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ABSTRACT

Noise robustness of automatic speech recognition benefits
from using missing data imputation: Prior to recognition the
parts of the spectrogram dominated by noise are replaced by
clean speech estimates. Especially at low SNRs each frame
contains at best only a few uncorrupted coefficients. This
makes frame-by-frame restoration of corrupted feature vec-
tors error-prone, and recognition accuracy will mostly be
sub-optimal. In this paper we present a novel imputation
technique working on entire words. A word is sparsely rep-
resented in an overcomplete basis of exemplar (clean) speech
signals using only the uncorrupted time-frequency elements
of the word. The corrupted elements are replaced by esti-
mates obtained by projecting the sparse representation in
the basis. We achieve recognition accuracies of 92% at SNR
-5 dB using oracle masks on AURORA-2 as compared to
61% using a conventional frame-based approach. The per-
formance obtained with estimated masks can be directly re-
lated to the proportion of correctly identified uncorrupted
coefficients.

1. INTRODUCTION

Automatic speech recognition (ASR) performance degrades
substantially when speech is corrupted by background noises
that were not seen during training. Missing Data Techniques
(MDT) [1, 2] constitute a powerful way to mitigate the im-
pact of both stationary and non-stationary noise. The gen-
eral idea behind MDT is that it is possible to estimate −prior
to decoding− which spectro-temporal elements of the acous-
tic representations are reliable (i.e., dominated by speech
energy) and which are unreliable (i.e., dominated by back-
ground noise). By storing these reliability estimates in a so
called spectrographic mask, this information can be used to
treat reliable features differently from unreliable ones dur-
ing decoding: Either the unreliable features can be replaced
by clean speech estimates (feature vector imputation [3, 4]),
or the decoder can be modified so that it can deal with the
unreliable input data directly (marginalization [2]). In this
paper we will only deal with imputation.

Many different techniques have been proposed to esti-
mate spectrographic masks (cf. [5] for a comprehensive sur-
vey), ranging from SNR based estimators [6] to methods
that focus on speech characteristics, e.g. harmonicity based
SNR estimation [7], mask estimation by means of Bayesian
classifiers [8] and masks composed of spectro-temporal frag-
ments [9]. From experiments with signals that have been
constructed by artificially adding noise to clean speech, it is
well-known that estimated masks yield inferior recognition
accuracies compared to an ’oracle’ mask 1. As explained in

1Oracle masks are masks in which reliability decisions are based
on exact knowledge (e.g. not available in practical settings) about
the extent to which each time-frequency cell is dominated by either
noise or speech.

[8] the gain in recognition accuracy obtainable with a given
estimated mask is hard to predict from a direct comparison
with the oracle mask.

Due to continuity constraints implicitly imposed by the
speech production system, speech energy is not randomly
distributed over the time-frequency plane and as a conse-
quence, a realistic mask will in general not have arbitrary
granularity. Unfortunately, in most ASR approaches impu-
tation takes place on a frame by frame (i.e. strictly local)
basis 2. This hampers exploiting the continuity over time of
the mask and the speech signal. Particularly at low SNRs
(≤ 0 dB), it may happen that only few, if any, elements in
a single acoustic vector are labeled reliable. The more fea-
tures become unreliable, the more serious the risk that an
individual frame contains too little information for properly
dealing with unreliable coefficients. This effect will be ag-
gravated if some of the coefficients were incorrectly labeled
reliable by the used mask estimation procedure. As a con-
sequence the acoustic scores of such frames will be affected
and if there are too many frames with few isolated reliable
features, recognition accuracy is bound to suffer significantly.

In this paper we propose a novel data imputation tech-
nique that does take into account a larger spectro-temporal
context. The novel technique is dubbed sparse imputation
and is based on the work in Compressed Sensing [10, 11].
The technique is illustrated by means of experiments using
the AURORA-2 digit recognition task.

Similar to the AURORA-backend that uses whole word
models we treat noisy digits as units and represent them by
fixed length vectors. Following the same approach as in [12],
we represent unknown digits as a linear combination of as
few as possible exemplar digits taken from the clean speech
part of the database. In building the optimal linear combi-
nation to represent noisy digits, we only take into consider-
ation the features that were considered reliable in the noisy
input. Next, the selected clean exemplar digits are used for
reconstructing the unreliable coefficients of the noisy digits.
Finally,the imputed feature vectors are processed by a con-
ventional HMM-based ASR assuming that all features are
reliable.

We investigate the performance of sparse imputation by
comparing recognition accuracies with the results of a clas-
sical frame based imputation approach. Since the perfor-
mance of any imputation technique hinges on the quality
of the spectrographic mask, we investigate sparse imputa-
tion for two types of masks: 1) an oracle mask and 2) an
estimated spectrographic mask in the form of a harmonicity
mask [7]. In estimated masks the estimates can be biased to-
wards higher false accept or higher false reject rates. There-
fore, we investigate the performance with the harmonicity

2In fact, the fragment decoder approach [9] in which decoder
knowledge may affect the eventual choice of mask is the only ex-
ception we are aware of.



mask for three different settings, resulting in three different
proportions of features considered as reliable.

2. METHOD

2.1 Speech material and classification task

In order to be able to focus on key factors that govern the
success of our new data imputation technique, without be-
ing hampered by complications associated with segmenta-
tion issues, we study a single-digit recognition/classification
task using speech data from the AURORA-2 corpus. The
single-digit speech data was created by extracting individ-
ual digits from the utterances in the AURORA-2 corpus [13]
by segmenting the digit words in each utterance using the
segmentation obtained from a forced alignment of the clean
speech utterances with the reference transcription. We used
the segments from test set A, which comprises 1 clean and 24
noisy subsets, with four noise types (subway, car, babble, ex-
hibition hall) at six SNR values, SNR= 20, 15, 10, 5, 0,−5 dB
to evaluate recognition accuracy as a function of imputation
method, SNR and bias in the harmonicity masks.

2.2 Speech decoder

For the baseline system, we used a MATLAB implementa-
tion of a missing data recognition system described in [4].
Acoustic feature vectors consisted of mel frequency log power
spectra (23 bands with center frequencies starting at 100 Hz,
as well as first and second derivatives, i.e. 69 coefficients in
total), which are then converted to 69 PROSPECT features
[4]. Unreliable features are replaced by estimated values us-
ing maximum likelihood per Gaussian-based imputation [4].
As in [4] we trained 11 whole-word models with 16 states
per word, as well as two silence words with 1 and 3 states re-
spectively, using clean speech. The acoustic representations
obtained with our sparse imputation method were recognized
using this same decoder, using a spectrographic mask that
considers every time-frequency cell as reliable (thus perform-
ing no additional missing data imputation). Prior to per-
forming recognition delta and delta-delta coefficients were
calculated on the restored acoustic features.

2.3 Fixed length vector representation of digits

Since the digits have different durations, and since the
method described in the following sections works on obser-
vation vectors of fixed size, we converted the acoustic feature
representations to a time normalized representation (a fixed
number of acoustic feature frames). The re-sampling was
done by applying spline interpolation to the spectrographic
representation and then re-sampling the 23 mel frequency
log-energy coefficients individually such that a fixed num-
ber of acoustic vectors per word resulted. In our experiment
we used 35 time frames per word i.e., the mean number of
time frames per word in the training set. For the sparse im-
putation technique the time-frames were then concatenated
to form a single fixed length observation vector. Thus each
digit was represented by a K = 23 × 35 = 805 dimensional
vector y.

A pilot study revealed that the recognition accuracies did
not decrease after applying the resampling procedure. This
can be understood from the nature of the back-end: while
digit length may be somewhat discriminative, it is known
to hardly affect the recognition results of an HMM-based
decoder

2.4 Sparse representation

Following [12] we consider a test digit y to be a linear com-
bination of exemplar digits dn, where the index n denotes a
specific exemplar digit (1 ≤ n ≤ N) and N the number of
exemplar digits. We write:

y =

N
X

n=1

αndn

with weights αn ∈ R.
Denoting the kth vector element of dn by dk

n, and recall-
ing that each digit in the example set is represented by a
vector with dimensionality K, we write our set of exemplar
digits as a matrix A with dimensionality K × N :
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We can now express any digit y as

y = Ax (1)

with x = [α1α2 . . . αN−1αN ]T an N -dimensional vector that
will be sparsely represented in A (i.e., most coefficients α are
zero).

The exemplar digits were taken from the clean train set
of AURORA-2 which consists of N = 27748 digits. How-
ever, the number of columns N in A had to be reduced in
order to make classification times practical. Thus, a subset
of the training set was randomly selected, i.e., no attempt
was made to represent genders, regional background or digits
uniformly. A pilot study showed that any basis size larger
than N = 4000 columns yielded equivalent recognition accu-
racies. In this paper, we will therefore be using N = 4000.

2.5 l1minimization

In order to utilize the sparse vector x to represent a digit
y we need to solve the system of linear equations of Eq. 1.
Typically, the number of exemplar digits will be much larger
than the dimensionality of the feature representation of the
vowels (K ≪ N). Thus, the system of linear equations in
Eq. 1 is underdetermined and has no unique solution.

Research in the field of compressed sensing [10, 11] has
shown that if x is sparse, x can be recovered exactly by
solving:

min ‖x‖0 subject to y = Ax

with ‖.‖0 the l0 norm (i.e., the number of nonzero elements).
Unfortunately, this combinatorial problem is NP-hard [14]
and therefore infeasible in practical applications. However, it
has been shown that x can be recovered with high probability
[15] by solving:

min ‖x‖1 subject to y = Ax

This l1minimization problem can be cast as a least squares
problem with a l1penalty also referred to as the LASSO [16]:

min ‖Ax − y‖2 + λ‖x‖1 (2)

with a regularization parameter λ and a non-negativity con-
straint on x.

2.6 Spectrographic mask

A spectrographic mask is a matrix with the same dimensions
as the spectrographic representation of a digit. After the re-
sampling procedure described in Section 2.3 its size is I × J
with I = 23 the number of frequency bands, and J = 35
the number of time frames. We used two different masks to
describe the reliability of time-frequency cells in the spectro-
graphic representation of a digit: 1) an oracle mask and 2)
a harmonicity mask [7].



−505101520clean
20

30

40

50

60

70

80

90

100

SNR (dB)

A
c
c
u

ra
c
y
 (

%
)

Aurora−2 single digit recognition

 

 

Oracle mask SI

Oracle mask NI

Harmonicity mask −9dB NI

Harmonicity mask −9dB SI

Figure 1: AURORA-2 single digit recognition accuracy. The
figure shows results for both normal Missing Data Imputation
(NI) as well as sparse imputation (SI) for the oracle mask and
the harmonicity mask.
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Figure 2: AURORA-2 single digit recognition accuracy. The
figure shows results for sparse imputation for the oracle mask
and a harmonicity mask at three threshold levels -18, -9 and 0
dB.

.

The oracle mask was computed on resampled spectro-
graphic representations of the noise N and clean speech S as
follows:

M(i, j) =

(

1
def
= reliable S(i, j) ≥ (N(i, j) − θ)

0
def
= unreliable otherwise

(3)

with frequency band i (1 ≤ i ≤ I) and time frame j (1 ≤ i ≤
J). We used a fixed threshold θ = 3dB.

For the computation of the harmonicity mask the noisy
speech signal is first decomposed into a harmonic and a ran-
dom part using the procedure in [7]. Next, the local energy
of speech and noise are estimated by thresholding the ratio
between the harmonic and random part analogously to Eq.3.
In [7] it was determined that a threshold of θ = −9 dB was
optimal for AURORA-2. Since this threshold value influ-
ences the number of time-frequency cells labelled reliable as
well as the number of cells incorrectly labeled reliable, we
experimented with a large number of threshold values in the
range [0, 18]. In this paper we show illustrative results for
three different thresholds, viz. 0, −9 and −18 dB. The har-
monicity mask is created directly from the raw acoustic data.
In order to obtain a spectrographic mask with proper time
normalization we therefore applied the resampling procedure
described in Section 2.3 directly on the harmonicity mask.
Next, we applied thresholding to convert the resampled mask
to a binary mask.

For use in the sparse imputation framework, we reshape
the mask M to form a K = 805-dimensional vector m by
concatenating subsequent time frames as described in 2.3.
Since the baseline MDT decoder employs delta and delta-
delta coefficients imputation, we construct a spectrographic
mask for these coefficients using the procedure described in
[17].

2.7 Sparse imputation

Given an observation vector y (representing an entire digit),
we denote yr as the reliable coefficients of y. These are
the elements for which the corresponding elements of mask
vector m are equal to one. Similarly, we denote the unreli-
able coefficients of y (for which the corresponding elements
of mask vector m are equal to zero) by yu. Without loss

of generality we reorder y and A as in [18] so that we can
write:

»

yr

yu

–

=

„

Ar

Au

«

x (4)

with Ar and Au pertaining to the rows of A indicated by the
reliable and unreliable coefficients in y. Since we consider the
values of the yr to be dominated by clean speech, we solve
Eq. 2 using only yr instead of y. After obtaining the sparse
representation x we use this vector to impute clean estimates
yi for the unreliable coefficients yu using the support of x
in the basis Au:

ŷ =

»

yr

yi

–

=

»

yr

Aux

–

(5)

yielding a new observation vector ŷ. We denote the number
of reliable coefficients in y by Kr = dim(yr). Obviously, no
restoration of the unreliable coefficients in y is possible if
Kr = 0. In practice, restoration of the unreliable coefficients
will be unlikely below some threshold Kr < δ. However,
while for some problems the value of δ can be theoretically
derived [10, 11, 18], it is not trivial to estimate bounds on the
value of δ, for example because we cannot predict the sparsity
of x obtained in Eq. 4. Hence, in our implementation, we
do not perform sparse imputation if Kr = 0 but otherwise
ignore the possible unlikeliness of the successful restoration
of y.

In order to perform recognition we restore the original or-
dering and reshape ŷ of Eq. 5 to a spectrographic representa-
tion with dimensions 23×35. The method was implemented
in MATLAB. The l1minimization was carried out using the
SolveLasso package described in [19] and implemented as
part of the SparseLab toolbox which can be obtained from
www.sparselab.stanford.edu.

3. RESULTS

Figure 1 shows the recognition accuracy on the AURORA-2
corpus single-digit task. The accuracies reported here are the
averages obtained for the four noise types in test set A. The
results show recognition accuracies using the oracle mask
and the estimated harmonicity mask (with θ = −9 dB as de-
scribed in [7]) for the baseline missing data recognizer, as well
as the sparse imputation front-end. For the low SNRs and



the oracle masks the sparse imputation technique substan-
tially outperforms the baseline imputation technique, with a
recognition accuracies of 92% and 61% at SNR=−5 dB. Ac-
curacies using an estimated (harmonicity) mask with sparse
imputation at higher SNR’s (> 0 dB) are lower than when
doing standard imputation (at most 6% at SNR=5 dB). At
SNR=0 dB the results are competitive while at SNR=−5
dB the sparse imputation technique performs better than
the baseline.

Figure 2 shows the recognition accuracies of different
thresholds for the harmonicity mask when used in combina-
tion with the sparse imputation frontend. The best overall
accuracies are obtained using the -9 dB threshold, while a
lower (-18 dB) threshold value results in slightly better per-
formance at SNR=−5 dB; a higher (0 dB) threshold value
affects recognition accuracies for all SNRs below 20 dB.

Figure 3 shows the percentage of reliable time-frequency
cells in a spectrographic mask according to the mask es-
timation procedures. The oracle mask classifies the largest
proportion of time-frequency cells as reliable, followed by the
harmonicity mask at threshold −18 dB. Lower numbers of
reliable time-frequency cells are obtained at thresholds levels
−9 and 0 dB. The percentage of reliable cells mostly linear
with respect to the SNR, except for the slight asymptotic be-
havior at SNRs below zero. Additionally, Figure 3 shows the
number of unreliable time-frequency cells incorrectly labeled
reliable (dubbed false reliables), expressed as percentage of
the number of reliable cells, using the oracle mask as golden
standard. The figure shows that the highest percentage of
false reliables is obtained at threshold value −18 dB, followed
by −9 and 0 dB.

4. DISCUSSION

The recognition accuracy of the sparse imputation method
with the oracle mask, 92% at SNR=−5 dB shows that the
speech signal contains enough information to restore the un-
reliable time-frequency cells, even at negative SNRs. Com-
paring this to the 61% recognition accuracy of the baseline
decoder, it is clear that this information is not fully em-
ployed when doing imputation on a frame-by-frame basis.
The success of the sparse imputation technique suggests that
in general the time-frequency cells marked as reliable with
the oracle mask suffice for finding a sparse representation in
the clean example digits that allows us to reconstruct the
features marked unreliable. The drop in accuracy at lower
SNRs (although only from 100% to 92%) is mainly due to
digits which have very few, if any, reliable cells in the entire
mask. This corresponds to the drop in recognition perfor-
mance of human subjects at negative SNRs [20], probably
because of the same reason: not enough reliable information
is left.

Using the sparse imputation method with the harmonic-
ity mask, an estimated mask, we obtain recognition accura-
cies lower than the baseline imputation method at SNRs ≥ 0
dB. A closer look at Fig. 3 reveals that this may be due to
the reduced number of reliable features. For example, the
percentage of reliable cells (the underdeterminedness) of the
harmonicity mask with threshold -9 dB at SNR=10 dB is
roughly equal to the percentage found at SNR=0 dB of the
oracle mask. At the same time, the recognition accuracy
of that harmonicity mask at SNR=10 dB is equal to accu-
racies obtained with the oracle mask at SNR=0 dB. This
same relation between percentage of reliable cells and recog-
nition accuracy across different masking methods is found at
other SNR values. It seems likely that there are simply not
enough reliable coefficients left (Kr < δ) at the threshold of
θ = −9 dB resulting in the low accuracies. However, while
lowering this threshold of the harmonicity mask increases the
number of cells labeled as reliable this leads to slightly lower

recognition accuracies as shown in Fig. 2. This is due to an
increase in labelling errors: cells labeled reliable while being
unreliable (false reliables). The dependency of these errors
as function of SNR and threshold value is also shown in Fig.
3. These unreliable cells introduce errors in the estimation
of the sparse representation, in turn leading to imputation
errors. The opposite effect, reducing the number of false re-
liables by calling less cells reliable through higher threshold
(0 dB) also has an adverse effect on recognition accuracy. It
is obvious that for a given mask technique there is a tradeoff
between the number of reliable cells on the one hand and the
number of false reliables on the other hand. In practice, find-
ing the optimum between true and false reliables will require
an iterative search. It interesting however, that at SNR=−5
dB the sparse imputation method outperforms the baseline
method using the estimated mask. This suggests that while
the sparse imputation method suffers more from either a re-
duced number of reliable features or a high amount of false
reliables at SNRs ≥ 0 than the baseline method, this behav-
ior is reversed at low SNRs.

In the classical frame-by-frame missing data framework
the differences in recognition accuracy between oracle and
estimated mask cannot be expressed simply as a function
of the number of differing time-frequency cells [8]. This is
due to a non-uniform importance of reliable frequency cells
in the spectrographic mask. In the current sparse imputa-
tion framework this effect is reduced thanks to the wide time
context: our results seem to indicate that study of the mask
underdeterminedness and the number of false reliables with
respect to the oracle mask can be predictive for the expected
performance. Additionally, the excellent recognition accura-
cies obtained using an oracle mask indicate that much higher
accuracies can be obtained when more advanced mask esti-
mation methods are combined with an imputation method
that uses a wider context.

5. FUTURE WORK

The current implementation of the sparse imputation tech-
nique only works with fixed length feature representations.
In order to be be used as a general front-end for ASR sys-
tems the method needs to be extended to work in a contin-
uous time setting. A possible approach would be to use a
sliding (overlapping) time-window using several neighboring
time frames as generally used in frame-based Support Vec-
tor Machine and Neural Net classification tasks. The basis is
then formed by a random sample of the clean speech training
database using fixed length time-windows. While the com-
putational complexity of such an approach is larger than for
the fixed-length representations presented in this work, it is
only linear in the number of overlapping frames.

6. CONCLUSIONS

We introduced a missing data imputation method which
works by finding a sparse representation of the noisy speech
signal, using only the reliable information of the speech signal
as labeled by a spectrographic mask. The sparse represen-
tation is found by expressing entire words as a linear combi-
nation of exemplar words. The sparse representation is then
used to estimate the the missing (unreliable) coefficients of
the speech signal after which classic speech recognition can
take place. The recognition accuracy of 92% at SNR=-5 dB
obtained using an oracle mask, an increase of 31% percent
absolute over a state-of-the art missing data speech recog-
nizer using frame by frame imputation, showed that even at
very low SNRs enough information about the speech signal
is preserved to successfully perform imputation solely on the
basis of reliable time-frequency cells provided enough time-
context is used.
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Figure 3: Percentage of reliable time-frequency cells . The figure
shows results for the oracle mask as well as three threshold (0, -9
and -18) values for harmonicity masks. Additionally, the figure
shows the percentage of false reliables in the harmonicity mask:
the number of time-frequency cells labelled reliable while being
unreliable according to the oracle mask.

.

The sparse imputation method using an estimated har-
monicity mask also performed better than baseline at
SNR=−5 dB. The lower accuracies at higher SNRs were
shown to relate directly to the number of reliable coefficients:
recognition accuracies using the estimated mask were similar
to oracle mask recognition accuracies with the same number
of reliable coefficients. We showed that there is a tradeoff
between the number of coefficients labeled reliable by the
estimated mask and the number of false reliable coefficients.
We suggest therefore that the recognition accuracy of the
sparse imputation method obtained with estimated masks is
predictable from a comparison with the oracle mask. Future
work will focus on the application to continuous time ASR.

7. ACKNOWLEDGMENTS

The research of Jort Gemmeke was carried out in the MI-
DAS project, granted under the Dutch-Flemish STEVIN
program. The project partners are the universities of Leu-
ven, Nijmegen and the company Nuance.

REFERENCES

[1] B. Raj, R. Singh, and R. Stern, “Inference of miss-
ing spectrographic features for robust automatic speech
recognition,” in Proceedings International Conference
on Spoken Language Processing, 1998, pp. 1491–1494.

[2] M. Cooke, P. Green, L. Josifovksi, and A. Vizinho, “Ro-
bust automatic speech recognition with missing and un-
reliable acoustic data,” Speech Communication, vol. 34,
pp. 267–285, 2001.

[3] B. Raj, “Reconstruction of incomplete spectrograms for
robust speech recognition,” Ph.D. dissertation, Camegie
Mellon University, 2000.

[4] H. Van hamme, “Prospect features and their applica-
tion to missing data techniques for robust speech recog-
nition,” in INTERSPEECH-2004, 2004, pp. 101–104.

[5] C. Cerisara, S. Demange, and J.-P. Haton, “On noise
masking for automatic missing data speech recogni-
tion: A survey and discussion,” Comput. Speech Lang.,
vol. 21, no. 3, pp. 443–457, 2007.

[6] A. Vizinho, P. Green, M. Cooke, and L. Josifovski,
“Missing data theory, spectral subtraction and signal-
to-noise estimation for robust asr: An integrated study,”
in Proceedings of Eurospeech, 1999, pp. 2407–2410.

[7] H. Van hamme, “Robust speech recognition using cep-
stral domain missing data techniques and noisy masks,”
in Proceedings of IEEE ICASSP, vol. 1, 2004, pp. 213–
216.

[8] M. Seltzer, B. Raj, and R. Stern, “A bayesian classifier
for spectrographic mask estimation for missing feature
speech recognition,” Speech Communication, vol. 43, pp.
379–393, 2004.

[9] J. Barker, M. Cooke, and D. Ellis, “Decoding speech in
the presence of other sources,” Speech Communication,
vol. 45, pp. 5–25, 2005.

[10] D. L. Donoho, “Compressed sensing,” IEEE Transac-
tions on Information Theory, vol. 52, no. 4, pp. 1289–
1306, 2006.

[11] E. J. Candes, “Compressive sampling,” in Proceedings
of the International Congress of Mathematicians, 2006.

[12] A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry, “Feature
selection in face recognition: A sparse representation
perspective,” submitted to IEEE Transactions Pattern
Analysis and Machine Intelligence, August 2007.

[13] H. Hirsch and D. Pearce, “The aurora experimental
framework for the performance evaluation of speech
recognition systems under noisy conditions,” in Proceed-
ings of ISCA ASR2000 Workshop, Paris, France, 2000,
pp. 181–188.

[14] B. K. Natarajan, “Sparse approximate solutions to lin-
ear systems,” SIAM J. Comput., vol. 24, no. 2, pp. 227–
234, 1995.

[15] D. L. Donoho, “For most large underdetermined sys-
tems of linear equations the minimal l1-norm solution
is also the sparsest solution,” Communications on Pure
and Applied Mathematics, vol. 59, no. 6, pp. 797–829,
2006.

[16] R. Tibshirani, “Regression shrinkage and selection via
the lasso,” Journal of the Royal Statistical Society. Se-
ries B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[17] H. Van hamme, “Handling time-derivative features in
a missing data framework for robust automatic speech
recognition,” in Proceedings of IEEE ICASSP, 2006.

[18] Y. Zhang, “When is missing data recoverable?” Tech-
nical Report, 2006.

[19] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani,
“Least angle regression,” Annals of Statistics, vol. 32,
no. 2, pp. 407–499, 2004.

[20] R. Lippmann, “Speech recognition by machines and hu-
mans,” Speech Communication, vol. 22, pp. 1–15, 1997.


