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Abstract. The quality of data is a key factor that determines the performance of 
information systems, in particular with regard (1) to the amount of exceptions 
in the execution of business processes and (2) to the quality of decisions based 
on the output of the respective information system. Recently, the Semantic Web 
and Linked Data activities have started to provide substantial data resources 
that may be used for real business operations. Hence, it will soon be critical to 
manage the quality of such data. Unfortunately, we can observe a wide range of 
data quality problems in Semantic Web data. In this paper, we (1) evaluate how 
the state of the art in data quality research fits the characteristics of the Web of 
Data, (2) describe how the SPARQL query language and the SPARQL 
Inferencing Notation (SPIN) can be utilized to identify data quality problems in 
Semantic Web data automatically and this within the Semantic Web technology 
stack, and (3) evaluate our approach. 

Keywords: Semantic Web, Linked Data, Data Quality Management, SPARQL, 
SPIN, RDF, Ontologies, Ontology-Based Data Quality Management 

1   Introduction 

Due to the tight coupling of real-world processes and data, poor data quality may lead 
to errors in business processes or to wrong decisions, both causing additional costs. 
Also, data quality can impact product and service quality and the satisfaction of 
customers and employees [3]. According to Redman, the average total costs of poor 
data quality are as high as 8-12 % of a company’s revenues [20]. In 2002, the Data 
Warehousing Institute estimated that poor data quality costs U.S. companies more 
than 600 billion US Dollar annually [19]. Those estimates are strong indicators for the 
significant impact of data quality on business success. 

Semantic Web technologies aim to attach data structure, typed links, and 
axiomatically represented implicit facts to such data that is available on the Web. The 
goal is to empower computers to better extract, combine, interpret, and reuse the data 
[4]. A major share of such data originates from existing relational databases and is 
being lifted by mapping database schema elements to Web ontologies. Ontologies are 
commonly understood as conceptual models of a domain of interest that (1) aim at 
representing a model agreed among multiple individuals and organizations, and valid 



2      Christian Fürber and Martin Hepp 

for multiple contexts, and that (2) contain formal axioms to reduce the ambiguity of 
the conceptual elements [5]. 

Businesses and public institutions have already started to publish significant 
amounts of non-toy data on the Web using Web ontologies. For example, BestBuy 
Inc., one of the largest US retail chains for consumer electronics products, has started 
to publish its full catalog [6] using the GoodRelations ontology [7]. O’Reilly Media 
has also begun to expose their products using GoodRelations in the RDFa syntax [24]. 
In addition to the growing number of data published directly by the owners of the data 
source, the enterprise OpenLink Software has released a middleware technology 
called “Sponger cartridges” that creates, on the fly, RDF representations of Amazon, 
eBay, and other commerce sites using the GoodRelations ontology by accessing 
vendor-specific APIs [12]. This makes an unprecedented amount of actual business 
data available on the Web of Linked Data. 

However, the process of lifting existing data sources to the RDF data model and 
Web ontologies like GoodRelations usually replicates existing data quality problems 
from the original representation. While sophisticated conversion scripts and 
middleware components can filter out some of the problems, the negative impact of 
data quality issues will grow on the Web of Data, because the data will be used in 
more applications and in more different contexts. The amount and impact of any 
problems will increase accordingly. 

In this paper, we describe how data quality problems in Semantic Web data 
originating from relational databases can be identified and classified, and this within 
the Semantic Web technology stack. Our approach is motivated by three main 
assumptions: (1) quality checks based on ontologies are highly reusable, in particular 
in multiple-source scenarios that utilize ontologies as means for data integration, (2) 
the application of Semantic Web technologies facilitates the collective emergence of 
data quality knowledge on the Web, and (3) it is likely that many relational data 
sources will be exposed to the Semantic Web without previously applying strong 
quality checks. Our proposal can also be applied to relational databases inside closed 
settings, e.g. within a single enterprise.  

While existing data quality management tools usually hide the rules inside 
application code or regular expressions, our approach makes the rules much more 
accessible and easier to maintain, extend, and share, because the rules are kept in the 
form of a library of SPARQL queries that are human-readable and platform-neutral. 

2   Overview of Data Quality Problems 

A common, but rather generic definition of high data quality is when it is “fit for use”, 
i.e. that the data meets the required purpose [1]. This popular definition of data quality 
is based on the subjective perception of data quality by data consumers, encompassing 
several dimensions, such as accessibility, completeness, and relevance; see [1] for a 
complete list of established data quality dimensions. Despite the importance of data 
consumers’ perception of data quality, this perspective is not solely sufficient for the 
development of algorithmic approaches for identifying data quality problems. A more 
technical understanding of quality is to require data to be “free of defects” [2]. While 
still rather generic, this allows categorizing data quality problems according to their 
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cause or effect. In the following, we summarize the work of [8-11] and provide a 
typology of data quality problems (see Table 1).  

We trace back the types of quality problems found in literature to four basic types, 
namely inconsistency, lack of comprehensibility, heterogeneity, and redundancy. In 
the following sections, we describe these basic types of data quality problems. For a 
detailed discussion of the original data quality problems, we refer to [8-11]. 

Our current main interest is to improve the quality of literal values in ontology-
based knowledge representations, which have so far not attracted a lot of interest from 
the formal ontology communities. In this paper, we focus on data quality problems in 
single-source scenarios, i.e. such within one database. So far, we have developed 
generally usable identification rules for syntactical errors, missing values, unique 
value violations, out of range values, and functional dependency violations, all of 
which are explained in more detail in section 3. 

Ontologies also promise significant benefits when data from multiple sources is 
being combined during retrieval or integration, e.g. as described in [21], but that is 
part of our ongoing research. Also, we did not yet investigate problems within the 
conceptual model of ontologies themselves. 

Table 1. Common data quality problems in single-source scenarios [8-11] 

Data Quality Problem Basic Type 
Word transposition/Syntax violation Inconsistency 
Outdated values Inconsistency 
False values Inconsistency 
Misfielded values Inconsistency 
Meaningless values Comprehensibility 
Missing values Inconsistency 
Out of range values Inconsistency 
Invalid substrings Inconsistency 
Mistyping / Misspelling errors Inconsistency 
Imprecise values Comprehensibility 
Unique value violation Inconsistency 
Violation of a functional dependency Inconsistency 
Referential integrity violation Inconsistency 
Incorrect reference Inconsistency 
Contradictory relationships Inconsistency 
Existence of synonyms Heterogeneity, 

Redundancy 
Existence of homonyms Comprehensibility 
Approximate duplicate tuples Redundancy 
Inconsistent duplicate tuples Redundancy, 

Inconsistency 
Business domain constraint violation Inconsistency 
Outdated conceptual elements Inconsistency 

2.1   Representational Inconsistency 

Inconsistency subsumes all data quality problems that originate from an actual state 
σ’ of an element Ε to differ from the required state σ for Ε. Thereby, the element Ε 
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can be (1) syntax, (2) the lexical representation of a value, (3) a data type, (4) a 
schema element, or (5) a relationship. For example, the value for an attribute “date” 
may require a syntax (Ε) of state DD/MM/YYYY (σ), but the syntax (Ε) of a value 
could actually have the state YYYY/DD/MM (σ’). So if σ’(E) ≠ σ(E), we call σ’ 
inconsistent to σ. In other words, the actual state of the element is inconsistent to the 
required state of the element. Functional dependency violations are not fully covered 
by this formula. According to [13], functional dependencies exist if a value ν1 of an 
attribute α1 requires specific values νn of one or more other attributes αn in the 
representation. Hence, in contrast to other inconsistency problems, functional 
dependencies encompass states of more than one element. This also applies for 
referential integrity violations, incorrect references, inconsistencies among duplicate 
tuples, and for certain types of business domain constraint violations. 

2.2   Comprehensibility 

We define comprehensibility as the condition of data to be correctly interpreted by 
other applications or users. We further break down comprehensibility into ambiguity 
and vacuity. Ambiguity is if an instance or a schema element can represent two or 
more meanings that are treated differently by any consumer of the data. A typical case 
is the usage of homonyms without providing any context. We consider instances or 
schema elements that have no meaning at all in the presented context as vacuous. It is 
usually difficult to define hard criteria for comprehensibility, because this property 
often depends on the amount of context attached to the data and on the amount of 
background knowledge available to the interpreting agent. Data that is 
comprehensible within a closed enterprise setting may become incomprehensible 
when consumed on a Web scale due to the lack of contextual information. 

2.3   Heterogeneity 

Heterogeneity as a type of data quality problems subsumes all cases in which the 
representation of identical information varies. Heterogeneity mostly heavily occurs in 
multiple-source scenarios and can be broken down into structural heterogeneity and 
semantic heterogeneity. In cases of structural heterogeneity, the same real-world 
domain is represented by different schema elements. Semantic heterogeneity also 
constitutes a difference in the intension of the compared schemata with overlapping 
elements [9]. 

2.4   Redundancy 

Redundancy problems exist when the same real-world entity or relationship is 
represented more than once and are not constrained to multiple-source scenarios. 
Inconsistency problems frequently co-occur with redundancy problems if some of the 
attribute values of the redundant tuples differ in meaning. 
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3   Identifying Data Quality Problems with SPARQL and SPIN 

In this section, we describe our approach to identify data quality problems in 
Semantic Web data through the use of the SPARQL Inferencing Notation (SPIN) 
[17]. First, we describe the architecture of our approach. Next, we show how 
respective rules for the automatic identification of data quality problems in Semantic 
Web data can be designed and used. Finally, we evaluate our approach and outline 
open issues and limitations. 

3.1   Architecture for Ontology-Based Data Quality Management (OBDQM) 

A key goal of our approach is to handle data quality problems entirely within the 
Semantic Web technology stack and to employ existing technologies from the 
Semantic Web community. This allows using the Semantic Web itself for the 
collective emergence of data quality rules, i.e., users can create, improve, and share 
knowledge about spotting and curing data quality problems on the Semantic Web. 

For the extraction of relational data we use D2RQ1. With D2RQ, we can extract 
data from a relational database into an RDF representation. This step will be optional 
for data that is already published as RDF. After extracting the data, we can import the 
data file into TopBraid Composer Free Edition2 or another environment that supports 
SPIN3. SPARQL4 is a query language for querying RDF data. SPIN is a framework 
that utilizes SPARQL to facilitate the definition of constraints and inference rules in 
ontologies. When applying the constraints on the ontology, SPIN can flag all 
problematic data elements and list them in a report. The defined rules can be attached 
to a class of entities in the form of SPARQL queries. With the use of SPARQL query 
templates in SPIN, it is possible to define generic queries with high reusability [17]. 

When lifting relational data to RDF automatically, we usually get very simple 
ontology structures based on the elements of the database. This requires refinements 
to enable more sophisticated reasoning. For example, the domain and range 
definitions of properties are usually not available from the extraction. In single-source 
scenarios, such can be added directly to the extracted ontology using an ontology 
editor. In multiple-source scenarios, however, it might be more suitable to create a 
global ontology with mappings to the local database schemata to enable reasoning 
with a source-independent vocabulary [18]. The mappings from the local database 
schemata to the global ontology can be created with D2RQ as well. Figure 1 
illustrates the basic approach. 

To facilitate the identification of data quality problems, we have to create 
formalized definitions of the expected data quality problem types. For this purpose, 
we employ SPARQL query templates. The templates have to be customized and can 
be attached to the class of entities that contains the data to be checked. They are 
attached using SPIN constraints. After the creation of the query templates and its 
customization, SPIN can be used to identify, flag, and report each data quality 

                                                             
1 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/ 
2 http://www.topquadrant.com/products/TB_Composer.html#free 
3 http://spinrdf.org/spin.html 
4 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ 
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problem. Thus, further analysis of the presented data quality problems can be 
performed by domain experts; alternatively, heuristics for solving the problems can be 
triggered automatically. 

 

Fig. 1. Architecture of ontology-based data quality management  

3.2   Identification of Data Quality Problems with SPIN 

With the proposed architecture, we can focus on the main problem, i.e., the automated 
identification of data quality problems. For that, we define generic SPARQL query 
templates based on the typology of data quality problems from section 2. 

As explained in section 2, inconsistency in the representation exists if the real state 
of an element does not meet the expected state of an element. Thus, in order to 
identify data quality problems with SPARQL queries, we need to express nearly all 
states of an element that do not meet the expected state. In other words, every 
SPARQL query template used to identify data quality problems has to define either all 
legal or all illegal states of an element. In the case of OWL object properties, the 
amount of axioms determines the effort for spotting respective problems. A greater 
formal account of the ontology, e.g. by including disjointness axioms, simplifies the 
rules design for data quality management. For OWL datatype properties, the use of 
intervals, regular expressions, and negations can reduce a lot of manual effort. 

We define ASK and CONSTRUCT queries in the property spin:body of the 
generalized query template with variables, as depicted in Figure 2. The element types 
of the variables have to be defined in the property spin:constraint in order to 
support customization of the query. Typical element types in this case are classes, 
properties, or literals. Since the answer of ASK queries can only be true or false, they 
are especially suitable to simply flag data quality problems. When the query result 
returns true, the problems will be flagged by SPIN tools automatically. If the query 
contains more than one triple in the WHERE clause, i.e. class, property, and literal 
combinations, it is recommended to use a CONSTRUCT query statement with the 
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properties spin:ConstraintViolation, spin:violationRoot, and 
spin:violationPath to correctly flag the data quality problem where it occurs. 
Finally, we only have to define an error message in the property 
spin:labelTemplate that will be shown with the flagged data quality problem. 

 

Fig. 2. Properties of a SPARQL query template in TopBraid Composer 

For the identification of syntax violations in literals, we use regular expressions in 
the SPARQL query in order to define the allowed characters in the literal and simply 
negate it. SPIN tools will flag all literals with syntactical states that do not satisfy the 
regular expression. 

For the identification of functional dependency violations, we focused on defining 
bilateral dependencies in the generic query template, i.e., a value ν1 of attribute α1 
requires a certain value ν2 for attribute α2. This can be extended to multilateral 
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relationships by using this query template multiple times. In our example we would 
additionally define that value ν1 of attribute α1 also requires a certain value ν3 for 
attribute α3. For instance, we can define that the city “Las Vegas” can only have a 
corresponding country literal “USA” and a corresponding state literal “NV”. This 
example requires the definition of two customized queries. In a later extension, we 
will tap existing Linked Open Data resources like DBPedia as references for allowed 
value combinations, because such resources provide a vast amount of relevant value 
instances and information about valid combinations. 

We also created generic queries for the identification of missing values, unique 
value violations, and out of range values. Missing values can be detected with a 
simple query searching for empty literal values. This works for numeric and string 
data types.  

Table 2. Generalized SPARQL queries for the identification of data quality problems  

Data Quality Problem Generalized SPARQL Query 
Missing values ASK WHERE { 

    ?this ?arg1 "" . 
} 

Functional dependency 
violation 

CONSTRUCT { 
    _:b0 a spin:ConstraintViolation . 
    _:b0 spin:violationRoot ?this . 
    _:b0 spin:violationPath ?arg3 . 
} 
WHERE { 
    ?this ?arg1 ?arg2 . 
    FILTER (!spl:hasValue(?this, 
?arg3, ?arg4)) . 
} 

Syntax violation  
(only letters allowed) 

ASK WHERE { 
    ?this ?arg1 ?value . 
    FILTER (!regex(str(?value), 
"^([A-Za-z,. ])*$")) . 
} 

Out of range value 
(lower limit) 

ASK WHERE { 
    ?this ?arg1 ?value . 
    FILTER (?value < ?arg2) . 
} 

Out of range value 
(upper limit) 

ASK WHERE { 
    ?this ?arg1 ?value . 
    FILTER (?value > ?arg2) . 
} 

Unique value violation CONSTRUCT { 
    _:b0 a spin:ConstraintViolation . 
    _:b0 spin:violationRoot ?a . 
    _:b0 spin:violationPath ?arg1 . 
} 
WHERE { 
    ?a ?arg1 ?uniqueValue . 
    ?b ?arg1 ?uniqueValue . 
    FILTER (?a != ?b) . 
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Data Quality Problem Generalized SPARQL Query 
} 

 
The identification of unique values requires a search of equal literals in the same 

data type property of a different tuple. Since we are again using more than one triple 
pattern in the WHERE clause, it is necessary to define the location of the potential 
violation in a CONSTRUCT statement so that the URI of the problem can be 
reported. Finally, out of range values can only occur with numeric data types. Hence, 
they can easily be detected with the relational operators “less than” or “greater than”, 
as long as datatypes are properly attached to the RDF literals. For more flexibility, we 
created two queries to identify out of range values, one for values surpassing the 
upper limit and one for values below the lower limit. Hence, it is possible to define 
the legal range either as a single point boundary or in the form of an interval. The 
limits have to be set during the customization of the queries. All of our queries are 
summarized in table 2. 

4   Related Work 

Data quality problems have been addressed by database research for over a decade. In 
the Semantic Web research community, the problem of data quality is a rather new 
topic. With growing adoption of the Semantic Web, the diversity of data sources that 
will be lifted to RDF and the loss of contextual information when reusing data on a 
Web scale will increase the importance of data quality research for the Web of Linked 
data. Most existing work from the Semantic Web does not address data quality at the 
instance level. In particular, errors that are not directly accessible at the logical level 
received little attention. In the following, we summarize the most relevant previous 
works. 

Ji et al. describe a plug-in called RaDon (Repair and Diagnosis on Ontology 
Networks) for ontology modeling software, which tries to extend capabilities of 
existing reasoners to detect inconsistencies [16]. RaDon focuses on logical 
contradictions when mapping ontologies to each other. The tool assumes that the 
single ontologies are already consistent and coherent, and focuses on repairing 
mappings between ontologies. Hartig proposed a provenance model for Web data 
[22]. It is based on the finding that information on the provenance of data can be used 
to predict the perceived quality of data by its consumers. This provenance model 
considers data access and data creation. In [23], he complements that work by a 
framework to extent Semantic Web data with trust values. The trust values are based 
on subjective perceptions about the query object. Although the latter two approaches 
provide more transparency about the underlying data sources and its potential 
trustworthiness, they do not directly identify data quality problems. Hence, they do 
not provide enough information to spot and repair data quality problems on the 
instance level. 

The approach described by Wang et al. in [14] uses a task ontology for describing 
data cleansing tasks to be performed over existing information systems. Users are 
required to define a “cleaning” goal, which is translated into queries on the 
knowledge base to identify adequate cleaning methods. Based on the query results, an 
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appropriate cleansing algorithm can be applied. Grüning describes a domain-specific 
example of data quality management for energy companies that partly uses ontologies 
[15]. In a training phase, domain experts have to flag data that exhibit data quality 
problems. Based on the annotations of the training phase, algorithms can be trained to 
identify and annotate data quality problems automatically. Unfortunately, this 
excellent approach currently focuses on data quality management for the energy 
industry only. Moreover, it only considers outlier analysis, redundancies, functional 
dependency violations, and suspicious timestamps. Although the use of learning 
algorithms saves a lot of effort, wrongly trained algorithms may limit the impact of 
that work. 

To the best of our knowledge, there is currently no holistic approach that (1) 
provides a domain-independent data quality management methodology for Semantic 
Web data, and that (2) handles those problems entirely within the Semantic Web 
technology stack. 

5   Evaluation 

In order to evaluate our approach, we created a small sample MySQL database 
consisting of four tables with data about products and their inventory locations. For 
the evaluation scenario, we assumed that we want to publish the data on the Semantic 
Web. The sample data contained errors for different inconsistency problems, e.g. the 
city “Las Vegas” was wrongly located in the country of “France”. We dumped the 
database completely into an RDF/XML file using a script from D2RQ. The script 
created individual ontology classes for each of the database tables, data type 
properties for each of the table columns, and RDF literals from the attribute values. 
After the extraction of the data, we refined the raw ontology in TopBraid Composer. 
First, we changed the rdf:type to owl:Class for the “table-classes”, defined the 
four classes as subclasses of owl:Thing, and assigned domains and ranges to the 
datatype properties. 

After refining the extracted ontology, we customized the generic queries for our 
ontology. The exclamation marks in Fig. 3 show the identified data quality problems 
of a certain tuple. In this example, we defined a functional dependency between the 
city “Las Vegas” and the country “USA”. Moreover, we defined that the properties 
vocab:location_COUNTRY and vocab:location_STREET should only contain 
letters and that the property vocab:location_STREETNO must always have a literal 
value. Finally, we defined that the property vocab:location_ID must only contain 
unique values. Any new data of this class underlies the same quality checks. 

The evaluation based on the sample data shows that the developed generic rules are 
suitable to identify data quality problems in literals. Since we are at an early stage of 
research, we have not yet developed algorithms for all data quality problems from 
table 1. In the future, we will design additional rules for the identification of 
comprehensibility problems, redundancy problems, and heterogeneity problems. The 
identification of certain data quality problems, e.g. false values or outdated values, 
may likely require additional annotations in the ontology. At present, we have no 
formal evidence about the scalability of our approach. However, existing commercial 
databases for RDF data, e.g. Virtuoso from OpenLink Software, contain powerful 
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optimizations for regular expressions and scale well up to at least 8 billion triples. We 
are planning a more formal evaluation on real-world data sets to prove practical 
applicability. 

 

Fig. 3. Identification of data quality problems 

6   Conclusion and Outlook on Future Work 

The proposed approach provides a set of generally usable query templates that allow 
the identification of data quality problem types, as known from data quality research, 
ontp relational database content lifted to RDF, and to native RDF knowledge bases 
alike, independently of a specific domain or source system. Therefore, it is 
theoretically suitable for any Semantic Web data before or after its publication on the 
Web.  

So far, we have developed query templates for the identification of syntax errors, 
missing values, unique value violations, out of range values, and functional 
dependency violations. Future work will address the development of additional 
identification rules for other data quality problems. Moreover, we plan to develop 
correction heuristics for the automated repair of some of the identified data quality 
problems. It is also planned to evaluate our approach using large-scale real-world data 
sets to prove the practical applicability. Additionally, we will soon expand the scope 
of our approach to multi-source scenarios that will be suitable for data quality 
management of master data distributed in heterogeneous data sources. 
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