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Abstract—Recent empirical studies have investigated the use of
source code metrics to predict the change- and defect-proneness
of source code files and classes. While results showed strong
correlations and good predictive power of these metrics, they do
not distinguish between interface, abstract or concrete classes.
In particular, interfaces declare contracts that are meant to
remain stable during the evolution of a software system while
the implementation in concrete classes is more likely to change.

This paper aims at investigating to which extent the existing
source code metrics can be used for predicting change-prone Java
interfaces. We empirically investigate the correlation between
metrics and the number of fine-grained source code changes in
interfaces of ten Java open-source systems. Then, we evaluate
the metrics to calculate models for predicting change-prone Java
interfaces. Our results show that the external interface cohesion
metric exhibits the strongest correlation with the number of
source code changes. This metric also improves the performance
of prediction models to classify Java interfaces into change-prone
and not change-prone.

I. INTRODUCTION

Software systems are continuously subjected to changes.
Those changes are necessary to add new features, to adapt
to a new environment, to fix bugs or to refactor the source
code. However, the maintenance of software systems is also
risky and costly. For instance, Brooks states that software
maintenance accounts for 90% of the total costs of a software
system [1].

Several approaches have been developed to optimize the
maintenance activities and reduce the costs. They range from
automated reverse engineering techniques to ease program
comprehension to prediction models that can help identifying
the change- and defect-prone parts in the source code. Devel-
opers should focus on understanding these change- and defect
prone parts in order to take appropriate counter measures to
minimize the number of future changes [2].

Many of these prediction models have been developed
using source code metrics, such as by Briand et al. [3],
Subramanyam et al. [4], and Menzies et al. [5]. While those
prediction models showed good performance, they work on
file and class level. None of them takes the kind of class
into account, whether it is a concrete class, abstract class,
or interface that is change- or defect-prone. We believe that
changes in interfaces can have a stronger impact than changes
in concrete and abstract classes, and should therefore be

treated separately. Interfaces are meant to represent contracts
among modules and logic units in a software system. For this
reason, they are supposed to be more stable to avoid contract
violations and to reduce the effort to maintain a software
system.

In this paper, we focus on Java interfaces and investigate
the predictive power of various source code metrics to clas-
sify Java interfaces into change-prone and not change-prone.
Concerning the source code metrics, we take into account (1)
the set of metrics defined by Chidamber and Kemerer [6];
(2) a set of metrics to measure the complexity and the usage
of interfaces; and (3) two metrics to measure the external
cohesion of Java interfaces. The number of fine-grained source
code changes (#SCC), as introduced by Fluri et al. [7], is used
to distinguish between change-prone and not change-prone
interfaces.

We selected the Chidamber and Kemerer (C&K) metrics
suite because it is widely used and it has been validated by
several approaches, such as [8], [9], [10]. The two external
cohesion metrics are Interface Usage Cohesion (IUC) and a
clustering metric. These metrics are meant as heuristics to
indicate violations of the Interface Segregation Principle (ISP)
as described by Martin [11]. We believe that the violation
of the ISP can impact the maintenance of interfaces and the
software system as a whole. The complexity and usage metrics
for interfaces have been added to provide a broader set of
interface metrics for our study.

To investigate our claim, we perform an empirical study
with the source code and versioning data of ten Java open
source systems, namely: eight plug-in projects from the
Eclipse platform, Hibernate2 and Hibernate3. In the study, we
address the following two research hypotheses:

• H1: IUC has a stronger correlation with the #SCC of
interfaces than the C&K metrics

• H2: IUC can improve the performance of prediction
models to classify Java interfaces into change- and not
change-prone

The results show that most of the C&K perform well for
predicting change-prone concrete and abstract classes but are
limited in predicting change-prone Java interfaces, therefore
confirming our claim that interfaces need to be treated sepa-
rately. The IUC metric exhibits the strongest correlation with

SERG Romano and Pinzger – Using Source Code Metrics to Predict Change-Prone Java Interfaces

TUD-SERG-2011-017 1



#SCC of Java interfaces and proves to be an adequate metric
to compute prediction models for classifying Java interfaces.

The remainder of this paper is organized as follows. Sec-
tion II discusses the C&K metrics and their effectiveness when
used for measuring the size and complexity of interfaces.
We furthermore introduce the IUC metric and several other
interface complexity and usage metrics. Section III describes
the approach used to measure the metrics and to mine the
fine-grained source code changes from versioning repositories.
The empirical study and results are presented in Section IV.
Section V discusses the results and threats to validity. Related
work is presented in Section VI. We draw our conclusions and
outline directions for future work in Section VII.

II. INTERFACE METRICS

In this section, we present the set of source code metrics
used in our empirical study. We furthermore discuss their
applicability to measure the size, complexity, and cohesion of
Java interfaces. We then present the IUC metric and motivate
its application to predict change-prone interfaces. At the end
of the section, we list additional metrics to measure the
complexity and the usage of interfaces. Those metrics are
meant to provide further validation of the predictive power
of the IUC metric.

A. Object-Oriented Metrics & Interfaces

Among the existing product metrics [12], we focus on
the object-oriented metrics introduced by Chidamber and
Kemerer [6]. They have been widely used as quality indicators
of object-oriented software systems. These metrics are:

• Coupling Between Objects (CBO)
• Lack of Cohesion Of Methods (LCOM)
• Number Of Children (NOC)
• Depth of Inheritance Tree (DIT)
• Response For Classes (RFC)
• Weighted Methods per Class (WMC)
We selected the C&K metrics mainly because prior work

demonstrated their usefulness for building models for change
prediction, e.g., [9] [13], as well as defect prediction, e.g., [10].
In the following, we briefly describe each metric and discuss
its application to interfaces.

1) Coupling Between Objects (CBO): The CBO metric rep-
resents the number of data types a class is coupled with. More
specifically, it counts the unique number of reference types
that occur through method calls, method parameters, return
types, exceptions, and field accesses. If applied to interfaces,
this metric is limited to method parameters, return types and
exceptions leaving out method calls and field accesses.

2) Lack of Cohesion Of Methods (LCOM): The LCOM
metric counts the number of pairwise methods without any
shared instance variable, minus the number of pairwise meth-
ods that share at least one instance variable. More precisely,
LCOM is defined as:

LCOM =

(
1
a

∑a
j=1 µ (Aj)

)
−m

1−m

where a represents the number of attributes of a class, m the
number of methods, and µ(Aj) the number of methods which
access each attribute Aj of a class. Perfect cohesion is defined
as all methods accessing all variables, in that case the value
of LCOM is 0. In contrast, if all methods do not share any
instance variable, the value of LCOM is 1.

The LCOM metric is not applicable to interfaces since inter-
faces do not contain logic and consequently attribute accesses.
For instance, the commercial metric tool Understand1 outputs
either 0 or 1 as values for LCOM for an interface. The value
1 denotes that the interface also contains the definition of
constant attributes, otherwise the value for LCOM is 0. This
limits the use of LCOM for computing prediction models.

3) Weighted Methods per Class (WMC): WMC is the sum
of the cyclomatic complexities of all methods declared by a
class. Formally, the metric is defined as:

WMC =
n∑

i=1

ci

where ci is the cyclomatic complexity of the ith method of a
class. In case of Understand, this metric corresponds to the
Number Of Methods (NOM), since the complexity of each
method declared in an interface is 1. In case of the Metrics
tool2 this metric is always 0 for interfaces. This limits the
predictive power of this metric for predicting change-prone
interfaces.

4) Number Of Children (NOC): The NOC metric counts the
number of directly derived classes of a class or interface. Even
though this metric is sound for interfaces, we argue that its
application for predicting change prone interfaces is limited.
The main reason being that interfaces inherit only the type
definition (i.e., sub-typing) while abstract classes and concrete
classes also inherit the business logic.

5) Depth of Inheritance Tree (DIT): The DIT metric de-
notes the length of the longest path from a sub-class to its
base class in an inheritance structure. The idea behind the
usage of DIT as change-proneness indicator is that classes
contained in a deep inheritance structure are more likely to
change (e.g., changes in a super-class cause changes in its sub-
classes). Similar to NOC, we believe that this metric is more
useful for abstract and concrete classes than for interfaces.

6) Response For Classes (RFC): The RFC metric counts
the number of local methods (including inherited methods) of
a class. This metric remains valid for interfaces, but it is close
to the WMC metric since the only added information is the
count of the inherited method.

In summary, while most of the C&K metrics are adequate
metrics for abstract and concrete classes they are not as
powerful for interfaces. Moreover, these metrics fall short in
expressing the cohesion of interfaces, therefore we introduce
the two external cohesion metrics as presented in the following
section.

1http://www.scitools.com/
2http://metrics.sourceforge.net/
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B. External Cohesion Metrics of Interfaces
The main problem a developer can face in designing

interfaces is coping with fat interfaces. This problem has
been formalized in the Interface Segregation Principle (ISP)
described by Martin in [11]. The ISP principle states that fat
interfaces need to be split into smaller interfaces according
to the clients of an interface. Any client should only know
about the set of methods provided by an interface that are
used by the client. In literature the lack of conformance to the
ISP principle is mainly associated to a higher risk for clients
to change when an interface is changed. To the best of our
knowledge there exists no empirical evidence that underlines
this association.

In order to measure the violation of the ISP principle, we use
two cohesion metrics: the external cohesion metric for services
called Service Interface Usage Cohesion (SIUC) taken from
Perepletchikov et al. [14], [15] and a clustering metric.

In the following, we refer to the SIUC metric as Interface
Usage Cohesion (IUC) because we apply it in the context of
object-oriented systems. The metric is defined as:

IUC(i) =

∑n
j=1

used methods(j,i)
num methods(i)

n
where j denotes a client of the interface i; used methods (j,i) is
the function which computes the number of methods defined
in i and used by the client j; num methods(i) returns the total
number of methods defined in i; and n denotes the number
of clients of the interface i. The external cohesion defined
by Perepletchikov et al., and hence the IUC metric, states
that there is a strong external cohesion if every client uses all
methods of an interface. We argue that interfaces with strong
external cohesion (the value of IUC is close to one) are less
likely to change. On the other hand, when there is a high lack
of external cohesion (the value of IUC is close to zero) the
interface is more likely to change due to the larger number of
clients.

Consider the example in Figure 1a that shows an interface
for providing bank services. The service is used by two dif-
ferent clients, namely the Professional Client and the Student
Client. The two clients share only one interface method,
namely the method accountBalance(). Since this method is
shared by two different clients, it is more likely to change to
satisfy the requirements of the different clients. The design of
the BankServices interface does not conform to ISP. The value
of IUC for this interface is (3/4+2/4)

2 = 5/8.
Consider another example depicted in Figure 1b. It shows

the same interface, except the shared method accountBalance()
has been split into two different methods to serve the two
different clients. The design of the interface still violates the
ISP and changes in the clients can lead to changes in the
interface. In fact, the clients depend upon methods that are not
used, and the implementing classes implement methods that
are not needed. The IUC of this interface is 3/5+2/5

2 = 1/2
which denotes a lower cohesion compared to the interface in
Figure 1a. The lower cohesion is mainly due to the higher
number of methods, namely 5.

(a) Different clients share a method

(b) Different clients do not share any methods

Fig. 1: An example of lack of external cohesion

Another heuristic to measure the external cohesion is the
ClusterClients(i) metric. This metric counts the number of
clients of an interface i that do not share any method. Higher
values for this metric indicate lower cohesion. For the interface
in Figure 1a the value of ClusterClients is 1 and for the
interface in Figure 1b the value is 2. We use this metric to
investigate whether the contribution of the shared methods, as
computed by the IUC metric, is relevant to predict change-
prone interfaces.

C. Complexity and Usage Metrics for Interfaces

In addition to the object-oriented metrics we validate the
IUC metric against several other metrics defined to measure
the complexity and usage of an interface. The complexity
metrics are:

• NOM(i): counts the number of methods declared in the
interface i;

• Arguments(i): counts the total number of arguments of
the declared methods in the interface i;

• APP(i): measures the mean size of method declarations
of an interface i and is equal to Arguments(i) divided by
NOM(i), as defined by Boxall et al. [16];

The usage metrics are:

• Clients(i): counts the number of distinct classes that
invoke the interface i;

• Invocations(i): counts the number of static invocations of
the methods declared in the interface i;

• Implementing Classes(i): counts the number of direct
classes that implement the interface i.
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C. Correlation and 
Prediction Analysis

A. Source Code Metrics
Computation

B. SCC Extraction

Fig. 2: Overview of the data extraction and measurement
process

III. THE APPROACH

In this section, we illustrate the approach used to extract the
fine-grained source code changes, to measure the metrics and
to perform the experiments aimed at addressing our research
hypotheses. Figure 2 shows an overview of our approach that
consists of three stages: (A) in the first stage we checkout the
source code of the projects from their versioning repositories
and we measure the source code metrics; (B) we then compute
the number of SCC from the versioning data for each class
and interface; (C) finally we use the metrics and the number
of SCC to perform our experiments with the PASWStatistics3

and RapidMiner4 toolkits.

A. Source Code Metrics Computation

The first step of the process consists of checking out the
source code of each project from the versioning repositories.
The source code of each project then is parsed with the
Evolizer Famix Importer, belonging to the Evolizer5 tool set.
The parser extracts a FAMIX model that represents the source
code entities and their relationships [17]. Figure 3 shows the

3http://www.spss.com/software/statistics/
4http://rapid-i.com/content/view/181/196/
5http://www.evolizer.org/

core of the FAMIX meta model. The model represents inheri-
tance relationships among classes, the methods belonging to a
class, the attribute accessed by a method and the invocations
among methods. For more details we refer the reader to [17].

After obtaining the FAMIX model, the next step consists of
measuring the source code metrics of classes and interfaces.
We use the Understand tool to measure the C&K metrics. We
decided to use the Understand tool because in our view it
provides the most precise measurement of these metrics for
interfaces. We use the FAMIX model to measure the external
cohesion, complexity and usage metrics of interfaces. For
example, to measure the Invocations(i) metric we count the
number of invocation objects in the FAMIX model that point
to a method of the interface i.

Class

Method

Inheritance

Invocation
Access

Attribute

Superclass

Subclass
BelongsToClass

BelongsToClass

InvokedBy

Invokes
AccessedIn

Accesses

Fig. 3: Core of the FAMIX meta model [17]

B. SCC Extraction

The first step of the SCC extraction stage consists of
retrieving the versioning data from the repositories (e.g., CVS,
SVN, or GIT) for which we use the Evolizer Version Control
Connector [18]. The versioning repositories provide log entries
that contain information about revisions of files that belong
to the system under analysis. For each log entry, it extracts
the revision number, the revision timestamp, the name of the
developer who checked-in the revision, the commit message,
the total number of lines modified (LM), and the source code.

In the second step, we use ChangeDistiller [19] to extract
the fine-grained source code changes (SCC) from the various
source code revisions of each file. ChangeDistiller implements
a tree differencing algorithm, that compares the Abstract
Syntax Trees (ASTs) between all direct subsequent revisions
of a file. Each change represents a tree edit operation that is
required to transform one version of the AST into the other.
In this way we can track fine-grained source changes down to
the statement level. Based on this information we count the
number of fine-grained source code changes (#SCC) for each
class and interface over the selected observation period.

C. Correlation and Prediction Analysis

We use the collection of metric values and #SCC of each
class and interface as input to our experiments. First, we
use the PASWStatistics tool to perform a correlation analysis
between the source code metrics and the #SCC. Then, we
use the RapidMiner tool to analyze the predictive power of
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TABLE I: Dataset used in the empirical study

Project #Files #Interfaces #Rev #SCC Time[M,Y]
Hibernate3 970 165(17%) 30774 34960 Jun04-Mar11
Hibernate2 494 69(14%) 13584 22960 Jan03-Mar11
eclipse.debug.core 188 97(52%) 8295 11670 May01-Mar11
eclipse.debug.ui 793 129(16%) 41860 55259 May01-Mar11
eclipse.jface 381 105(28%) 22136 27041 Sep02-Mar11
eclipse.jdt.debug 469 140(30%) 11711 33895 Jun01-Mar11
eclipse.team.core 172 44(26%) 3726 4551 Nov01-Mar11
eclipse.team.cvs.core 189 25(13%) 12343 23311 Nov01-Mar11
eclipse.team.ui 293 45(15%) 20183 32267 Nov01- Mar11
eclipse.update.core 274 71(26%) 7425 25617 Oct01-Mar11

the source code metrics to discriminate between change- and
not change-prone interfaces. We perform a series of classifica-
tion experiments with different machine learning algorithms,
namely: Support Vector Machine, Naive Bayes Network and
Neural Nets. The next section details the empirical study.

IV. EMPIRICAL STUDY

The goal of this empirical study is to evaluate the possibility
of using the IUC metric for predicting the change-prone
interfaces and to highlight the limited predictive power of the
C&K metrics. The perspective is that of a researcher, interested
in investigating whether the traditional object-oriented metrics
are useful to predict change-prone interfaces. The results of our
study are also interesting for quality engineers who want to
monitor the quality of their software systems, using an external
cohesion metric for interfaces.

The context of this study consists of ten open-source
systems, widely used in both, the academic and industrial
community. These systems are eight plugins from the Eclipse6

platform and the Hibernate2 and Hibernate3 systems.7 Eclipse
is a popular open source system that has been studied exten-
sively by the research community (e.g., [20], [21], [22], and
[23]). Hibernate is an object-relational mapping (ORM) library
for the Java language.

Table I shows an overview of the dataset used in our
empirical study. The #Files is the number of unique Java files,
#Interfaces is the number of unique Java interfaces, #Rev is
the total number of Java file revisions, #SCC is the number of
fine-grained source code changes performed within the given
time period (Time).

In this study, we address the following two research hy-
potheses:

• H1: IUC has a stronger correlation with the #SCC of
interfaces than the C&K metrics

• H2: IUC can improve the performance of prediction
models to classify Java interfaces into change- and not
change-prone

We first perform an initial analysis of the extracted infor-
mation, in terms of number of changes and in terms of metric
values. Figure 4 shows the box plots of the #SCC of Java
classes and interfaces mined from the versioning repositories
of each project.

6http://www.eclipse.org/
7http://www.hibernate.org/
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Fig. 5: Box plots of the C&K metric values for classes and
interfaces measured over all selected projects

The results show that on average the number of changes
involving Java classes are at least one order of magnitude
higher than the ones involving Java interfaces. This result
is not surprising since interfaces can be considered contracts
among modules, and in general among logic units of a system.

Figure 5 shows the values of the C&K metrics for classes
and interfaces over all ten projects. The values of the CBO
metric are in general lower for interfaces, since it counts only
the number of reference types in the parameters, return types
and thrown exceptions in the method signatures. The values
of the RFC metric are higher for classes than for interfaces.
Also the values of the DIT metric are in general higher for
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TABLE II: Spearman rank correlation between the C&K metrics and the #SCC computed for Java classes and Java interfaces
(** marks significant correlations at α= 0.01, * marks significant correlations at α= 0.05, values in bold mark a significant
correlation)

Project CBOc CBOi NOCc NOCi RFCc RFCi DITc DITi LCOMc LCOMi WMCc WMCi

Hibernate3 0.590** 0.535** 0.109** 0.029 0.338** 0.592** -0.098** 0.058 0.367** 0.103 0.617** 0.657**
Hibernate2 0.352** 0.373** 0.134** 0.065 0.273** 0.325** -0.156** -0.010 0.269** 0.006 0.455** 0.522**
eclipse.debug.core 0.560** 0.484** -0.025 0.105 0.431** 0.486** 0.065 0.232* 0.564 0.337 0.600** 0.597**
eclipse.debug.ui 0.566** 0.216* 0.087* 0.033 0.291** 0.152 0.473** 0.324** 0.626** 0.214* -0.048 0.131
eclipse.jface 0.570** 0.239* 0.257** 0.012 0.516** 0.174** 0.173** 0.103 0.563** 0.320** 0.754** 0.137
eclipse.jdt.debug 0.502** 0.512** 0.154** 0.256** 0.132 0.349** -0.089 -0.049 0.237** 0.238** 0.668** 0.489**
eclipse.team.core 0.453** 0.367* 0.180* 0.102 0.435** 0.497** 0.060 0.243 0.335** 0.400 0.561** 0.451**
eclipse.team.cvs.core 0.655** 0.688** 0.347** -0.013 0.407** 0.738** -0.145 0.618** 0.477** 0.610** 0.753** 0.744**
eclipse.team.ui 0.532** 0.301* 0.152** -0.003 0.382** 0.299* 0.039 -0.103* 0.493** 0.395** 0.595** 0.299*
eclipse.update.core 0.649** 0.499** 0.026 -0.007 0.364** 0.381** 0.007 0.146 0.326** 0.482** 0.735** 0.729**
Median 0.563 0.428 0.143 0.031 0.373 0.365 0.023 0.124 0.422 0.328 0.608 0.505

classes than for interfaces.
Analyzing the LCOM we can notice that Java classes have

a low median LCOM and hence a high cohesion. On the other
hand, interpreting the LCOM of interfaces we can state that
most of them do not expose any attributes in their body. In
fact, the Understand tool registers a 0 LCOM when there are
no attribute declarations, and 1 if there are some. The values
of WMC confirm the assumptions made in Section III about
the loss of meaning of this metric when applied to interfaces.
In fact, the values of WMC correspond exactly to the value of
the NOM (Number of Methods). As expected, we registered
higher values of the NOC for interfaces than for classes. This
is due to the number of implementing classes that are counted
as children by Understand.

A. Correlation between metrics and #SCC

The next step in our study aims at investigating the cor-
relation between the metrics and the #SCC mined from the
versioning repositories. We used the Spearman rank correla-
tion analysis to identify highly-correlated metrics. Spearman
compares the ordered ranks of the variables to measure a
monotonic relationship. Differently to the Pearson correlation,
the Spearman correlation does not make assumptions about the
distribution, variances and the type of the relationship [24].
A Spearman value of +1 and -1 indicates high positive or
high negative correlation, whereas 0 indicates that the variables
under analysis do not correlate at all. Values greater than +0.5
and lower than -0.5 are considered to be substantial; values
greater than +0.7 and lower than -0.7 are considered to be
strong correlations.

To test the hypothesis H1, we performed two correlation
analyses: (1) we analyze the correlation among the C&K
metrics and the #SCC in Java classes and Java interfaces.
An insignificant correlation of the C&K metrics for interfaces
is a precondition for any further analysis of the interface
complexity and usage metrics. (2) We explore the extent to
which the interface cohesion, complexity and usage metrics
correlate with #SCC.

Table II lists the results of the correlation analysis between
the C&K metrics and #SCC for classes and interfaces in each
project. The heading Xc indicates the correlation of the metric

X with the #SCC of classes, and Xi the correlation with the
#SCC of interfaces.

The first important result is that only the metrics CBOc and
WMCc have a substantial correlation with the #SCC of Java
classes, since their median correlation is greater than 0.5. In
five projects out of ten WMCc exhibits a substantial correlation
and in three cases the correlation is strong. Similarly, the CBOc

metric shows a substantial correlation in eight cases but no
strong correlations. The other metrics do not show a significant
correlation with the #SCC.

The median correlation values of the C&K metrics applied
to interfaces are significantly lower. Among the six metrics
WMCi exhibits the strongest correlation with #SCC. It shows
three substantial and two strong correlations. CBOi shows a
substantial correlation for three projects.

We applied the same correlation analysis to the interface
complexity and usage metrics defined in Section III. We report
the result in Table III. IUCi is the only metric that exposes
a substantial correlation with the #SCC of interfaces. This
metric shows a median correlation value of -0.605, having a
substantial correlation in six projects and a strong correlation
in one project. The negative correlation is due to the nature
of the metric and it means that the IUCi value is inversely
proportional to the #SCC. More precisely, the stronger the
external cohesion is (values of IUCi close to one) the less
frequently an interface changes.

Concerning the other metrics, the NOMi shows the strongest
correlation with the #SCC. This result is not surprising since
the more methods are declared in the interface the more
likely the interface changes. Surprisingly, neither the number
of clients nor the number of invocations result in a sub-
stantial correlation with the #SCC. The Argumentsi metric
correlates only in three projects out of ten, while the APPi

shows a correlation only for one project. The ClustersClientsi

metric shows a substantial correlation only in one project.
Therefore we conclude that the contribution of the number
of methods shared among different clients is relevant for
the correlation analysis. The weakest correlation is by the
ImpementingClassesi metric.

Based on this result we can accept H1. Among the selected
metrics, the IUCi metric exhibits the strongest correlation with
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TABLE III: Spearman rank correlation between the interface complexity and usage metrics and #SCC (** marks significant
correlations at α= 0.01, * marks significant correlations at α= 0.05, values in bold mark a significant correlation)

Project IUCi Clientsi Invocationsi ClustersClientsi ImplementingClassesi Argumentsi APPi NOMi

Hibernate3 -0.601** 0.433** 0.544** 0.302** 0.021 0.668** 0.450** 0.657**
Hibernate2 -0.373** 0.104 0.165 0.016 0.054 0.531** 0.288** 0.522**
eclipse.debug.core -0.682** 0.327** 0.317** 0.273** 0.070 0.298** 0.125 0.597**
eclipse.debug.ui -0.508** 0.498** 0.497** 0.418** 0.139 0.128 -0.022 0.131
eclipse.jface -0.363** 0.099 0.205* 0.106** 0.063 0.207* 0.110 0.137
eclipse.jdt.debug -0.605** 0.471 0.495** 0.474** 0.223 0.474** 0.361** 0.489**
eclipse.team.core -0.475** 0.278 0.261 0.328* 0.102 0.241 0.138 0.451**
eclipse.team.cvs.core -0.819** 0.608** 0.557** 0.369 -0.037 0.614** 0.383 0.744**
eclipse.team.ui -0.618** 0.270 0.290 0.056 -0.003 0.144 -0.107* 0.299*
eclipse.update.core -0.656** 0.656** 0.677** 0.606** -0.095 0.433** 0.278 0.729**
Median -0.605 0.327 0.317 0.328 0.063 0.365 0.208 0.505

#SCC of interfaces. This result confirms our belief that the
violation of the Interface Segregation Principle can impact
the robustness of interfaces.

B. Prediction analysis

To test the research hypothesis H2, we analyzed whether
the IUC metric can improve prediction models to classify
interfaces into change-prone and not change-prone. We per-
formed a series of classification experiments with three dif-
ferent machine learning algorithms. Prior work [25] showed
that some machine learning techniques perform better than
others, even though they state that performance differences
among classifiers are marginal and not necessarily significant.
For that reason we used the following classifiers: Support
Vector Machine (LibSVM), Naive Bayes Network (NBayes) and
Neural Nets (NN) provided by the RapidMiner toolkit.

For each project, we binned the interfaces into change-
prone and not change-prone using the median of the #SCC
per project:

interface =

{
change-prone if # SCC > median

not change-prone otherwise

First, we trained the machine learning algorithms using the
following object oriented metrics: CBO, RFC, LCOM, WMC.
We selected these metrics because they showed the strongest
correlation with the #SCC. We refer to this set of metrics as
OO. Next, the training is performed using the OO metrics plus
the IUC metric. We refer to this set of metrics as IUC.

In order to evaluate the classifications models, we use the
area under the curve statistic (AUC). In addition we report the
precision (P) and recall (R) of each model. AUC represents
the probability, that, when choosing randomly a change-prone
and a not change-prone interface, the trained model assigns
a higher score to the change-prone interface [26]. We trained
the models using 10 fold cross-validation and we considered
models with an AUC value greater than 0.7 to have adequate
classification performance [25].

Table IV reports the results obtained with the NBayes
learner. The results show that the median AUC is higher when
we include the IUC metric. Moreover, for each project we
obtained an adequate performance (AUC>0.7) with the IUC.
Only for two projects (JDT Debug and Team UI) out of ten we

registered a better performance for the OO metrics. Using the
LibSVN (see Table V) and the NN (see Table VI) classifiers
we obtained similar results. With LibSVN, in eight projects
the IUC metrics outperformed the OO metrics. Using NN, in
seven projects out of ten the IUC metrics outperformed the
OO metrics.

The median values of the Precision and Recall show similar
results for most of the projects. In several projects, however,
the Precision and Recall is affected by the lack of information
about interfaces (i.e., a high percentage of interfaces did not
change during the observed time period). For instance, in
the eclipse.jface project the number of interfaces that did not
change is 81% (85 out of 105). The result is that the prediction
model computed with the NN learner showed a Precision and
Recall of 0.

TABLE IV: AUC, Precision and Recall using Naive Bayes
Network (NBayes) with OO and IUC to classify interfaces
into change-prone and not change-prone

Project AUCOO POO ROO AUCIUC PIUC RIUC

eclipse.team.cvs.core 0.55 90 75 0.75 92.6 83.33
eclipse.debug.core 0.75 93 38 0.79 94.1 55.23
eclipse.debug.ui 0.66 63.81 40.33 0.72 69 41
hibernate2 0.745 78.62 32.02 0.807 84.22 85.33
hibernate3 0.835 88.61 57.92 0.862 82.8 56.31
eclipse.jdt.debug 0.79 69.67 47.67 0.738 77.71 45.38
eclipse.jface 0.639 50 28.33 0.734 53.85 48.33
eclipse.team.core 0.708 68.75 48.13 0.792 58.33 43.33
eclipse.team.ui 0.88 85 70 0.8 78.95 75
eclipse.update.core 0.782 67.49 46.5 0.811 81.19 61.67
Median 0.747 74.14 47.08 0.791 80.07 55.77

To investigate whether the difference between the AUC
values of OO and IUC metrics are significant we performed
the Related Samples Wilcoxon Signed-Ranks Test. The results
of the test show a significant difference at α= 0.05 for the
median AUC obtained with LibSVN. The difference between
the medians obtained with NBayes and NN was not significant.

Based on these results we can partially accept the hypothesis
H2. The additional information provided by the IUC metric
can improve the median performance of the prediction models
by up to 9.2%. The Wilcoxon test confirmed this improvement
for the LibSVM learner, however not for NBayes and NN
learners. This result highlights the need to analyze a wider
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dataset in order to provide a more precise validation.

TABLE V: AUC, Precision and Recall using Support Vector
Machine (LibSVN) with OO and IUC to classify interfaces
into change-prone and not change-prone

Project AUCOO POO ROO AUCIUC PIUC RIUC

eclipse.team.cvs.core 0.692 55.61 54.2 0.811 90.91 83.33
eclipse.debug.core 0.806 82.61 46 0.828 89.47 52.5
eclipse.debug.ui 0.71 75 21.33 0.742 80.83 26.8
hibernate2 0.735 70 40 0.708 66.76 45
hibernate3 0.64 52 33.45 0.856 82.4 73.36
eclipse.jdt.debug 0.741 67.17 56.24 0.82 68.56 58.33
eclipse.jface 0.607 66.67 45 0.778 72 62
eclipse.team.core 0.617 66.67 45 0.608 58.33 45
eclipse.team.ui 0.74 73.33 70 0.883 83.33 75
eclipse.update.core 0.794 86.67 56.83 0.817 81 64.17
Median 0.722 68.58 45.5 0.814 80.91 60.16

TABLE VI: AUC, Precision and Recall using Neural Nets
(NN) with OO and IUC to classify interfaces into change-
prone and not change-prone

Project AUCOO POO ROO AUCIUC PIUC RIUC

eclipse.team.cvs.core 0.8 71.43 71.43 0.8 87.5 100
eclipse.debug.core 0.85 80 80 0.875 91.67 70
eclipse.debug.ui 0.748 79.33 44.67 0.766 78.05 58.5
hibernate2 0.702 53.85 50 0.747 50 45
hibernate3 0.874 83.17 69.52 0.843 78.49 69.05
eclipse.jdt.debug 0.77 73.39 63.24 0.762 80.5 58.05
eclipse.jface 0.553 0 0 0.542 0 0
eclipse.team.core 0.725 53.33 50 0.85 61.11 63.33
eclipse.team.ui 0.65 83.33 75 0.75 78.95 75
eclipse.update.core 0.675 70 58.33 0.744 78.33 56.67
Median 0.736 72.41 60.78 0.764 78.41 60.69

C. Summary of Results

The results of our empirical study can be summarized as
follows:

The IUC metric shows a stronger correlation with the
#SCC of interfaces than the C&K metrics. With a median
Spearman rank correlation of -0.605, the IUC shows a stronger
correlation with the #SCC on Java interfaces than the C&K
metrics. Only the WMC metric shows a substantial correlation
in five projects out of ten, with a median value of 0.505, hence
we accepted H1.

The IUC metric improves the performance of predic-
tion models to classify change- and not change-prone
interfaces. The models trained with the LibSVN and NBayes
using the IUC metric set outperformed the models computed
with the OO metric set in eight out of ten projects. Using
the NN learner, the models of seven projects showed better
performance with the IUC metric set. This improvement in
performance is significant for the models trained with LibSVN,
however not for the other two learners. Therefore, we partially
accepted H2.

V. DISCUSSION

This section discusses the implications of our results and
the threats to validity.

A. Implications of Results

The implications of the results of our study are interesting
for researchers, quality engineers and, in general, for develop-
ers and software architects.

The results of our study can be used by researchers inter-
ested in investigating software systems through the analysis
of source code metrics. Studies based on source code metrics
should take into account the nature of the entities that are
measured. This can help to obtain more accurate results.

Quality engineers should consider the possibility to enlarge
their metric suite. In particular, the set of metrics should in-
clude specific metrics for measuring the cohesion of interfaces,
such as the IUC metric. The C&K metrics are limited in
measuring this cohesion of interfaces.

Finally, developers and software architects should use the
IUC metric to measure the conformance to the ISP. Our results
showed that low IUC values, indicating a violation of the ISP,
can increase the effort needed to maintain software systems.

B. Threats to Validity

We consider the following threats to validity: construct,
internal, conclusion, external and reliability validity. Threats
to construct validity concern the relationship between theory
and observation. In our study, this threat can be due to the
fact that we measured the metrics on the last version of the
source code. Previous studies in literature also used metrics
collected from a single release (e.g., [27] [28]). We mitigated
this threat by collecting the metrics from the last release, since
this release reflects the history of a system. Nevertheless, we
believe that further validation with metrics measured over time
(i.e., from different releases) is desirable.

Threats to internal validity concern factors that may af-
fect an independent variable. In our study, the independent
variables (values of the metrics and #SCC) are computed
using deterministic algorithms (provided by the Understand
and Evolizer tools) that always deliver the same results.

Threats to conclusion validity concern the relationship be-
tween the treatment and the outcome. Wherever possible, we
used proper statistical tests to support our conclusions for the
two research questions. We used the Spearman correlation,
which does not make any assumption on the underlying data
distribution to test H1. To address H2 we selected a set of
three machine learning techniques. Further techniques can be
applied to build predictive models, even though previous work
[25] states that performance differences among classifiers are
not significant.

Threats to external validity concern the generalization of
our findings. In our study, this threat can be due to the
fact that eight out of ten projects stem from the Eclipse
platform. Therefore, the generalizability of our findings and
conclusions should be verified for other projects. Nevertheless,
we considered systems of different size and different roles
in the Eclipse platform. Eclipse has been widely used by
the scientific community and we can compare our findings
with previous work. Moreover, we added two projects from
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Hibernate. As a matter of fact, any result from empirical work
is in general threatened by the bias of their datasets [5].

Threats to reliability validity concern the possibility of
replicating our study and obtaining consistent results. The
analyzed systems are open source systems and hence publicly
available; the tools used to implement our approach (Evolizer
and ChangeDistiller) are available from the reported web sites.

VI. RELATED WORK

In this section, we discuss previous work related to the
usage of change prediction models to guide and understand
maintenance of software systems.

Rombach was among the first researchers to investigate the
impact of software structure on maintainability aspects [8],
[29]. He focused on comprehensibility, locality, modifiability,
and reusability in a distributed system environment, highligth-
ing the impact of the interconnectivity between components.

In literature several approaches used source code metrics
to predict the change-prone classes. Khoshgoftaar and Szabo
presented an approach to predict maintenance measured as
lines changed [30]. They trained a regression model and a
neural network using size and complexity metrics. Li and
Henry used the C&K metrics to predict maintenance in terms
of lines changed [9]. The results show that these metrics
can significantly improve a prediction model compared to
traditional metrics. In 2009, Mauczka et al. measured the re-
lationship of code changes with source-level software metrics
[27]. This work focuses on evaluating the C&K metrics suite
against failure data. Zhou et al. [31] used three size metrics
to examine the potentially confounding effect of class size on
the associations between object-oriented metrics and change-
proneness. A further validation of the object-oriented metrics
was provided by Alshayeb [28]. This work highlights the
capability of those metrics in two different iterative processes.
The results show that the object-oriented metrics are effective
in predicting design efforts and source lines modified in
the short-cycled agile process. On the other hand they are
ineffective in predicting the same aspects in the long-cycled
framework process.

Object-oriented metrics were not only successfully applied
for maintenance but als for defect prediction. Basili et al. [10]
empirically investigated the suite of object-oriented design
metrics as predictors of fault-prone classes. Subramanyam
et al. [4] validated the C&K metrics suite in determining
software defects. Their findings show that the effects of those
metrics on defects vary across the data set from two different
programming languages, C++ and Java.

Besides the correlation between metrics and change prone-
ness, other design practices have been investigated in cor-
relation with the number of changes. Khomh et al. [32]
investigated the impact of classes with code smells on change-
proneness. They showed that classes with code smells are
more change-prone than classes without and that specific
smells are more correlated than others. In 2008, Di Penta
et al. [33] developed an exploratory study to analyze the

change-proneness of design patterns and the kinds of changes
occurring to classes involved in design patterns.

A complementary branch of change prediction is the detec-
tion of change couplings. Shirabad et al. [34] used a decision
tree to identify files that are change coupled. Zimmermann et
al. [35] developed the ROSE tool that suggests change coupled
source code entities to developers. They are able to detect
coupled entities on a fine-grained level. Robbes et al. [36]
used fine-grained source changes to detect several kinds of
distinct logical couplings between files. Canfora et al. [37]
use the multivariate time series analysis and forecasting to
determine whether a change occurred on a software artifact
was consequentially related to changes on other artifacts.

Our work is complementary to the existing work since (1)
we explore limitations of the C&K metrics in predicting the
change-prone Java interfaces; (2) we investigate the impact
of the ISP violation as measured by the IUC metric on the
change-proneness of interfaces.

VII. CONCLUSIONS AND FUTURE WORK

Interfaces declare contracts that are meant to remain stable
during the evolution of a software system while the implemen-
tation in concrete classes is more likely to change. This leads
to a different evolutionary behavior of interfaces compared to
concrete classes.

In this paper, we empirically investigated this behavior with
the C&K metrics that are widely used to evaluate the quality
of the implementation of classes and interfaces. The results
of our study with eight Eclipse plug-in and two Hibernate
projects showed that:

• The IUC metric shows a stronger correlation with #SCC
than the C&K metrics when applied to interfaces (we
accepted H1)

• The IUC metric can improve the performance of predic-
tion models in classifying Java interfaces into change-
prone and not change-prone (we partially accepted H2)

Our findings provide a starting point for studying the quality
of interfaces and the impact of design violations, such as the
ISP, on the maintenance of software systems. In particular,
the acceptance of the hypothesis H1 implicates engineers
should measure the quality of interfaces with specific interface
cohesion metrics. Software designers and architects should
follow the interface design principles, in particular the ISP.
Furthermore, researchers should consider distinguishing be-
tween classes and interfaces when investigating models to
estimate and predict the change-prone interfaces.

In future work, we plan to evaluate the IUC metric with
more open source and also commercial software systems.
Furthermore, we plan to analyze the performance of our
models taking into account releases (train the model with a
previous release to predict the change-prone interfaces of the
next release). Another direction of future work is to apply our
models to other types of systems, such as Component Based
Systems (CBS) and Service Oriented Systems (SOS), in which
interfaces play a fundamental role.
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