-32 architec-

ture and augments the necessary components to transform the system into “Transactional Xinu.”

Transactional Xinu is a proof-of-concept prototype that is designed to actually run on real hardware

and provides a strong framework for ongoing and future experiments on integrating transactional

memory with core operating system components.

Finally, there is a direct evaluation of jitter reduction in asynchronous device drivers using

STM-based language constructs to eliminate interrupt-blocking critical sections in the upper half

of driver code. This evaluation is done through various performance measuring techniques to show

differences between transactional and non-transactional code.

6

Chapter 2

Related Work

Concurrency control mechanisms are used to avoid inconsistency in shared data. In practice, the

most common method of protecting shared data is to lock it, execute a read-modify-write sequence,

and finally release the lock [11, 15, 22]. This forces any other process to wait until it can acquire

the lock. In a uniprocessor system, waiting is not a significant problem because the operating

system executes each process in a serialized fashion and continue progress. However, in the device

drivers of multi-core systems the problem becomes more pronounced because every core must cease

execution of device driver code and wait for the lock/unlock cycle to complete. It is in this context

that lock-free implementations of concurrency control must be considered [26, 29, 34, 51].

2.1 Atomic Regions

Several methods for dealing with atomic regions of code have been developed over the years.

The most popular is the use of the proberen (P -, wait) and verhogen (V -, signal) operations of

semaphores [15]. These P - and V -operations provide a basis for monitor and mutual exclusion

synchronization by acquiring and releasing locks as needed. Mutual exclusion, semaphores, and

monitors can be considered as traditional synchronization mechanisms that provide the semantics

needed to protect shared data from being accessed by multiple threads in the system. However,

the P - and V -operations introduce problems such as deadlock, priority inversion, and an increase

in programmer responsibility for correct code. A deadlock situation occurs when the programmer

attempts to acquire two different semaphores in two processes in the opposite order, thus preventing

7

either process from continuing. Typically this is avoided through careful programming practices

(such as always acquiring locks in a predefined order). Priority inversion is a much more cunning

problem that occurs when a low priority process holds a lock that a high priority process must ob-

tain before it can continue. Typical implementations of semaphores allow a low priority process to

take processing time away from a high priority process. This falsifies the system invariant that at all

times the highest priority process is executing. To avoid this scenario, priority inheritance protocols

were developed [16, 47]. These allow a low priority process to be temporarily given a higher prior-

ity so the semaphore can be released and given to the higher priority process. While these methods

hold true to the properties of the system, they do not run the way the programmer intends with the

original high priority process taking precedence.

The above practices are sub-optimal solutions to the problems of deadlock and priority

inversion. By using traditional synchronization as a way to lock and unlock data, the programmer

must take the time to carefully acquire and release all the locks before reading or modifying the data.

This greatly constrains the granularity of accessing data; if shared data is accessed, the programmer

must create and acquire a lock for any read or write operation. If this is not done, then the data

becomes corrupt and the system is unstable or incorrect. To prevent this the programmer can denote

an atomic region that can be preempted at any point and safely restart from the beginning [3, 53].

The idea of preemptible atomic regions is important because it allows programmer to assume that

contention does not occur; but, if contention does arise, then the atomic operations are unseen until

the entire region of code is allowed to occur atomically. This has been shown to reduce jitter and run

faster when used with varying priority processes within the Java virtual machine [32,53]. However,

since these are build using the Java virtual machine, they cannot be directly applied to the operating

system, as it does not have garbage collection or other high level operations.

2.2 Transactional Memory

A transaction (in computer science) was first defined in the realm of database management sys-

tems [18] as a way to safely update records in a shared environment. This is done be keeping track

of changes and, at commit time, ensuring that all shared data still has the expected values and up-

dates each value. Moreover, a transaction was defined to have the following properties: atomicity,

8

consistency, isolation, and durability (or the ACID properties) [17, 35]. Atomicity means that the

process executes one or more operations that are indivisible from each other and occur “instan-

taneously” (or appear so) [36]. In a transactional system, this means that an atomic block either

commits the changes or aborts the changes. The consistency property guarantees that a transaction

takes a current consistent state and moves to a new consistent state. Isolation means that a transac-

tion does not depend on or affect a separately executing process in the system. Finally, durability

makes the transaction irrevocable once the commit has completed.

2.2.1 Hardware Transactional Memory

Herlihy and Moss brought the idea of arbitrary sized transactions into the systems community as a

way to safely update shared data in a multiprocessor system [29]. Their simulated implementation

showed promising results for hardware transactional memory (HTM) but relied on extending the

underlying hardware to support the system. A similar implementation by Stone et al. extended the

existing single word load-linked/store-conditional (LL/SC) operations into a multiple reservation

system that effectively enabled multi-word atomic operations [51].

These hardware solutions place several restrictions on transactional memory. One such

restriction is that the size of an object is bounded by hardware constraints. Several authors have

developed potential solutions to this problem [2, 21, 40, 42].

Ananian et al. describe an “Unbounded Transactional Memory” system that allows a trans-

action to grow as large as virtual memory. However, their implementation does not allow a trans-

action to grow as large as virtual memory and restricts the transaction size to that of physical mem-

ory [2]. Rajwar et al. created a virtual transactional memory system that is transparent to the

user [42]. This system provides a consistent programming model to hide the details of hardware

implementation from the software developer; this is promising because the programmer no longer

must be concerned with the implementation details of the underlying system. Though these systems

provide the functionality to have large transactions, which an O/S needs, they are still built using

hardware simulators.

Hammond et al. developed a coherency and consistency protocol for transactional memory

that extends existing hardware systems, in a simulator [21]. This system allows safe input/output

(I/O) ‘transactions’ by guaranteeing that an I/O transaction never be allowed to revert to a previous

9

state. Moore et al. use a log-based system to track old values of data to provide safe reversion

of arbitrary sized transactions [40]. Each of these systems differ in implementation of version

management and conflict detection algorithms. Again, these systems each make extensive use of

hardware simulators to implement extra opcodes that do not exist normally.

2.2.2 Software Transactional Memory

Hardware implementations of transactional memory have only existed as simulations; also, they

are either bounded in transaction size or require a complex, inflexible system. As a solution to

these problems, Shavit and Touitou proposed a software transactional memory (STM) system [48].

With this STM, the machine must implement the LL/SC operations—everything else to handle

a transaction is done at the software level. As with hardware implementations, using software

transactions is a non-blocking operation which allows software written using transactions to scale

up to multi-core systems.

From this point there have been many improvements to software based transactional mem-

ory [1, 12, 14, 27, 28, 50]. Herlihy et al. built the first dynamic STM system to allow the size of

a transaction to be defined during the run of a program. Both Saha et al. [1, 41, 45] and Harris

et al. [23–25] have presented several papers exploring blocking STM implementations that are still

quite efficient. Though the use of a blocking scheme seems to go against what transactional memory

was developed for, the authors argue that by integrating their blocking implementation with a run-

time scheduler and contention manager they are able to guarantee progress by aborting the transac-

tion of another process if lock acquisition fails. This system also introduces either word- or object-

sized conflict detection, allowing for less overhead when creating a transactional object because

only one ownership of the object must occur instead of obtaining ownership of every item within

the object. Dice et al. introduced improvements to how the system handles commits and version

management and additionally implemented their STM system to work with malloc/free to allow

an open memory system where transactional code can use the same memory as non-transactional

code [14].

An article in Communications of the ACM discusses why STM has not become widely

adopted by the programming community [8]. While some of the conclusions—lack of support for

legacy code, baseline performance, and compiler instrumentation—are valid, a recent paper by Ni et

10

al. has provided some answers to the proposed problems [41]. These authors discuss the design and

implementation of supporting legacy code, improving performance, and language constructs, for the

Multi-Core RunTime STM system they developed [1,45]. In this McRT-STM environment, several

modes of operation have been built to allow the safe integration of legacy code with STM-aware

systems.

2.2.3 Hybrid Transactional Memory

Unsurprisingly, STM requires higher time and space requirements when compared to HTM. How-

ever, HTM needs hardware that has only existed in simulated environments and would need trans-

actional semantics integrated into physical components of the system. Also, HTM would impose

a certain level of machine-specific knowledge on the programmer, unless a software based virtual

system is in place. As a compromise, several groups have developed hybrid transactional systems

which take the advantages of both HTM and STM systems [9, 13, 33, 39]. Each of these systems

puts a primary emphasis on performing the transaction at the hardware level to provide for fast

transactions. If the hardware fails for some reason (large number or size of transactions occurring

in parallel) then the system falls back to a software solution. While these systems provide the ad-

vantages of both HTM and STM they also get the disadvantages: code size must now incur the cost

of software overhead and physical systems must have costly hardware.

In a similar line of thinking Saha et al. propose a purely software transactional system

and add architectural acceleration to create a faster STM system [46]. This solution is interesting

because it allows an existing STM system to remain unchanged while providing acceleration for

common portions of library code. This gives a consistent system that can be improved transparently

as improved hardware becomes available.

2.3 Operating Systems

Developing an operating system and associated structures utilizing transactional memory that are

scalable and can perform on the same level as current systems is not a trivial task. One goal for

these projects is to use lock-free structures so the kernel can execute on multi-core machines with-

out running into a deadlock situation or becoming an inefficient, serially executing system. One

11

example of this is the Synthesis kernel that makes use of specialized data structures and the atomic

compare-and-swap (CAS) operation of the system [37]. At the time there were only a few atomic

operations available, so they fit the most common data structures (stacks, queues, and linked lists)

into one- or two-word pieces of data and used the atomic CAS or double-CAS operations. While the

novelty of this system demonstrated the possibility of lock-free operating systems, the difficulty of

being able to use arbitrarily sized structures remained a large challenge to scalable operating system

structure.

A similar idea appears in the Cache Kernel implemented by Greenwald and Cheriton [19].

Here the authors emphasize the usage of non-blocking synchronization to mutate O/S structures and

the use of double-CAS operations to make this a feasible task. This work differs from the Synthesis

kernel because Cache tries to optimize against a general linked list structure instead of O/S specific

structures, allowing application programmers to program against a more generic interface. Both

the Synthesis and Cache kernels differ from Transactional Xinu in that they concentrate on using

a single operation to atomically change one- or two-word sized memory locations. Unlike these

kernels, Transactional Xinu allows an arbitrary amount of processing and data modification to occur

in an atomic section.

In the transactional realm, Rossbach et al. have implemented TxLinux—a version of Linux

that makes use of a hardware TM system [44]. This is the most comprehensive version of a

transactional-based operating system to date; the system makes use of “cooperative transactional

spinlocks” (cxspinlocks) to deal with managing I/O operations within a transaction. Cxspinlocks fall

back to standard locking mechanisms so the I/O operations can complete safely and successfully.

This system is based on MetaTM, the underlying hardware simulator that implements a hardware

transactional memory design to work with TxLinux.

2.4 Tools

The core of Transactional Xinu is a stable, modern implementation of the Xinu operating sys-

tem [4, 5, 7, 10]. Xinu has a long history in a university setting. Dr. Douglas Comer developed it

at Purdue University over 25 years ago on the DEC LSI-11 for teaching operating systems courses.

From there, Xinu made its way into research projects, commercial appliances, and has been ported

12

to several different architectures including the VAX platform, Sun-2 and Sun-3 workstations, and

finally the Intel i386 architecture. After a period of disuse, the Embedded Xinu project was born

with the fundamental idea of maintaining simplicity and updating the source code to ANSI C com-

pliance. With this updated version, embedded MIPS based wireless routers were chosen as the

target architecture; later this author built a modernized port for the Intel IA-32 architecture based

on Embedded Xinu.

By using the minimalist design philosophy and extending key O/S components, Transaction

Xinu builds up new device drivers and modifies interrupt handling routines. Now, Xinu interacts

with an existing transactional memory library and allows the exploration and analysis of effects a

STM has on O/S design.

For the transactional memory implementation, this author has chosen a publicly available,

production quality STM library and C/C++ compiler developed by Intel Corporation [31]. This

provides a well written, stable STM library. By using these freely available components future

implementations can be build and extended with relative ease.

2.5 Summary of Related Work

With the transactional model of sharing data becoming more prolific, computer scientists are inter-

ested in seeing what advantages and disadvantages result [30]. This thesis is specifically focused

on using transactional memory as a means of reducing the use of traditional locks at the operating

system level. Of the several types of transactional memory systems available, this system makes

use of the software transactional memory system built at Intel [1,41,45,54]. This software solution

provides a working implementation that can be used on current generation machines that are readily

available without the use of a hardware simulator. Also, the library provides a mode that can exe-

cute a serialized transaction (for use with I/O operations), and provides an obstinate mode for use

in interrupt handlers that occur in such a way that no other transaction can execute in parallel.

Using this version of Intel’s STM library raises a few issues with using a non-standard

operating system such as Embedded Xinu [5, 7] because the library is targeted towards the Linux

operating system. By developing a system to show that Intel’s library can be adapted to work with an

embedded operating system, this author aims to demonstrate the possibility of using STM with only

13

slight programming overhead. This implementation of Transactional Xinu is significantly different

than TxLinux which builds a simulated hardware transactional memory model and adds extensions

to the Linux kernel. This author has developed Transactional Xinu to work with hardware and

software solutions that exist today and that can be implemented on any platform that complies with

the hardware requirements of Intel’s library.

14

Chapter 3

Framework

The goal of this thesis is to develop an operating system kernel that supports device drivers with

software transactional memory as a concurrency control mechanism. Specifically, this system is

aimed at interrupt-driven device drivers and jitter caused by entering and exiting critical sections. A

critical section is a piece of code that accesses shared data in the system and must not be accessed

by two or more threads simultaneously. Within a critical section any action or state change in the

system cannot be seen by a separate thread of execution during the changes, as this may cause the

system to become unstable. These critical sections present an interesting problem with respect to

the handling of interrupts. When the kernel enters a critical section, some action must be taken to

prevent shared data from being accessed by separate threads of execution; in an interrupt-driven

system it is possible for the kernel to switch threads of execution at any point.

In a transactional system there is the possibility that input/output operations occurring

within a transaction are interrupted. This presents a dangerous situation. When a separate physical

device has already begun reading and processing shared data, if a transaction fails these changes to

shared data cannot be safely rolled back (so called “irrevocable” operations). A rollback refers to

the act of reverting the state of memory to one that existed before any actions of the transaction had

taken place. Rollbacks can be implemented by keeping a log of changes that have been made or by

not modifying memory until a commit operation takes place.

This chapter discusses options for handling critical sections in interrupt-driven devices

drivers. Building upon these ideas, this author discusses how to apply transactional memory con-

cepts to these device drivers to avoid the pitfalls of irrevocable operations.

15

Figure 3.1: Logical separation of device driver halves

3.1 Device Driver Structure

Typical device drivers are separated into two logical halves: an upper half and a lower half. Inter-

action between the two halves occur as seen in Figure 3.1.

In the upper half of the device driver thread-level API calls are available to create a simple

and standard way for the programmer to interact with device drivers. The programmer calls read

and write on specific instances of a device which results in a transfer of data either from or to the

device driver. Since read and write calls are done at the thread-level, the execution is temporally

decoupled from the interrupt-driven lower half; thus, the shared data can be accessed at any point

during execution.

In order for a thread to send data through the device, several steps must take place. The

data begins by entering the device driver from the upper half. It is placed in a buffer shared between

the two halves of the driver and the state of the driver is changed to reflect the amount of data now

available to the lower half. When an interrupt enters the system the data can be transferred out of

the shared buffer and sent via a hardware interface. This process is reversed when data arrives—the

data is copied from the physical hardware to a shared buffer. The driver state is updated. Then,

when the programmer wants to read data it is copied from the shared buffer into a user buffer. And

again the driver state is updated. It is within the device driver that data is shared between the two

16

Instruction Sequence 1 2

A B
t1

1 2

A B
t2

1 2

A B
t3

1 2

A B
t4

co
nt

ex
t s

w
itc

h

co
nt

ex
t s

w
itc

h

co
nt

ex
t s

w
itc

h

t1: Thread 1 acquires lock A

t2: Thread 2 acquires lock B

t3: Thread 1 requests lock B

t4: Thread 2 requests lock A

Figure 3.2: Circular deadlock caused by incorrect lock acquisition

separate halves and concurrency issues must be handled to maintain a correct state and provide the

correct data to either half when needed.

3.2 Critical Sections

As touched on at the beginning of this chapter, critical sections of code exist when the machine

must appear to execute multiple lines of code in a single operation. While the actual processor takes

several instruction cycles to complete different operations, from the perspective of the kernel and

other threads, the operations occur instantaneously or atomically within system. At the completion

of a critical section, the kernel maintains a consistent state—no illegal or unknown states exist.

The critical section occurs in isolation so that no other thread of execution is able to see or use an

intermediate state. While not applicable to the systems community, durability ensures that once the

data is committed it is not possible to return to a previous version of the data. In database systems,

this collection is referred to as the ACID properties [20]; from an operating systems perspective

only the ACI properties are necessary to guarantee the system remains in a safe and known state

upon completion of the critical section.

In essence, a critical section requires some sort of concurrency control mechanism to ensure

that the kernel does not enter an inconsistent state. Existing concurrency controls—including mutual

exclusion, semaphores, and disabling/restoring interrupts—can provide the ACI properties in certain

cases.

In the normal case when the kernel is switching between threads of execution, mutual ex-

clusion and semaphores allow critical sections to follow the ACI properties because there is no way

for a thread to execute code in a critical section when another thread has locked that data. However,

this paradigm introduces the possibility of deadlock in the system if two threads acquire separate

17

locks in the opposite order. For example, thread 1 acquires lock A, followed by thread 2 acquir-

ing lock B. Now thread 1 wants lock B and thread 2 wants lock A, but neither can proceed since

the other has the necessary data lock. This instance of deadlock can be seen in Figure 3.2, where

the circles represent threads, squares represent locks, an arc from a lock to a thread shows lock

acquisition, and an arc from a thread to a lock is a request. Mutual exclusion also brings priority

inversion into the system by allowing a low priority thread to be given processor time. When a low

priority thread has acquired a lock that a high priority thread wants, the high priority thread yields

the processor to the lower priority thread. Moreover, when interrupts are added into a system, it is

possible for a thread of execution to acquire a lock, get interrupted, and have the important interrupt

handler yield to the thread holding the lock. Alternatively, the handler could not defer to the thread,

fail to acquire the lock correctly, and violate the ACI properties. Either of these cases result in an

unpredictable system that cannot guarantee timeliness or even correctness. While there are ways

to avoid these problems—like acquiring locks in a consistent order [52] or implementing a priority

inheritance scheme [16, 47]—there are still problems when dealing with a system that can handle

interrupts.

For an interrupt-driven system, it is clear that mutual exclusion brings many problems and

greatly increase the complexity of the system in order to protect a critical section. To ensure the

ACI properties, the kernel must use a more aggressive tactic—disabling interrupts. By disabling

interrupts when entering a critical section, it is guaranteed that nothing can cause the processor to

change threads of execution while executing code in a critical section. Once the critical section is

completed, the kernel can restore the interrupts and replay any that were delayed while processing

the critical section. While this solution works, it introduces interrupt jitter and does not scale well

as multi-core processors enter into the computing field.

3.3 Interrupt Handling

As mentioned, interrupt-driven systems complicate matters in handling concurrency issues, since

using locking synchronization methods introduces various problems and disabling interrupts intro-

duces jitter into the system. Jitter is created when there are variations in the amount of time the

system takes to respond to interrupts entering the system. If interrupts are disabled during critical

18

Figure 3.3: Jitter introduced by disabled interrupts

section execution, jitter occurs when an interrupt is raised but cannot begin processing until the

critical section completes. This can be seen in Figure 3.3, where interrupts consistently arrive ev-

ery two time intervals, but the completion time is not predictable due to critical code execution at

arrival time. In an interrupt-driven system, the handling of interrupts is of utmost importance since

a delay in handling could result in out-of-date or incorrect data. To avoid this issue the kernel can

implement a fine-grained interrupt system that only disables certain interrupts when entering cor-

responding critical sections. Having fine grained control only minimizes the number of interrupts

that experience jitter and increase the complexity of the code the programmer has to think about and

develop.

Exploring software transactional memory (STM) as a concurrency control mechanism for

interrupt-driven device drivers is an intriguing idea. STM offers a different method of concurrency

control that allows the programmer to annotate the source code by inserting an “atomic” block

around code in a critical section. By using an atomic block in a critical section, the STM library

provides the assurance that the ACI properties are obeyed upon the completion of the transaction.

This assurance can be extended to interrupt-driven system with ease. If an interrupt enters the

system, it is implicitly given the highest priority so it is allowed to execute through to completion.

By using this fact, it is possible to reason that the entire handler can be labeled as a critical section.

Thus, if the interrupt handling code is annotated as an “atomic” block, it too maintains the ACI

properties. Additionally, when the interrupt handler begins execution, it works with the STM library

to invalidate any competing transactions that occur in the upper half of the driver.

Unlike mutual exclusion, STM does not transfer execution away from the interrupt handler,

so the interrupt still completes in a predictable amount of time. Using STM also does not require

the programmer to disable interrupts when entering a critical section. This allows the kernel to

begin handling an interrupt immediately when the interrupt enters the system. Combining these two

19

observations, this thesis argues that using software transactional memory eliminates a major source

of jitter from interrupt-driven device drivers.

3.4 Programming considerations

Adding transactional memory to any piece of software comes with some programming considera-

tions. One appealing aspect of transactions is that the programmer no longer has to carefully reason

about how the concurrency control works, or if the system can deadlock under certain conditions.

The STM library and compiler inserts the code and synchronize data at runtime. The programmer

is then freed from dealing with tedious synchronization issues and can concentrate on developing a

better system.

Another difference is that transactions provide automatic and more fine-grained concur-

rency control to the programmer that traditional synchronization. If a programmer needs to access

shared data, then a lock for that data must exist and the system must acquire that lock before reading

or writing the data. With transactional memory, the locks exist at the machine-word level and do not

need to be acquired when a read occurs. This allows a write transaction to acquire only the locks that

are needed for that block of code, not a lock on the entire object or a region of memory. Also, when

contention does occur on a lock the TM system is able to execute faster since it does not have to

wait for the thread holding the lock to release allowing the current critical section to begin execution.

This contrasts with traditional synchronization where an overzealous lock protects more data than

needed in the critical section. When lock contention does arise under traditional synchronization,

the thread must wait until the lock is released before it can enter the critical section.

3.5 Non-Transactional Input/Output

One problem that manifests by using transactions with interrupt-driven device drivers is input/output

(I/O) operations. I/O operations make use of direct memory access (DMA) space that shares mem-

ory addresses between the operating system and a physical hardware device. This makes for more

efficient data transfer because the processor does not have to write every word to the physical hard-

ware, but can instead use memory to write to a common space. Once the data is written to DMA

20

space, the kernel can send a signal to the physical hardware to begin using the data stored at a

specified memory location.

In a transactional system, this causes problems if a transaction fails during the commit phase

because the library rolls back any changes made. If the physical hardware had already been notified

that new data was available and began reading when the rollback occurs, there are no guarantees that

the data is correct. This has long been a problem with merging transactional memory and operating

systems, because one of the common places for shared data is in device drivers that share memory

space with independent hardware systems. When an interrupt enters the system it is implicitly given

the highest priority and does not allow other threads to run. Thus, any conflicting transaction in the

system have already begun and no new conflicts can arise during interrupt processing.

From this fact, all that the STM library needs to know is that when an interrupt handler

enters the critical section, it must allow the transaction to succeed and invalidate all other related

transactions. If both the upper and lower halves of a device driver are written with critical sections

protected by an atomic block, then in an interrupt-driven device driver the upper half does not lock

the data or delay interrupts allowing the interrupt to begin processing immediately. In the lower

half of the driver, the atomic block always beats other competing transactions and invalidate any

transactions occurring in the upper half when the interrupt entered. This means that interrupts can

be handled immediately by the operating system, thereby reducing the jitter for the device driver,

while still performing correctly with thread-level API calls that are interacting with the upper half

of the driver. As a consequence of reducing the jitter and adding a STM library, the time it takes

to perform upper half reads and writes, as well as lower half sending and receiving, is increased.

Despite this slow down, the increase in system predictability and simplification of reasoning about

device driver concurrency make software transactional memory a useful tool for interrupt-driven

systems.

3.6 Summary of Framework

This chapter has discussed various concurrency control mechanisms that are used in operating sys-

tem design and how those traditional methods work with respect to an interrupt-driven device driver.

A device driver consists of two halves—an upper and lower—that interact with each other through

21

shared memory buffers and state information. In this device driver the shared data must be protected

against inconsistency. This is done through critical sections of code that must complete atomically,

end in a consistent state, and occur in isolation. By disabling interrupts in device driver critical

sections these properties are maintained, but this action does not scale well and introduces jitter into

the system.

Transactional memory is a different form of concurrency control that has not been explored

in this context and can guarantee that the ACI properties are maintained. This thesis has presented

a method to use STM-based atomic blocks to coordinate between the upper and lower halves of the

device driver. Because the interrupt-driven lower half always wins if a transaction is occurring in

the upper half at the same time as the lower half, the interrupt still succeeds. Since the interrupt

succeeds, the upper half must rollback the changes and try again—this is acceptable because the

upper half does not cause the lower half to wait, thereby theoretically reducing interrupt jitter.

22

Chapter 4

Implementation Notes

This chapter presents specific information regarding the integration of the Embedded Xinu operating

system with a publicly available, production quality STM library and compiler from Intel [31]. The

Intel STM library was designed for software running under the Linux kernel so several modifications

must be made to Embedded Xinu to mimic the expectations of the runtime library.

4.1 Original System

At the core of Transactional Xinu is the Embedded Xinu kernel [5, 7]. This thesis makes use of

the Xinu kernel because it is an excellent research platform with under 20,000 total lines of code

making it simple to understand and extend, while still providing a rich environment for experi-

mentation. As a system, Embedded Xinu has a lightweight thread model with a shared memory

space, a fully-preemptive multitasking priority scheduler, synchronization primitives, inter-process

communications, and a variety of device drivers.

4.2 Transactional System

Extending the base system to include transactional components requires careful design and imple-

mentation. Since Transactional Xinu revolves around a software transactional memory implemen-

tation, the first step was to find a STM library capable of dealing with low level operating system

tasks. This author chose a publicly available, production quality STM library and compiler from

23

Intel because the library offers several modes of operation and is capable of working with legacy

code (code that was not written with transactions in mind). Because this library was designed for

Linux, Transactional Xinu must be capable of supporting the threading functionality and transparent

thread-level storage similar to Linux.

4.2.1 Transactional Library

Intel’s STM library and compiler were selected because they offer different modes of operation:

optimistic, pessimistic, obstinate, and serial [41]. Optimistic transactions make the assumption that

no conflict occurs during the lifetime of the transaction, but if contention arises a rollback provides

the correctness guarantees required of the library. Conversely, a pessimistic transaction must assume

a conflict occurs and take precautions against such a case (like typical locking systems). The Intel

STM library is the first STM implementation to allow both these modes of operation at the same

time. Additionally, there is an obstinate mode that allows certain transactions in the system to

be stubborn. If an obstinate transaction conflicts with a non-obstinate transaction the contention

manager lets the obstinate transaction win. Lastly, serial mode allows integration with legacy and

input/output code.

In Transactional Xinu, serial mode allows interrupt handlers to take advantage of certain

properties in the STM library. As mentioned, the serial mode of transaction handling exists for

legacy (non-transactional) functions to be used in a transaction. This ensures that global variables

used in the legacy code safely update without risking data inconsistencies with other transactions.

Once a serialized transaction begins execution, it runs through to completion—even if another trans-

action competes for the shared data.

Single Global Lock Atomicity

Intel’s library provides single global lock atomicity (SGLA) semantics to all transactions that are

in the system [38, 41]. SGLA semantics create an equivalence between every tm atomic code

block and the same program with every atomic section occurring after a global lock was acquired.

This SGLA equivalence property can be seen in the code segments found in Figure 4.1. Thus, a

program that uses transactions behaves the same as if each atomic block were guarded by a single

24

(1) tm atomic { (1) wait(global lock);

(2) Statements; −→ (2) Statements;

(3) } (3) signal(global lock);

Figure 4.1: Code segment showing transactional to SGLA semantics

global lock. By doing this, the library can guarantee that if the program is race free under a single

global lock, then the transactional equivalent is also race free. It is important to understand precisely

what this property is saying. The guarantee is only valid if the program is race free under a single

global lock, if a race condition exists—say between transactional and non-transactional code—

then no guarantee is made. While the transactional code may see consistent values for shared

variables, the non-transactional code accessing the same variable sees intermediate or inconsistent

values. Moreover, the non-transactional code can violate the isolation property of a transaction by

modifying data the transaction accesses. Thus, Intel’s STM library and compiler can guarantee that

no race conditions are introduced to the code, assuming there were no race conditions before.

Obstinate Transactions

Similar to serialized transactions, Intel’s STM library provides an obstinate mode. An obstinate

transaction does not make use to the SGLA properties; rather it tells the library that it should win

over all other transactions in the system. This allows a long running transaction to be preferred over

conflicting transactions in the system. Under the default configuration the library automatically tries

to switch a transaction that has been aborted 100 times to obstinate mode. However, the library also

provides an interface to allow the programmer to declare a transaction as obstinate immediately.

Transactional Xinu makes use of this during the interrupt handling phase through the use of Intel’s

binary interface between the compiler and library. This can be seen in Appendix C beginning

on lines 28, 61, and 100. By causing the library to switch the transaction to obstinate mode, the

Transactional Xinu interrupt handler is able to beat any other transaction in the system.

Versioning and Logging Properties

Read versioning and undo logging are used by Intel’s STM library for handling transactional reads

and writes [41, 45]. Read versioning works as follows: the reader makes sure no writer owns the

25

Reader code

(1) global integer our_var

(2) local integer my_var

(3)

(4) atomic

(5) if (our_var == 1)

(6) my_var = our_var + 1

(7) else

(8) my_var = 1

Writer code

(1) global integer our_var

(2)

(3) atomic

(4) our_var = our_var + 1

Figure 4.2: Reader and writer code examples

write lock, it then adds the lock-word to its read set, stores the version number, and finally, upon

commit the reader validates that the version numbers in its read set have not changed. Taking

Figure 4.2 as an example code base, when the atomic section begins our var is read with a lock-

word version of 2 and added to the read set {our var : 2}. Similarly, when a writer acquires a lock

it adds the version number to its write set and when the lock is being released an updated version

number is written to the lock. Using Figure 4.2 as the base, the atomic block gets our var at

version 2 and add the lock-word to its write set {our var : 2}. Now, assume the reader loads the

value of our var for the if statement, then is delayed to let the writer commit a new version of

our var; when the reader returns to processing and tries to commit, it fails. This is caused by the

version of our var increasing after the writer makes the commit, then when the reader attempts to

commit it sees that the version number stored in its read set is out of date and the transaction fails.

This read versioning, write locking system works because if a write occurs after a thread has

read the data it is invalidated at commit time since the version number monotonically increases with

every write. By using read versioning as opposed to reader locks the library is able to perform faster

since a reader does not need to update the lock word during a read. Also, if the reader becomes a

writer, there is no need to release the reader lock and acquire a writer lock. The use of undo logging

gives the STM library a faster commit path since values do not need to be copied from a private

buffer to shared memory. This trivializes the read after write case because the STM does not need

to intercept a memory instruction and provide a value from some private memory; instead, it can

simply let the read occur in physical memory and wait until commit time to invalidate any data.

26

Two Phase Locking

Another interesting property of Intel’s STM library is that it makes use of a strict two-phase locking

(2PL) protocol for its contention manager [45]. Strict 2PL means that every read, write, and unlock

action is covered by a shared lock or exclusive lock, this ensures that a transaction maintains the

atomicity, consistency, and isolation properties described in Chapter 3 [18]. This is different than

other STMs that are designed to be completely non-blocking [21]. In this case, 2PL means that

the STM makes a mapping of each memory location to a unique lock, then when a commit takes

place the library must acquire all the necessary locks. The mapping of every accessed memory

location to an associated lock and the action of acquiring these locks can be seen in both code size

increases and the execution time of running Transactional Xinu. The mapping is built at runtime

and consumes approximately 4 megabytes of memory to hold the entire table. Note that this size

increase is not shown in the code size of the compiled image discussed in Section 4.5, and it is not a

trivial amount of space. Keep in mind that the library has also not been carefully crafted to minimize

spacial requirements. Since the runtime must also acquire all the locks associated with a running

transactions write set, the execution time of transactions is increased. So, while it is acceptable to

write transactional code by simply placing every contended function within an atomic block, this

greatly increases the runtime since every piece of shared data that is accessed must acquire a lock.

Transactional Xinu makes the best effort to minimize the amount of memory mutating code inside

a transaction so the number of locks to acquire before a commit is small.

Though the 2PL approach taken by Intel seems to have several performance hits, it greatly

simplifies the library code and provides a few interesting benefits. For example, if an interrupt

handler is waiting for a commit lock that is held by another thread, then the interrupt handler can

ask the contention manager to abort the competing thread’s transaction and safely continue. By

having a centralized contention manager, normal blocking problems can be avoided and a runtime

scheduler can be used to handle conflicts. Deadlock, however, can still be problematic since a

transaction waits for locks to be released before continuing and a particularly stubborn transaction

may hold the lock for an extended period of time. Intel’s STM acknowledges this and has devised

a timeout scheme such that a transaction waits a finite amount of time for a lock to be released and

then aborts [45]. While this may seem dangerous—as it can lead to situations where a transaction

27

incorrectly aborts—the database community has shown that this risk is minimal. Gray and Reuter

showed that the probability of a single transaction entering a deadlock is approximately nr4/4R2,

where n is the number of processes, r is number of records accessed, and R is the total number of

records in the system [18].

From these properties, Intel’s STM library is able to make data conflicts appear as lock

contention. When a reader or writer attempts to access shared memory that another transaction is

using, it finds that a write lock has been acquired and a conflict arises upon commit. Thus, when

a conflict occurs the contention manager is able to determine what thread can complete and which

must wait.

4.2.2 Interrupt-local storage

While Intel’s STM library provides several useful properties, it was designed to work on user-

level processes which presents some problems working with kernel-level tasks. Under Linux, a

programmer has a segment of memory for “thread-local storage” (TLS). This segment is unique to

every active thread on the system and provides a simple way to maintain a variable that is global

at the thread (not process) level. Intel’s STM library makes use of TLS to maintain a transaction

descriptor that identifies what transaction is active in the thread. Specifically, with every thread

context switch, Linux updates the segment registers to point to a portion of memory that only the

active thread can access. With Transactional Xinu, the same behavior must be matched. To do this,

every thread control block has a segment of memory available to the thread via the GS register, so

when a context switch occurs the old value is discarded and the new thread’s memory segment is

loaded.

While this form of TLS provides a safe method of maintaining a unique value in a known

variable to a user-level thread it does not interact well with interrupt handling. To integrate STM

with interrupt-driven device drivers, proper interrupt handling is essential. Under Transactional

Xinu the interesting behavior is not in user-level transactions—it lies in processing transactional

interrupts. In the normal case, when an interrupt is raised, the current thread state is pushed onto

the stack, and processor execution jumps to a specific interrupt handler. However, the segmentation

registers are not updated when an interrupt begins processing because it adds a significant amount

of overhead to the interrupt handler, which degrades system performance.

28

Library Call Function

pthread key create create a thread specific data key.

pthread setspecific set a key value unique to the currently executing thread.

pthread create create a thread (for testing)

pthread join wait for thread termination (for testing)

Figure 4.3: POSIX Thread API under Transactional Xinu

In order to avoid this pitfall, Transactional Xinu is augmented with “interrupt-local storage.”

Under this scheme, when an interrupt enters the system, the state of the currently executing thread

is pushed onto the stack like before. The system also switches a single segmentation register, GS,

to use a known memory block. This memory block is declared statically, and is unique to every

interrupt request the system can handle. This allows the interrupt context to be distinct from the

thread context as far as the transaction is concerned. Since each interrupt request maintains a private

memory block, a system that allows prioritized interrupts is still able to make use of transactional

device drivers because no memory is shared between interrupt handlers. Once the interrupt handler

completes execution, the segmentation registers are reverted to the original thread-local storage

context.

4.2.3 Additional Components

The Intel library also relies on several POSIX standard functions for accessing thread variables, be-

ginning, and ending a thread. Since one of the major goals of this thesis is to maintain a small kernel

size, these functions are implemented as simply as possible—providing wrapper functions to exist-

ing operating system functions. As a result, Transactional Xinu includes a compact POSIX thread

API while maintaining its lightweight threading model. These library calls appear in Figure 4.3.

4.3 Thread Level Transactions

As a demonstration of correctness three simple programs were developed to test different types

of concurrency control. For each snippet of code seen in Figures 4.4, 4.5, and 4.6, two threads are

created with each executing the same code with only the id value differing. In Figure 4.4, absolutely

no synchronization is used between the competing threads. While this may perform quickly, an

incorrect result is always generated (by construction of the example). In Figure 4.5, synchronization

29

(1) for (i = 0; i < 100; i++) {

(2) local_counter = global_counter;

(3)

(4) if (id % 2 == 0) {

(5) yield();

(6) global_counter = local_counter + 1;

(7) } else {

(8) global_counter = local_counter - 1;

(9) }

(10) }

Figure 4.4: Code snippet without synchronization

(1) for (i = 0; i < 100; i++) {

(2) wait(counter_lock);

(3) local_counter = global_counter;

(4)

(5) if (id % 2 == 0) {

(6) yield();

(7) global_counter = local_counter + 1;

(8) } else {

(9) global_counter = local_counter - 1;

(10) }

(11) signal(counter_lock);

(12) }

Figure 4.5: Code snippet using traditional synchronization

between the two threads is done using mutual exclusion to lock the critical section of code while

modification of the global variable is performed. This slows the system down, but guarantees a

correct answer every time. In Figure 4.6, software transactional memory is used to automatically

perform synchronization. Again, this slows the system down from the overhead caused by the

automatic synchronization of global data; however, it shows that Intel’s STM library and compiler

produces and executes correctly under Transactional Xinu.

30

(1) for (i = 0; i < 100; i++) {

(2) __tm_atomic {

(3) local_counter = global_counter;

(4)

(5) if (id % 2 == 0) {

(6) yield();

(7) global_counter = local_counter + 1;

(8) } else {

(9) global_counter = local_counter - 1;

(10) }

(11) }

(12) }

Figure 4.6: Code snippet using transactional memory

(1) __tm_atomic {

(2) packet = eth_ptr->input[eth_ptr->start];

(3) eth_ptr->start = (eth_ptr->start + 1) % ETH_BUFFERLEN;

(4) eth_ptr->count--;

(5) }

Figure 4.7: Transactional version of upper half Ethernet device

4.4 Transactional Device Drivers

When writing transactional device drivers, the two halves (upper and lower) must be constructed

with critical sections offset with tm atomic. A simplified example, showing a code snippet

from the upper half of a transactional device driver can be seen in Figure 4.7, while the lower half

is in Figure 4.8. The lower half of the driver must make use of transactional blocks to invalidate the

memory locations referred to in upper half code. A complete listing of the transactional Ethernet

(1) __tm_atomic {

(2) eth_ptr->input[eth_ptr->start + eth_ptr->count] = packet;

(3) eth_ptr->count++;

(4) }

Figure 4.8: Transactional version of lower half Ethernet device

31

read, write, and interrupt handlers appear in Appendices A, B, and C, respectively. These listings

are stripped of extraneous comments. The only comments appearing show differences between the

transactional and non-transactional versions.

One thing to bear in mind is that any function call in a critical region of normal system

code or interrupt code must be re-instrumented with transactions in mind. This is necessary because

the runtime library must be able to both properly schedule each transaction and keep track of what

memory locations have been invalidated during the course of a transaction. If the compiler detects

a function call that has not been instrumented with transactions, it automatically generates code to

tell the runtime library that this transaction should be serialized, so as to not allow conflicts to occur.

If this type of code is generated in the upper half of a device driver, the system is incorrect since the

upper half is serialized and forces the lower half to wait until it completes. Thus, upper half code

must be completely transactional so the transaction never becomes serialized, and when an interrupt

enters it does not have to wait. Within the interrupt handling code, transactional code should execute

in obstinate mode so any non-interrupt code does not take priority over the interrupt handler. This

ensures that I/O operations are not reverted when they should not be.

With this in mind, every function call and incidental function call that occurs while in a

critical section was examined in both the upper and lower halves of the device driver. From this

point, every function that can be called within a transaction was built with an additional attribute

(tm callable) to tell the compiler that both a non-transactional and transactional version should

be built. The non-transactional version is used outside of device driver code and run at normal

speeds, while the transactional version is used when called from an atomic block and executes code

to invalidate memory locations.

4.5 Code Size Differences

Adding software transactional memory, and all the changes it entails, does increase the overall

kernel size, as summarized in Figure 4.9. Originally, the kernel is approximately 342 kilobytes for

the stripped ELF encoded image. Once the STM library and compiler generated code was added to

the image, the size jumped to 527 kilobytes—over a 50% code size increase. This increase is not

insignificant, especially with respect to resource-constrained embedded systems, but it should be

32

Non-STM STM Increase %

raw kernel image 365,628 595,251 229,623 62.80%

stripped kernel image 351,048 540,504 189,456 53.97%

excluding STM library (170,869 bytes)

raw kernel image 365,628 424,382 58,754 16.07%

stripped kernel image 351,048 369,635 18,587 5.29%

Figure 4.9: Kernel code size overhead incurred, in bytes

noted that the library is of production quality and has not been optimized for embedded systems. If

the STM library is ignored and only the compiler generated code is counted, the code size increase

is only around 5%.

This implementation of Transactional Xinu is intended as a proof-of-concept demonstration

that an STM-aware kernel can reduce interrupt jitter with negligible runtime overhead. As future

work, tuning the STM library and compiler for embedded applications could allow the code size

and memory overheads to be reduced to acceptable values.

4.6 Summary of Implementation Notes

Transactional Xinu is the first O/S designed to work with a publicly available, production qual-

ity software transactional memory library implementation. This differs from other transactionally

aware operating systems by using STM instead of a simulated HTM implementation. Transactional

Xinu required several modifications of the Embedded Xinu kernel to complete the build process.

To accommodate Intel’s STM library and compiler, this author implemented a small POSIX thread

API and thread-local storage. For thread-local storage to work with interrupt-driven device drivers,

this author added “interrupt-local storage” to provide correct transaction identifiers during interrupt

handling. Once the runtime environment is configured, the compiler needs special instrumentation

for function calls occurring in an atomic block. This instrumentation tells the compiler to create two

versions of a function: one to work with non-transactional code and one to work with transactional

code. By adding this special instrumentation, the amount of space the kernel takes on the platform

has increased, although the majority of this increase is seen in the runtime library and not additional

code overhead.

33

Chapter 5

Performance Analysis

One major emphasis of Transactional Xinu was to develop a transactional system that runs on real

hardware that is available today. This differs from other transaction-based systems that have been

developed using simulators to build efficient hardware solutions that do not exist in a usable form.

As such, there must be recognition of the hardware that was used for building the implementation

(front-end) and the hardware used for running the implementation (back-end).

Transactional Xinu was developed on a front-end machine running Linux and having the

associated GNU compiler collection and toolchain. To build the Xinu kernel, the Intel C/C++

STM Compiler, Prototype Edition 2.0 was used. This compiler is used in place of the standard gcc

compiler and makes use of the GNU linker (ld). Once the compiler collects all the C and assembler

source files, it generates a complete (unstripped) kernel image in ELF format. This image is then

run through the GNU strip command to reduce the size and compressed using the standard gzip

algorithm. From there, the stripped and compressed kernel file is inserted into a Linux bootstrapping

program and is placed in a TFTP folder for transfer to the back-end machine. The front-end machine

is running an up-to-date version of Fedora 8 Linux with a kernel version of 2.6.21.7-3.fc8xen.

Intel’s STM library requires a processor that supports the Intel IA-32 architecture (also

known as x86 or x86-32) with streaming SIMD extensions (SSE). As a back-end system, this role

was filled with a mid-model Pentium 4 processor (“Northwood”) clocked at 3.0 GHz without hyper-

threading technology and based on the NetBurst architecture. This system is equipped with a stan-

dard asynchronous serial port and device driver for user interaction. Additionally, the system has a

100 megabits per second Ethernet device and driver for use with high-speed I/O operations.

34

Figure 5.1: Transferring the Transactional Xinu kernel to the back-end machine.

In order to run Transactional Xinu on the back-end system there is a bootstrapping process

that begins with the stripped and compressed kernel built on the front-end machine. This process

of building and transferring the Transactional Xinu kernel is summarized in Figure 5.1. When the

system first boots the BIOS chains off to a netboot bootloader, which uses DHCP to lease a network

address and downloads the Linux bootstrapping program in the TFTP directory. Once the program

is in place, it uncompresses the kernel image and begins execution of Transactional Xinu. After this

point the only code running on the system is that of Transactional Xinu, no BIOS calls or Linux

code is used beyond the initial bootstrapping process.

For the rest of this chapter there is discussion of how measurements are gathered and re-

ported. An analysis of a simple program that uses transactional memory for synchronization of

a single global variable follows. Next, a description is presented of how testing was done for an

interrupt-driven device driver and how performance was measured and taken along with a presenta-

tion and discussion of the results. Finally, there is a review of the performance of the system with

both thread-level contention and interrupt-driven contention.

5.1 Measurements

One of the challenges of performing tests on a real system is that it is difficult to monitor perfor-

mance at various levels of operation. Since a goal of Transactional Xinu was to target a existing

hardware system, these difficulties were overcome by using a combination of on-chip performance

measures, kernel level data, and some results from external test data.

35

Part of the Intel NetBurst architecture includes a 64-bit built-in performance counter acces-

sible through the readtsc (read timestamp counter) opcode. This counter is reset to zero when the

processor receives a reset signal and increments once for every micro-operation that the processor

executes. A micro-operation is defined as sub-division of each opcode of the Intel IA-32 instruc-

tion set, including every no-op that occurs. From a programming point of view, this performance

counter provides a high-granularity, monotonically increasing number that can provide a sense of

time spent between timestamp counter reads. Within the operating system, there are counters that

keep track of how long a thread has been running (in microseconds) and a counter that keeps track

of how long the kernel has been running (in hundreds of microseconds). External measures include

the minimum, maximum, average, and mean deviation or the round-trip time of a ping packet.

5.2 Ethernet Device

5.2.1 Ping Testing Methodology

Testing Transactional Xinu under more realistic conditions was done by performing several different

ping tests. These ping tests show how quickly the system is able to perform an interrupt-driven

receive, user-level read and write, and finally transmit the response back to the host. Performance

measurements are taken at four separate points during the execution of device driver code:

• RX TSC occurs during the receive phase of interrupt handling, when the packet enters the

machine and raises an interrupt.

• READ TSC happens in the upper half of the device driver and shares data with RX TSC to

move the data to the user buffer.

• WRITE TSC also happens in the upper half, but is instead sharing data with the transmission

portion of the device driver.

• TX TSC is the final portion of transmission in the lower half of the device driver.

Each measure is taken in the same place for both the non-transactional and transactional

versions of the kernel.

36

From the operating system perspective, the device driver is executing at the thread level, but

within a single system process. The operating system is running in protected mode but applies a flat

memory model, so no segmentation or virtual memory is used. The only difference between threads

of execution from a memory prospective is the changing of the GS register to point to a “private”

memory block for thread- and interrupt-level storage. While any kernel thread is able to access the

private data, no thread purposefully exploits this detail.

Due to the nature of the system, the data gathering occurs during execution and stores the

results in statically allocated memory locations until it is requested. This reduces the overhead

of performing 64-bit calculations, while in an interrupt handler, to a minimum. Once testing is

complete, the data is transferred from the back-end machine to the front-end machine via serial

port. By doing this, the interrupts that are triggered during testing are limited only to the Ethernet

device and timer interrupt. The timer interrupt occurs every 1/10 of a millisecond with minimal

overhead; it does not update the segment registers and does not occur during an Ethernet interrupt.

An Ethernet interrupt is raised when a packet is received from the physical line and placed in a

shared receive buffer, and another interrupt is raised once the device completes sending a packet to

inform the operating system that it can reallocate the shared transmit buffer.

Testing is done by using a front-end machine to send ping packets to the back-end machine

on a private, closed network. Each test represents the average value (time in milliseconds or micro-

operation cycles) over the course of 100 ping packets. In all cases every ping packet was both sent

and received by the front-end machine.

Results

Results from the ping tests as seen from the front-end machine running ping are shown in Fig-

ures 5.2, 5.3, and 5.4 with ping intervals of 1000 milliseconds, 500 milliseconds, and under a flood

ping, respectively. Numeric data is presented in Figure 5.5 with data averaged over several runs.

These results show a small, expected overhead in the STM version of the code. From an external

client’s perspective, processing time in the STM version only increases by (on average) 45 thou-

sandths of a millisecond.

Similarly Figures 5.6, 5.7, and 5.8 show the results of the timestamp counter performance

measure at ping intervals of again 1000 milliseconds, 500 milliseconds, and under flood ping, re-

37

min avg max mdev

measure

m
il

li
se

co
n

d
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4 Average (Non−STM)

Average (STM)

Figure 5.2: Ping results after 100 pings with a 1000 millisecond interval

min avg max mdev

measure

m
il

li
se

co
n

d
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4 Average (Non−STM)

Average (STM)

Figure 5.3: Ping results after 100 pings with a 500 millisecond interval

spectively. As can be seen from the results, in all cases the STM kernel takes longer to complete than

the non-STM version. The additional overhead of a segment register switch to interrupt-local stor-

age, plus the overhead of updating the transaction accounting information, guarantees that Transac-

tional Xinu implementation experiences a slightly longer, but predictable lag to complete interrupt

processing.

38

min avg max mdev

measure

m
il

li
se

co
n

d
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4 Average (Non−STM)

Average (STM)

Figure 5.4: Ping results after 100 pings with a minimal interval (flood ping)

1 packet per second stream

min avg max mdev

Without STM 0.254 0.749 1.262 0.289

With STM 0.286 0.817 1.479 0.304

STM increase 0.032 0.068 0.217 0.015

2 packets per second stream

min avg max mdev

Without STM 0.213 0.706 1.198 0.291

With STM 0.273 0.768 1.292 0.290

STM increase 0.060 0.062 0.094 -0.001

ping flood (max speed)

min avg max mdev

Without STM 0.557 0.879 1.070 0.054

With STM 0.609 0.885 1.025 0.051

STM increase 0.052 0.006 -0.045 -0.003

Figure 5.5: Roundtrip ping times measured in milliseconds

Since the micro-operation cycles can vary amongst Intel processors (as the measure is de-

pendent on the internal clock speed of the system) it should be noted that on the back-end machine

the time it takes to execute 100,000 micro-operation cycles is about 33 microseconds. On av-

erage, this means it takes about 66 microseconds longer to execute the interrupt handler than in

non-transactional code. This fixed overhead favorably compares with what has been eliminated—

interrupt jitter resulting from the expense of disabling interrupt in the critical sections of upper half

39

RX_TSC READ_TSC WRITE_TSC TX_TSC

critical region

m
ic

ro
−

o
p

 c
y

cl
es

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Average (Non−STM)

Average (STM)

Figure 5.6: Timestamp counter measures for ping with a 1000 millisecond interval

RX_TSC READ_TSC WRITE_TSC TX_TSC

critical region

m
ic

ro
−

o
p

 c
y

cl
es

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Average (Non−STM)

Average (STM)

Figure 5.7: Timestamp counter measures for ping with a 500 millisecond interval

code of the drive to prevent the interrupt-driven lower half from running while mutating shared data

and driver state.

Thus, while the number of micro-operation cycles executed in lower half processing of the

STM system has predictably increased, both external and internal timing measurements show that

the total overhead adds only a few fractions of a millisecond to round-trip time and processing in all

cases.

40

RX_TSC READ_TSC WRITE_TSC TX_TSC

critical region

m
ic

ro
−

o
p

 c
y

cl
es

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Average (Non−STM)

Average (STM)

Figure 5.8: Timestamp counter measures for ping with a minimal interval (flood ping)

5.2.2 Timing Test Methodology

Measuring the jitter in interrupt handling is extremely difficult in a real system; hardware counters

simply cannot track this kind of information, and having interrupts disabled in critical sections, by

definition, makes it impossible to interrupt and record arrival times. Additionally, many practical

interrupt sources cannot be developed to generate precisely timed requests, and internal software

measuring can distort jitter and lag measurements by adding directly to interrupt handling code.

In order to observe the effects of STM-based jitter reduction, a lightweight timestamping

mechanism was added to the head of the interrupt handler to record the time of arrival for each

interrupt generated, and a system to provide a precisely timed stream of packets to the Ethernet

device was developed. This timestamping mechanism is based off the readtsc opcode, and reads

the timestamp counter, place the 64-bit value in an array of interrupt arrival times, and continue pro-

cessing the interrupt. As a packet generator, an embedded networking device running a specialized,

non-STM version of Embedded Xinu was used to create a stream of network packets with precise,

periodic hardware clock timing and minimal NIC buffering. With a known period between packet

transmissions on a directly connected, closed LAN, the arrival time variance was measured by the

timestamp difference in inter-packet arrival times on the back-end machine under both a non-STM

and STM version of the Xinu kernel.

41

Average Minimum Maximum Std. Dev.

Non-STM 30552911.53 30525638 30582946 13847.91

STM 30553291.98 30534954 30576856 13223.17

Difference 380.45 316 -6090 -624.74

Figure 5.9: Jitter Reduction measured in micro-operation cycles

Results

As mentioned, the data is gathered using Intel IA-32 micro-operation cycles as measured by the

back-end system. The results presented in Figure 5.9 show the average, minimum, maximum, and

standard deviation of the difference of inter-packet arrival times. Across hundreds of these precisely-

timed packets, the STM-enabled Ethernet driver show a negligible increase in lag—approximately

one thousandth of a percent—but a more meaningful 4.5% reduction in standard deviation. This

demonstrates an end result of a reduction of interrupt jitter with very little overhead. Unfortunately,

this reduction does not show a statistically significant difference from the original system. This is

based on an upper one-tailed F-test using the null hypothesis that the standard deviations are equal,

α = 0.05, and a sample size around 180.

However, it should be noted that the Ethernet driver can still experience jitter caused by

other portions of the system disabling interrupts. Transactional Xinu only has the Ethernet device

driver instrumented with transactions. Other device drivers still disable and restore interrupts, but

during testing these drivers should only run a small amount of time. The timer interrupt is still active

during testing. Though it does not take much overhead, it does execute every 100 microseconds and

cause Ethernet interrupts to be deferred. Other non-driver critical sections of the operating system

still disable and restore interrupts when needed, though again, these should not execute frequently

during testing. Additionally, while the testing is done on a closed network, it still exists in the

physical world where collisions and transient congestion can delay packets for short periods of

time, causing slightly inconsistent packet arrival times.

5.3 Summary of Performance Analysis

Measuring performance on a real system is difficult because inserting separate physical performance

evaluators between hardware components to take timing measurements is expensive and may skew

42

results. This thesis has developed low overhead methods to measure the performance overhead

and jitter associated with interrupt arrival times. Several different methodologies were developed

and implemented to gather the data. These include using the on-chip timestamp counter, internal

operating system clock time, and externally calculated round-trip times. By placing the internal

measures in key portions of code the differences in running non-transactional and transactional code

can be seen. While it is not surprising that the transactional form of code takes more time to execute

on the system, what Transactional Xinu aims to examine is the jitter (or variability) introduced by

disabling interrupts versus using transactions in critical sections of code. The Transactional Xinu

kernel and these experiments have shown that is is possible to develop a kernel using software

transactional memory with interrupt-driven device drivers and that the transaction-aware kernel is

able to perform with only small overheads and with slightly less variance than the non-transactional

kernel.

43

Chapter 6

Summary and Future Work

This thesis has presented a discussion of various transactional memory systems, their relations with

operating system structure, a framework for integrating transactional memory with the operating

system kernel, implementation notes for developing Transactional Xinu from Embedded Xinu, and

an analysis of the performance results within Transactional Xinu. In this chapter a brief summary

of what has been discussed and shown is presented, highlighting the contributions of this work, and

at the conclusion is a discussion of future work that has been made possible.

6.1 Summary

Various transactional memory systems have been developed over the past two decades based on the

idea of database transactions [17, 29]. These original transactional memory systems were imple-

mented at the hardware level and in simulated environments. However, fabrication of the hardware

is both expensive and forces the system to have an upper bound on both the size and number of

transactions that are live in the system. Several hardware/software hybrid systems have been de-

veloped in order to get around the space restrictions, but these physical systems are still built in

simulation. Other researchers have developed purely software-based transactional memory systems

that have no space limitations and can be used on hardware that exists today [28, 45, 48]. These

systems run with slightly higher overhead than their hardware based counterparts, but over time

these overheads can be minimized by developing more efficient algorithms, or by leveraging as-yet-

unavailable hardware acceleration for STM [1, 46, 49].

44

Transactional Xinu uses a publicly available, production quality version of Intel’s C/C++

Compiler and associated software transactional memory library as described in [1,41,45,54] is used.

This software based solution provides a working implementation of transactional memory that runs

on any Intel IA-32 processor with SSE enabled. As this is an entirely software system, no hardware

simulators need to be used to run the code. Intel’s STM library provides several features that are

relevant for operating system structure, such as the serialization of transactions that call legacy code,

an obstinate mode of operation, and the ability to switch from optimistic transactions to pessimistic

transactions.

It should be noted that this is not the first time integrating transactional memory has been

tried. In 2007, Rossbach et al. implemented TxLinux by extending the Linux kernel to use cxspin-

locks and their MetaTM hardware transactional memory system [44]. TxLinux uses hardware trans-

actions when possible, but falls back to spinlocks and other synchronization primitives when deal-

ing with stubborn pieces of code. Other attempts have been made to reduce or eliminate the use

of blocking synchronization from the operating system. These can be found in the Synthesis and

Cache kernels [19, 37]. Synthesis makes use of the atomic compare-and-swap (CAS) and double-

CAS (DCAS) operations by building up operating system structures to fit in one- to two-word sized

memory chunks. This novel approach demonstrated the feasibility of a lock-free kernel, but was

restricted to structures that were able to fit into only a few word-sized regions. The Cache ker-

nel followed a similar approach, but aims to make it possible for general linked list structures to

perform atomic operations. Again, this approach makes use of the CAS and DCAS operations so

several restrictions still existed.

Transactional Xinu is built to use software transactions that allow arbitrarily sized data

structures to be updated atomically. Because this system makes use of a freely available STM li-

brary targeted for the Linux platform, modifications had to be made to the kernel to integrate the

library properly. This version of Xinu was based off of an IA-32 port of Embedded Xinu and ex-

tended with a small POSIX thread API and “interrupt-local storage.” Interrupt-local storage (ILS)

is a version of thread-local storage that allows a unique instance of a global variable be available to

every thread running in a process, and a unique instance for every interrupt handler. ILS is distinct

to Transactional Xinu as a way to allow a software transaction running in an interrupt to be different

from the transaction running at the thread-level. In a typical STM platform, only thread-level trans-

45

actions exist and ILS is not needed. Additional code instrumentation is needed to interact with the

STM-aware C/C++ compiler that Intel provides. For critical sections of code to run atomically they

must be enclosed in a tm atomic block of code. Any function calls that occur within the atomic

block must also be modified. Since certain functions can exist either inside or outside of an atomic

block they are amended with a tm callable attribute that informs the compiler to generate both

a transactional and non-transactional version of the function.

In addition to the modifications made to the Xinu kernel, device drivers must be instru-

mented with transactions in mind. A device driver consists of two halves—an upper and a lower—

that interact through shared memory buffers and state. Traditionally, this shared memory is protected

by disabling interrupts, mutating the data, and restoring interrupts—this ensures that atomicity, con-

sistency, and isolation are maintained in the state of the driver. While by disabling interrupts in

device driver critical sections these properties are maintained, the solution does not scale well and

also introduces jitter into the system. By using transactional memory as the concurrency control

mechanism, the system is guaranteed to maintain the ACI properties of an atomic block. With this

in place, the interrupt-driven lower half is always able to win a transaction even if it conflicts with

the upper half—thus the interrupt always runs through to completion. Though the interrupt suc-

ceeds, the upper half must rollback the changes and retry. This is acceptable because the upper half

transaction can wait while the more important lower half executes, thereby reducing the interrupt

jitter of disabling interrupts.

To show differences between the Embedded and Transactional Xinu kernels, this author

devised a methodology using several data gathering techniques on a physical system. The first mea-

sure was to use the on-chip timestamp counter that measures micro-operation cycles which provide

a fine-grained unit of measurement that increments as long as the processor is running. Another

measure uses the operating system’s timer that increments every 1/10 of a millisecond, while a

third measure is the round-trip time of a ping packet as measured in milliseconds. As expected,

the transactional kernel increases the runtime of the interrupt handler since it must invalidate every

memory address for competing transactions. However, this thesis is primarily concerned with the

jitter (variability) of interrupt handling. In this aspect, transactional memory shows a decrease of ap-

proximately 4.5% in beginning an interrupt handler on time. While this is not a huge improvement,

it should be noted that this is still a prototype system and various improvements to both the STM

46

library and Xinu kernel can provide speedups. Additionally, even with these slight improvements,

it has been shown that integrating an STM into the operating system kernel is possible and incurs

minimal overhead. Transactional Xinu also has shown that device drivers can be written to make

use of transaction memory, removing some complexities of writing drivers from the programmer

and automating them in the compiler.

In summary, this thesis has provided a framework for using STM in the interrupt-driven de-

vice drivers of an operating system. Based on this framework, Transactional Xinu was implemented—

based on a modernized IA-32 port of the Xinu operating system—as a proof-of-concept designed

to run on existing hardware components. This provides a platform for further research integrating

STM into the O/S. Also, a method of measuring jitter and STM overhead was developed and used

for a performance evaluation of the system.

6.2 Future Work

This version of Transactional Xinu is designed to work on a single-core processor and has shown

that STM can provide advantages in an interrupt driven system, but one of the strengths of trans-

actional memory is automatic concurrency control for multi-core and parallel computations. With

this in mind, Transactional Xinu should be extended to work with multi-core processors to explore

any advantages transactions offer in interrupt-driven device drivers on a multi-core system. On a

multi-core processor, when an interrupt enters the system any core can begin interrupt handler exe-

cution. If a different core is running a thread-level critical section, the handler’s core must wait until

completion. With transactional memory the thread-level code is notified that the transaction fails

and can move to some other process. Once the interrupt-level transaction commits, the handler core

can begin executing the thread-level code. This can provide higher system throughput even though

the individual process throughput is reduced.

Extending the idea of multi-core processors to multiple network interface processors is also

an interesting idea. Embedded systems are becoming increasingly network aware by implementing

different protocols such as ZigBee, WiFi, Bluetooth, and Ethernet. Merging these networking cores

with a multi-core processor and transactional memory could again increase system throughput. Fu-

ture network devices must be able to handle these protocols efficiently. In order to do this they

47

increasingly become multi-core and the communication protocols begin sharing memory between

devices and the operating system. Building a Transactional Xinu with multiple network devices

would be able to show improvements to the network throughput of a multi-core networking system.

Another research track involves building a better STM library with an interest in improv-

ing the operating system kernel. Currently, Intel’s STM library is targeted at handling concurrency

issues within the threads of a process. Transactional Xinu took this library and treated the entire

operating system as a single process with several threads of execution for various components. By

more tightly integrating the STM runtime with the operating system, it would be possible to build

special modes suited for interrupt handling and sharing special memory regions. Other improve-

ments include giving the STM library an ability to interface with the scheduling algorithm to allow

better utilization of resources, and developing software to automatically change non-transactional

critical sections to become transactional.

Finally, by changing critical sections to not heavy-handedly disable interrupts, this work has

made possible new analysis of interrupt-driven code. The work presented by Brylow and Palsberg

developed a static analysis tool that determines if an interrupt-driven system is able to meet real-time

deadlines before it is deployed [6]. Transactional Xinu allows an interrupt to enter the system at any

point. When the interrupt handler begins execution it could be designed to check if any deadlines

are approaching, and either defer or handle the interrupt immediately. While this is not a solution

to timeliness, it can provide different methods of analysis at runtime.

Also, since interrupts are less frequently disabled, the system can now experience “interrupt

overload”—a form of livelock where more time is spent handling interrupts than on making progress

on operating system code [43]. If interrupt overload begins occurring, a scheduler for interrupt

handling is consulted and can either allow or forbid an interrupt from running. Transactional Xinu

can be outfitted with such a system and further be integrated with the transactional memory library

to determine if the interrupt should proceed or not, and can be used to improve the timeliness of the

system.

This thesis has developed a modernized port of Embedded Xinu targeted at the IA-32 archi-

tecture, then extended it to be capable of using a pre-compiled STM library. Transactional Xinu is

aimed at exploring an interrupt-driven environment and the prototype system allows device drivers

to be written with some degree of automatic concurrency control. By doing this, it is possible to

48

minimize possible concurrency deadlock issues the programmer must deal with while creating a

device driver that is less prone to experiencing jitter. While building a small, safe, secure, stable,

and scalable operating system is still in the far distant future, this author believes that Transactional

Xinu is a step in the right direction.

49

Bibliography

[1] ADL-TABATABAI, A.-R., LEWIS, B. T., MENON, V., MURPHY, B. R., SAHA, B., AND

SHPEISMAN, T. Compiler and runtime support for efficient software transactional memory.

In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language

design and implementation (2006), pp. 26–37.

[2] ANANIAN, C. S., ASANOVIC, K., KUSZMAUL, B. C., LEISERSON, C. E., AND LIE, S.

Unbounded transactional memory. High-Performance Computer Architecture, International

Symposium on (2005), 316–327.

[3] BERSHAD, B. N., REDELL, D. D., AND ELLIS, J. R. Fast mutual exclusion for uniproces-

sors. In ASPLOS-V: Proceedings of the fifth international conference on Architectural sup-

port for programming languages and operating systems (New York, NY, USA, 1992), ACM,

pp. 223–233.

[4] BRYLOW, D. Embedded Xinu. URL http://www.mscs.mu.edu/˜brylow/xinu/.

[5] BRYLOW, D. An Experimental Laboratory Environment for Teaching Embedded Operating

Systems. In SIGCSE ’08: Proceedings of the 39th SIGCSE Technical Symposium on Computer

Science Education (2008), pp. 192–196.

[6] BRYLOW, D., AND PALSBERG, J. Deadline analysis of interrupt-driven software. In

ESEC/FSE-11: Proceedings of the 9th European software engineering conference held jointly

with 11th ACM SIGSOFT international symposium on Foundations of software engineering

(New York, NY, USA, 2003), ACM, pp. 198–207.

[7] BRYLOW, D., AND RAMAMURTHY, B. Nexos: A next generation embedded systems labora-

tory. SIGBED Review: Special Issue from the Workshops on Embedded System Education 6,

1 (2009).

[8] CASCAVAL, C., BLUNDELL, C., MICHAEL, M., CAIN, H. W., WU, P., CHIRAS, S., AND

CHATTERJEE, S. Software transactional memory: why is it only a research toy? Communi-

cations of the ACM 51, 11 (2008), 40–46.

[9] CHUNG, J., MINH, C. C., MCDONALD, A., SKARE, T., CHAFI, H., CARLSTROM, B. D.,

KOZYRAKIS, C., AND OLUKOTUN, K. Tradeoffs in transactional memory virtualization.

SIGPLAN Not. 41, 11 (2006), 371–381.

[10] COMER, D., AND FOSSUM, T. Operating System Design: The XINU Approach, PC ed.,

vol. 1. Prentice Hall, 1988.

[11] COURTOIS, P. J., HEYMANS, F., AND PARNAS, D. Concurrent control with “readers” and

“writers”. Communications of the ACM 14, 10 (1971), 667–668.

50

[12] DALESSANDRO, L., MARATHE, V. J., SPEAR, M. F., AND SCOTT, M. L. Capabilities and

limitations of library-based software transactional memory in c++. In Proceedings of the 2nd

ACM SIGPLAN Workshop on Transactional Computing (Portland, OR, August 2007).

[13] DAMRON, P., FEDOROVA, A., LEV, Y., LUCHANGCO, V., MOIR, M., AND NUSSBAUM, D.

Hybrid transactional memory. SIGPLAN Notices 41, 11 (2006), 336–346.

[14] DICE, D., SHALEV, O., AND SHAVIT, N. Transactional locking II. In In Proceedings of the

20th International Symposium on Distributed Computing (2006).

[15] DIJKSTRA, E. W. The structure of the “THE”-multiprogramming system. Communications

of the ACM 11, 5 (1968), 341–346.

[16] GOODENOUGH, J. B., AND SHA, L. The priority ceiling protocol: A method for minimizing

the blocking of high priority ada tasks. In IRTAW ’88: Proceedings of the second international

workshop on Real-time Ada issues (New York, NY, USA, 1988), ACM, pp. 20–31.

[17] GRAY, J. The transaction concept: virtues and limitations. In VLDB ’1981: Proceedings of

the seventh international conference on Very Large Data Bases (1981), VLDB Endowment,

pp. 144–154.

[18] GRAY, J., AND REUTER, A. Transaction Processing: Concepts and Techniques, first ed.

Morgan Kaufmann, 1993.

[19] GREENWALD, M., AND CHERITON, D. The synergy between non-blocking synchronization

and operating system structure. In OSDI ’96: Proceedings of the second USENIX sympo-

sium on Operating systems design and implementation (New York, NY, USA, 1996), ACM,

pp. 123–136.

[20] HAERDER, T., AND REUTER, A. Principles of transaction-oriented database recovery. ACM

Computing Surveys 15, 4 (1983), 287–317.

[21] HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B. D., DAVIS, J. D., HERTZBERG,

B., PRABHU, M. K., WIJAYA, H., KOZYRAKIS, C., AND OLUKOTUN, K. Transactional

memory coherence and consistency. SIGARCH Computer Architecture News 32, 2 (2004),

102.

[22] HANSEN, P. B. Concurrent programming concepts. ACM Computer Surveys (CSUR) 5, 4

(1973), 223–245.

[23] HARRIS, T., AND FRASER, K. Language support for lightweight transactions. SIGPLAN

Notice 38, 11 (2003), 388–402.

[24] HARRIS, T., MARLOW, S., PEYTON-JONES, S., AND HERLIHY, M. Composable memory

transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles

and practice of parallel programming (New York, NY, USA, 2005), ACM, pp. 48–60.

[25] HARRIS, T., PLESKO, M., SHINNAR, A., AND TARDITI, D. Optimizing memory transac-

tions. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming

language design and implementation (New York, NY, USA, 2006), ACM, pp. 14–25.

[26] HERLIHY, M. A methodology for implementing highly concurrent data structures. In PPOPP

’90: Proceedings of the second ACM SIGPLAN symposium on Principles & practice of paral-

lel programming (New York, NY, USA, 1990), ACM, pp. 197–206.

51

[27] HERLIHY, M., LUCHANGCO, V., AND MOIR, M. A flexible framework for implement-

ing software transactional memory. In OOPSLA ’06: Proceedings of the 21st annual ACM

SIGPLAN conference on Object-oriented programming systems, languages, and applications

(New York, NY, USA, 2006), ACM, pp. 253–262.

[28] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER III, W. N. Software trans-

actional memory for dynamic-sized data structures. In Principles of Distributed Computing

(2003), pp. 92–101.

[29] HERLIHY, M., AND MOSS, J. E. B. Transactional memory: Architectural support for lock-

free data structures. In Proceedings of the Twentieth Annual International Symposium on

Computer Architecture (1993).

[30] HERLIHY, M., AND SHAVIT, N. The Art of Multiprocessor Programming. Morgan Kaufmann,

Burlington, MA, 2008.

[31] INTEL CORPORATION. C++ STM Compiler, Prototype Edition. URL http:

//software.intel.com/en-us/articles/intel-c-stm-compiler-

prototype-edition-20/.

[32] JAGANNATHAN, S., PROCHAZKA, M., PIZLO, F., AND VITEK, J. Transactional lock-free

objects for real-time Java. In Workshop on Synchronization and Currency in Java Programs

(CSJP) (2004).

[33] KUMAR, S., CHU, M., HUGHES, C. J., KUNDU, P., AND NGUYEN, A. Hybrid transactional

memory. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles

and practice of parallel programming (New York, NY, USA, 2006), ACM, pp. 209–220.

[34] LAMPORT, L. Concurrent reading and writing. Communications of the ACM 20, 11 (1977),

806–811.

[35] LARUS, J., AND KOZYRAKIS, C. Transactional memory. Communications of the ACM 51, 7

(2008), 80–88.

[36] LOMET, D. B. Process structuring, synchronization, and recovery using atomic actions. In

Proceedings of an ACM conference on Language design for reliable software (1977), pp. 128–

137.

[37] MASSALIN, H., AND PU, C. A lock-free multiprocessor OS kernel. Tech. Rep. CUCS-005-

91, Columbia University, June 1991.

[38] MENON, V., BALENSIEFER, S., SHPEISMAN, T., ADL-TABATABAI, A.-R., HUDSON,

R. L., SAHA, B., AND WELC, A. Practical weak-atomicity semantics for Java STM. In

SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism in algorithms and

architectures (New York, NY, USA, 2008), ACM, pp. 314–325.

[39] MINH, C. C., TRAUTMANN, M., CHUNG, J., MCDONALD, A., BRONSON, N., CASPER,

J., KOZYRAKIS, C., AND OLUKOTUN, K. An effective hybrid transactional memory system

with strong isolation guarantees. In ISCA ’07: Proceedings of the 34th annual international

symposium on Computer architecture (2007), pp. 69–80.

52

[40] MOORE, K., BOBBA, J., MORAVAN, M., HILL, M., AND WOOD, D. LogTM: log-based

transactional memory. High-Performance Computer Architecture, 2006. The Twelfth Interna-

tional Symposium on (Feb. 2006), 254–265.

[41] NI, Y., WELC, A., ADL-TABATABAI, A.-R., BACH, M., BERKOWITS, S., COWNIE, J.,

GEVA, R., KOZHUKOW, S., NARAYANASWAMY, R., OLIVIER, J., PREIS, S., SAHA, B.,

TAL, A., AND TIAN, X. Design and implementation of transactional constructs for C/C++. In

Conference on Object-Oriented Programming, Systems, Languages, and Applications (2008).

[42] RAJWAR, R., HERLIHY, M., AND LAI, K. Virtualizing transactional memory. In ISCA ’05:

Proceedings of the 32nd annual international symposium on Computer Architecture (Wash-

ington, DC, USA, 2005), IEEE Computer Society, pp. 494–505.

[43] REGEHR, J., AND DUONGSAA, U. Preventing interrupt overload. In LCTES ’05: Proceed-

ings of the 2005 ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for

embedded systems (New York, NY, USA, 2005), ACM, pp. 50–58.

[44] ROSSBACH, C. J., HOFMANN, O. S., PORTER, D. E., RAMADAN, H. E., ADITYA, B., AND

WITCHEL, E. TxLinux: using and managing hardware transactional memory in an operating

system. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating

systems principles (2007), pp. 87–102.

[45] SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R. L., MINH, C. C., AND HERTZBERG,

B. McRT-STM: a high performance software transactional memory system for a multi-core

runtime. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles

and practice of parallel programming (2006), pp. 187–197.

[46] SAHA, B., ADL-TABATABAI, A.-R., AND JACOBSON, Q. Architectural support for soft-

ware transactional memory. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (Washington, DC, USA, 2006), IEEE Computer

Society, pp. 185–196.

[47] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority inheritance protocols: An approach

to real-time synchronization. IEEE Transactions on Computing 39, 9 (1990), 1175–1185.

[48] SHAVIT, N., AND TOUITOU, D. Software transactional memory. In Symposium on the Prin-

ciples of Distributed Computing (1995).

[49] SMARAGDAKIS, Y., KAY, A., BEHRENDS, R., AND YOUNG, M. General and efficient

locking without blocking. In MSPC ’08: Proceedings of the 2008 ACM SIGPLAN workshop

on Memory systems performance and correctness (New York, NY, USA, 2008), ACM, pp. 1–5.

[50] SPEAR, M. F., MICHAEL, M. M., AND VON PRAUN, C. RingSTM: scalable transactions

with a single atomic instruction. In SPAA ’08: Proceedings of the twentieth annual symposium

on Parallelism in algorithms and architectures (New York, NY, USA, 2008), ACM, pp. 275–

284.

[51] STONE, J. M., STONE, H. S., HEIDELBERGER, P., AND TUREK, J. Multiple reservations

and the oklahoma update. IEEE Parallel and Distributed Technology 1, 4 (1993), 58–71.

[52] TANENBAUM, A. Modern Operating Systems, 3rd ed. Prentice Hall, Englewood Cliffs, 2007.

53

[53] WELC, A., HOSKING, A. L., AND JAGANNATHAN, S. Preemption-based avoidance of pri-

ority inversion for Java. In International Conference on Parallel Processing, 2004 (2004),

pp. 529–538.

[54] WELC, A., SAHA, B., AND ADL-TABATABAI, A.-R. Irrevocable transactions and their

applications. In SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism in

algorithms and architectures (New York, NY, USA, 2008), ACM, pp. 285–296.

54

Appendix A

Ethernet Read Source Listing

(1) #include <stddef.h>

(2) #include <device.h>

(3) #include <ether.h>

(4) #include <string.h>

(5) #include <interrupt.h>

(6) #include <bufpool.h>

(7) #include <stdlib.h>

(8) #include <performance.h>

(9)

(10) devcall etherRead(device *pdev, char *buf, ushort len)

(11) {

(12) static int read_count = 0;

(13) unsigned long long start, end;

(14) struct ether *peth;

(15) struct ethPktBuffer *epb = NULL;

(16) irqmask ps;

(17) ushort length = 0;

(18)

(19) if (NULL == pdev) { return SYSERR; }

(20) peth = (struct ether *)pdev->controlblk;

(21) if (NULL == peth) { return SYSERR; }

(22) if (ETH_STATE_UP != peth->state) { return SYSERR; }

(23)

(24) wait(peth->isema);

(25)

(26) __tm_atomic {

(27) epb = peth->in[peth->is];

(28) peth->in[peth->is] = NULL;

(29) peth->is = (peth->is + 1) % IBLEN;

(30) peth->icnt--;

(31) }

55

(32)

(33) if (NULL == epb) { return 0; }

(34) length = (epb->length < len) ? epb->length : len;

(35) memcpy(buf, epb->data, length);

(36) freebuf(epb);

(37)

(38) return length;

(39) }

56

Appendix B

Ethernet Write Source Listing

(1) #include <stddef.h>

(2) #include <stdlib.h>

(3) #include <device.h>

(4) #include <bufpool.h>

(5) #include <ether.h>

(6) #include <e100.h>

(7) #include <interrupt.h>

(8) #include <string.h>

(9) #include <performance.h>

(10)

(11) devcall etherWrite(device *pdev, uchar *buf, ushort len)

(12) {

(13) ulong head;

(14) struct ether *peth;

(15) struct e100csr *pecsr;

(16) struct e100tcb *ptcb = NULL;

(17) irqmask ps;

(18)

(19) if (NULL == pdev) { return SYSERR; }

(20) peth = (struct ether *)pdev->controlblk;

(21) if (NULL == peth) { return SYSERR; }

(22) if (ETH_STATE_UP != peth->state) { return SYSERR; }

(23) pecsr = pdev->csr;

(24) if (NULL == pecsr) { return SYSERR; }

(25)

(26) if (len > TX_BUFFER_SIZE) { return SYSERR; }

(27)

(28) __tm_atomic {

(29) ptcb = &peth->txBufs[peth->txHead];

(30) peth->txHead =

(31) (peth->txHead + 1) % peth->txPending;

57

(32)

(33) memcpy(ptcb->data, buf, len);

(34)

(35) ptcb->tcb_bytes = len;

(36)

(37) while (0x00 != pecsr->cmd_lo) { }

(38) pecsr->gen_ptr = (uint)ptcb;

(39) pecsr->cmd_lo = ETH_SCB_CUC_START;

(40) }

(41)

(42) return 0;

(43) }

58

Appendix C

Ethernet Interrupt Source Listing

(1) #include <stddef.h>

(2) #include <stdlib.h>

(3) #include <device.h>

(4) #include <ether.h>

(5) #include <e100.h>

(6) #include <platform.h>

(7) #include <string.h>

(8) #include <bufpool.h>

(9) #include <performance.h>

(10) #include <clock.h>

(11) #include <itm/itm.h>

(12) #include <itm/itmuser.h>

(13)

(14) ulong ether_errors = 0;

(15)

(16) void rxPackets(struct ether *peth, struct e100csr *pecsr) {

(17) struct e100rfd *perfd;

(18) struct ethPktBuffer *pepb = NULL;

(19)

(20) perfd = &peth->rxBufs[peth->rxHead];

(21)

(22) if ((perfd->count & ETH_RFD_CNT_MASK) > ETHERNET_MTU

(23) || (perfd->status & ETH_RFD_STAT_ERR) != 0x0000) {

(24) peth->rxErrors++;

(25) }

(26) else {

(27) __tm_atomic {

(28) _ITM_changeTransactionMode(_ITM_getTransaction(),

(29) modeObstinate,

(30) NULL);

(31) if (peth->icnt < ETH_IBLEN) {

59

(32) pepb = getbuf(peth->inPool);

(33) if (SYSERR == (int)pepb) {

(34) peth->rxErrors++;

(35) }

(36) else {

(37) pepb->length

(38) = perfd->count & ETH_RFD_CNT_MASK;

(39) memcpy(pepb->data,perfd->data,pepb->len);

(40)

(41) peth->in[(peth->is+peth->icnt)%ETH_IBLEN]

(42) = pepb;

(43) peth->icnt++;

(44) }

(45) }

(46) else {

(47) peth->ovrrun++;

(48) }

(49) }

(50) }

(51)

(52) allocRxBuffer(peth, peth->rxHead);

(53) peth->rxHead = (peth->rxHead + 1) % peth->rxPending;

(54) signaln(peth->isema, 1);

(55) }

(56)

(57) void txPackets(struct ether *peth, struct e100csr *pecsr) {

(58) ulong index = peth->txHead;

(59)

(60) __tm_atomic {

(61) _ITM_changeTransactionMode(_ITM_getTransaction(),

(62) modeObstinate,

(63) NULL);

(64) index = (index - 1) % peth->txPending;

(65) allocTxBuffer(peth, index);

(66) }

(67) }

(68)

(69) interrupt etherInterrupt(void) {

(70) struct ether *peth;

(71) struct e100csr *pecsr;

(72) uchar status, mask;

(73) uchar acks = 0x00;

(74)

(75) peth = ðertab[0];

(76) if (!peth) { continue; }

(77) pecsr = peth->dev->csr;

(78) if (!pecsr) { continue; }

(79)

60

(80) mask = pecsr->cmd_hi;

(81) status = pecsr->stat_ack & ˜(mask);

(82) peth->interruptStatus = (status << 8) | pecsr->status;

(83) peth->interruptMask = ˜(mask);

(84)

(85) if (!status) { continue; }

(86)

(87) if (status & ETH_SCB_SACK_TX) {

(88) peth->txirq++;

(89) txPackets(peth, pecsr);

(90) }

(91)

(92) if (status & ETH_SCB_SACK_FR) {

(93) peth->rxirq++;

(94) rxPackets(peth, pecsr);

(95)

(96) }

(97)

(98) if (status & ETH_SCB_SACK_RNR) {

(99) __tm_atomic {

(100) _ITM_changeTransactionMode(_ITM_getTransaction(),

(101) modeObstinate,

(102) NULL);

(103) while (0x00 != pecsr->cmd_lo)

(104) ;

(105) pecsr->cmd_lo = ETH_SCB_RUC_RESUME;

(106) }

(107) }

(108)

(109) pecsr->stat_ack = status;

(110)

(111) return;

(112) }

Marquette University

This is to certify that we have examined this copy of the thesis by

Michael J. Schultz, B.S.

and have found that it is complete and satisfactory in all respects.

The thesis has been approved by:

Dr. Dennis Brylow

Thesis Director, Department of Mathematics, Statistics and Computer Science

Dr. Praveen Madiraju

Committee Member, Department of Mathematics, Statistics and Computer Science

Dr. Craig Struble

Committee Member, Department of Mathematics, Statistics and Computer Science

Dr. Adam Welc

Committee Member, Research Scientist, Intel Laboratories

Approved on

