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Ž .We wish to estimate the probability density g y that produced an
Ž .observed random sample of vectors y , y , . . . , y . Estimates of g y are1 2 n

traditionally constructed in two quite different ways: by maximum likeli-
hood fitting within some parametric family such as the normal or by
nonparametric methods such as kernel density estimation. These two
methods can be combined by putting an exponential family ‘‘through’’ a
kernel estimator. These are the specially designed exponential families
mentioned in the title. Poisson regression methods play a major role in
calculations concerning such families.

1. Introduction. Suppose that we wish to estimate the probability den-
Ž .sity g y that produced an observed random sample of vectors y , y , . . . , y ,1 2 n

i.i .d .
1.1 y ; g y for i s 1, 2, . . . , n.Ž . Ž .i

The vectors y take values in a sample space YY. The numerical examples ini
this paper have YY being portions of the real line or of the plane, but the
methodology applies just as well to higher dimensionalities and to more
complicated spaces.

Ž .Estimates of g y are traditionally constructed in two quite different ways:
by maximum likelihood fitting within some parametric family such as the
normal or by nonparametric methods such as kernel density estimation.
These two methods can be combined by putting an exponential family
‘‘through’’ a nonparametric estimator. The resulting hybrid estimators are
the specially designed exponential families of the title.

Figure 1 shows a simple example of this methodology. The y are paini
scores for n s 67 women, each obtained by averaging the results from a
questionnaire administered after an operation. The scale runs from y s 0 s

w xno pain to y s 4 s worst pain, so the sample space YY is the interval 0, 4 .
The 67 scores y , indicated by the histogram, run from 0.02 to 3.08. Thei

Ž .dashed curve g y is a normal kernel density estimator with window widthˆ0
l s 1, described more carefully in Section 2. Also shown are two special

Ž . Ž .exponential family estimates, g y and g y , described below.ˆ ˆ1 2
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FIG. 1. Pain-score data. Left: Histogram of pain scores for 67 women following an operation:
Ž .0 s no pain; 4 s worst pain. Right: g y is normal kernel density estimator, window width 1;ˆ0

Ž . Ž . Ž . Ž .g y is the special exponential family through g y with sufficient statistic t y s y; g y usesˆ ˆ ˆ1 0 2
Ž . Ž 2 . Ž .sufficient statistics t y s y, y . Density g y matches the empirical mean and variance of theˆ2

67 data points.

� Ž .4An exponential family of densities on YY , g y is given byb

1.2 g y s g y exp b q t y b ,Ž . Ž . Ž . Ž .Ž .b 0 0 1

Ž .which is called the exponential family through g y with sufficient statistics0
Ž . Ž . Ž .t y . Here g y is a carrier density, t y is a 1 = p vector of sufficient0

statistics, b is a p = 1 parameter vector and b is a normalizing parameter1 0
Ž .that makes g y integrate to 1 over YY. For example, the one-dimensionalb

normal family, with all possible choices of expectation and variance, can be
Ž . Ž . � 24obtained using the standard normal carrier g y s w y s exp y0.5y r0

2' Ž . Ž . Ž .2p , with the sufficient statistics t y s y, y . The densities in 1.2 are
defined with respect to some background measure, which we will take to be

Ž .Lebesgue measure. See Section 1.4 of Lehmann 1983 .
Ž . Ž .The estimates g y and g y in Figure 1 are of the formˆ ˆ1 2

ˆ ˆ1.3 g y s g y exp b q t y b ,Ž . Ž . Ž . Ž .ˆ Ž .b̂ 0 0 1

Ž .where g y is the kernel density estimate indicated by the dashed curve.ˆ0
Ž . Ž .Estimate g y uses the single sufficient statistic t y s y, so p s 1, whileˆ1

2 ˆ ˆ ˆŽ . Ž . Ž . Ž .g y uses t y s y, y , p s 2. The parameter values b s b , b wereˆ2 0 1
n Ž .chosen by maximum likelihood, that is, by maximizing Ł g y , ignoringˆis1 b i

Ž .the fact that the carrier g y is itself data-dependent. This choice of bˆ0
Ž . Ž .matches the t y moments of g y to their empirical averages:b̂

n1
1.4 t y g y dy s t y .Ž . Ž . Ž . Ž .ˆ ÝH b inYY is1
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Thus g matches the first two empirical moments of the 67 pain scores or,ˆ2
Ž .equivalently, it matches the empirical mean and variance. Property 1.4

Ž .implies that the special exponential family estimate of g y is unbiased for
Ž .the moments of t y . Linear transformations to ‘‘post-repair’’ the mean and

variance of a kernel estimate are familiar in the density-estimation litera-
Ž .ture; see, for example, Jones 1993 . The two-dimensional example of Section

4 shows a more ambitious example of moment-matching.
We can think of a special exponential family estimator in two complemen-

Ž .tary ways: 1 as being a standard exponential family estimator, except one
Ž .that is preceded by an adaptive choice of the carrier, or 2 as being a

standard nonparametric smoothing estimator, except one that is followed by
a correction to match certain sample moments.

Either way, we will argue that special exponential families can be a
favorable compromise between parametric and nonparametric density esti-
mation. From the first point of view, we will be able to use exponential family
theory more flexibly than when restricted to the usual small catalogue of
normals, gammas, betas and so forth. An approach more in the spirit of a
regression analysis than a density estimate is possible, including exploratory

Ž .choices of the sufficient statistics t y .
From the second point of view, the moment-matching correction will

Ž .usually reduce the bias of a nonparametric smoother, since the moments t y
are estimated unbiasedly. This has an important practical consequence shown
in the numerical examples: it allows the nonparametric smoother to use a
substantially greater window width without badly degrading the overall fit to

Ž .the data. The result is a substantially smoother estimate of the density g y .
Ž .This phenomenon is illustrated in the bivariate example of Figures 3 and 4.

Ž .To put things another way, the special exponential family estimate 1.3
works at two different scales. The nonparametric smoother allows local
adaptation to the data, while the exponential term matches some of the
data’s global properties.

Sections 2]5 describe how to compute and interpret special exponential
Ž .family SEF estimates such as those in Figure 1. Most of our computations

Ž .are done using a Poisson regression model for density estimation Section 2 ,
Ž .originally introduced in Lindsey 1974a, b . Section 3 gives a delta-method

ˆ Ž .formula for the covariance of b in 1.3 , which takes into account the1
Ž .data-based choice of the carrier g y . We can use this formula in the usualˆ0

way to select among possible choices of the sufficient statistic. Section 6
concerns formulas for choosing the window width of the smoother that

Ž .produces g y . This choice involves ‘‘degrees of freedom’’ calculations likeˆ0
Ž .those introduced by Hastie and Tibshirani 1990 . Multisample SEF esti-

mates are discussed in Section 7. Remarks appear in Section 9.
Special exponential families are an example of what Green and Silverman

Ž .1994 call semiparametric methods. Many other semiparametric methods
Ž .have been proposed for density estimation. Hjort and Glad 1995 propose

reversing the SEF order: first fit a parametric family to the data and then fit
a nonparametric smoother to the residuals from the parametric estimator.



B. EFRON AND R. TIBSHIRANI2434

Hastie and Tibshirani’s backfitting approach can also be applied to semipara-
metric density estimation. It amounts to an iteration to convergence between
the smoother and the exponential family. The principal advantage of the SEF
estimator is its theoretical tractability. The relationship between these ideas
is discussed in Section 8.

Ž . Ž .Stone 1994 and Kooperberg and Stone 1991 use adaptive exponential
Ž .families based on spline functions for density estimation. The carrier g y is0

effectively the uniform density in this work, but adaptation is still possible
because of the local character of the spline basis. Olkin and Spiegelman
Ž .1987 combine parametric and nonparametric density estimates by mixtures,
rather than by exponential family methods as in this paper.

2. Poisson regression for density estimation. Density estimation
problems can be rephrased in terms of Poisson regression models. This

Ž .technique was introduced by Lindsey 1974a, b as a way of using generalized
linear model software to fit difficult exponential family models. See also

Ž . Ž . Ž .Aitken 1993 , Lindsey and Mersch 1992 and Efron 1988 . Our results here
will be phrased in Poisson regression terms, mainly for reasons of conceptual
clarity, though there are also some computational advantages.

Lindsey’s construction begins with a discretization of the problem: the
sample space YY is partitioned into K disjoint cells YY ,k

K

2.1 YY s YY ,Ž . D k
ks1

Ž .and the data y s y , y , . . . , y are reduced to the cell counts1 2 n

� 42.2 s s a y g YY for k s 1, 2, . . . , K .Ž . k i k

Ž .The vector of counts s s s , s , . . . , s has sum s s n. Table 1 shows the1 2 K q
w xcounts for the pain-score data of Figure 1, where YY s 0, 4 has been parti-

tioned into K s 40 cells YY each of length 0.1.k
� Ž . 4Suppose that g y , u g Q is a family of probability densities on YY. Theu

probability of observing y in the kth cell is

2.3 p u s g y dy,Ž . Ž . Ž .Hk u
YYk

TABLE 1
w xDiscretized version of the pain-score data of Figure 1; YY s 0, 4 partitioned into K s 40 cells of

w . w .length 0.1; s s 3 of the 67 scores occurred in YY s 0, 0.1 , 7 in YY s 0.1, 0.2 and so forth1 1 2

3 7 6 1 2 3 3 1 7 5
4 4 1 3 3 5 0 1 0 0
2 2 0 0 0 1 0 0 1 1
1 0 0 0 0 0 0 0 0 0
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Ž .with sum p u s 1. Then s has a multinomial distribution on K categories,q
Ž . Ž Ž . Ž . Ž ..with n draws and probability vector p u s p u , p u , . . . , p u ,1 2 K

2.4 s ; Mult n , p u .Ž . Ž .Ž .K

Ž .We could find the maximum likelihood estimate MLE of u , based on s, by
maximizing the multinomial probability of s.

Instead we consider the s to be independent Poisson observationsk

ind
2.5 s ; Po m g , u , k s 1, 2, . . . , K ,Ž . Ž .Ž .k k

with expectations

2.6 m g , u s gp u .Ž . Ž . Ž .k k

Here g is a free parameter, restricted only to be positive. Standard Poisson
Ž . Ž .properties allow 2.5 and 2.6 to be expressed as

<2.7 s ; Po g and s s ; Mult s , p u .Ž . Ž . Ž .Ž .q q K q

Ž . Ž .This means that the maximum likelihood estimates from 2.5 and 2.6 are

2.8 g s s s n ,Ž . ˆ q

ˆ Ž . Žand u is equal to the MLE for u in 2.4 . Lindsey’s method is to approxi-
. n Ž .mately maximize the original likelihood Ł g y by finding the Poissonis1 u i
Ž . Ž .MLE in 2.5 and 2.6 . Note: The parameters g and u are orthogonal in Cox

Ž .and Reid’s 1987 sense, so that the information for estimating u is the same
Ž . Ž .in 2.4 and 2.5 .
This method of finding the MLE is particularly convenient when the

Ž .original densities are of the exponential family form 1.2 . We will consider
Ž . Ž .the density estimation problem 1.1 and 1.2 in the Poisson regression form

Ž . Ž .2.5 and 2.6 :
ind

2.9a s ; Po m b for k s 1, 2, . . . , K ,Ž . Ž .Ž .k k

with

2.9b m b s mo exp b q t b .Ž . Ž . Ž .k k 0 k 1

o o Ž .Here m is proportional to p s H g y dy, a discretized version of thek k YY 0k

carrier, and
2.10 t s t y ,Ž . Ž .k Žk .

Ž .the sufficient vector t y evaluated at a convenient point y in YY . The freeŽk . k
b0 Ž .parameter b corresponds to g s e in 2.6 .0

Ž .Define X to be the K = p q 1 matrix whose kth row equals

2.11 x s 1, t .Ž . Ž .k k

Ž .The maximum likelihood equations for b s b , b in the generalized linear0 1
Ž .model 2.9 are

ˆ2.12 X 9 s y m b s 0,Ž . Ž .
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ˆ o ˆŽ . Ž .where m b indicates the vector with kth component m exp x b . Standardk k

ˆ Ž .generalized linear model software easily solves for b in 2.12 , even for
Ž .difficult nonstandard forms of the exponential family 1.2 . This was Lindsey’s

principal point.
Here is how Figure 1 was constructed. The problem was discretized into

o Ž o o o . Ž .K s 40 cells as in Table 1. The carrier vector m s m , m , . . . , m in 2.9b1 2 K
Ž .was estimated using a K = K smoothing matrix M l ,

2.13 mo s M l s.Ž . Ž .ˆ
Ž .Matrix M l was taken to be a normal kernel smoother, having kjth element

c y y yk Žk . Ž j.
2.14 M l s w ,Ž . Ž .k j ž /l l

Ž .with y s k y 0.5 r10, the midpoint of cell YY . The constants c wereŽk . k k
chosen to make M s 1. The starred curve labelled g in Figure 1 is actuallyˆkq 0

o Ž .m plotted as a function of y , with the window width l in 2.14 set equalˆk Žk .
to 1.

Ž . Ž .The curves labelled g y and g y are really the discrete analogs of theˆ ˆ1 2
Ž . Ž .special exponential family 1.3 , say m s m , m , . . . , m ,ˆ ˆ ˆ ˆ1 2 K

o ˆ ˆ2.15 m s m exp b q t b ,Ž . ˆ ˆ ž /k k 0 k 1

plotted versus y : g uses t s y , while g is based on the quadraticˆ ˆŽk . 1 k Žk . 2
2 ˆŽ .vector t s y , y . The MLE estimates b were obtained by iterativek Žk . Žk .

Ž .solution of 2.12 , so

w x2.16 X 9 s y m s 0,Ž . ˆ
wwhere X is a 40 = 2 matrix for g and a 40 = 3 matrix for g . The estimatesˆ ˆ1 2

Ž . xwere actually computed using a centered version of y, y s y y 2 r4. ToŽ̃k . Žk .
fit this model in the GLIM language or the glm function in SPlus, one simply
includes log mo as an offset in a Poisson generalized linear model.ˆ

Ž .Equation 2.16 shows that

2.17a m s s s nŽ . ˆq q

and
K Km sˆk k

2.17b t s t ,Ž . Ý Ýk kn nks1 ks1

Ž .the discrete analog of the moment-matching property 1.4 . Notice that
Ž .because of 2.17a and the fact that the cells are of length 0.1, the curves in

Figure 1 integrate over YY to 6.7 rather than to 1.
Changing K to 20 or to 80 made very little difference in Figure 1. The

numerical calculations in this paper were insensitive to the form of dis-
cretization. In fact, discretization is not really necessary for any of our
results, as discussed in Remark E of Section 9.
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Nevertheless, it is conceptually easier to discuss special exponential family
Ž .density estimation in terms of the discrete Poisson model 2.9 . The problem

becomes one of fitting a smooth regression curve to the independent observa-
tions s , and this lets us make use of the arsenal of regression tools. It alsok
emphasizes the important point that density estimation is equivalent to
Poisson regression, and not to ordinary least squares regression. The Poisson
nature of the problem will be evident in the formulas developed below.

ˆ3. Estimating the covariance of b. This section derives an approxi-
ˆ ˆ ˆŽ .mate covariance matrix for b s b , b , the estimated parameters in a0 1

Ž . Ž .special exponential family such as 1.3 or 2.15 . The formula for the covari-
ance takes into account the data-based choice of the carrier. We will use the

ˆestimated standard errors of the components of b for model building, check-
ing the significance of the corresponding components of the sufficient statistic
Ž .t y in the usual way.

Ž .We consider the Poisson form 2.9 of the SEF model,

3.1 s ; Po m b with m b s moe Xb ,Ž . Ž . Ž .Ž .K

Ž .where Po m indicates a vector of K independent Poisson variates havingK
Ž . o Xbexpectations m , m , . . . , m s m. The notation m e indicates the vector1 2 K

o x k b Ž . Ž . Ž .with kth component m e , x s 1, t , as in 2.11 . Generalizing 2.13 , wek k k
o ˆŽ .first estimate m by some function of s, say m s , and then solve for b in the
Ž .MLE equations 2.16 :

ˆo o Xbˆ3.2a m s m s and b : X 9 s y m e s 0.Ž . Ž .ˆ ˆ
The special exponential family estimate of m is

ˆo Xb3.2b m s m e .Ž . ˆ ˆ

ˆLEMMA 1. Let D be the K = K diagonal matrix with kth diagonal element
ˆo x b ok ˆ Ž .m s m e and let H be the K = K derivative matrix of log m sˆ ˆ ˆk k

Ž Ž o. Ž o . Ž o ..log m , log m , . . . , log m with respect to s, with ‘‘ j’’ indexing columns,ˆ ˆ ˆ1 2 K

d log mo  log moŽ .ˆ ˆkˆ3.3 H s s .Ž . ž /ds  sj

ˆŽ .Then the p q 1 = K derivative matrix of b with respect to s is

ˆdb y1ˆw x3.4a s X 9DX Z9,Ž .
ds

where
ˆ ˆ3.4b Z9 s X 9 I y DH .Ž . Ž .

Ž . oIn case 2.13 , m s Ms, this becomesˆ
ˆXb3.4c Z9 s X 9 I y D e M ,Ž . Ž .Ž .

ˆ ˆXb x bkŽ . Žwhere D e is the diagonal matrix with kth diagonal element e . The
.proof appears below.
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By the usual delta-method argument, an approximate covariance matrix
ˆestimate for b is given by

ˆ ˆdb db$ 93.5 Cov s .Ž . Ž .ž / ž /ds ds

ˆ Ž . Ž .COROLLARY 1. The SEF vector b obtained from 3.1 and 3.2 has approx-
imate covariance matrix

y1 y1ˆ ˆ ˆw xw x w x3.6a Cov b s X 9DX Z9DZ X 9DX ,Ž . Ž .
where D is the diagonal matrix with kth diagonal element s . An alternativek
estimate is

$ y1 y1ˆ ˆ ˆ ˆw x w x w x3.6b Cov b s X 9DX Z9DZ X 9DX .Ž . Ž .

Ž .For any K-vector v, we let D v be the K = K diagonal matrix with kth
Ž . Ž .diagonal element v . The true covariance of s ; Po m is D m . Approxima-k k

ˆŽ . Ž . Ž . Ž . Ž . Ž .tion 3.6a estimates Cov s by D s s D in 3.5 , while 3.6b uses D m s D.ˆ
Ž .The former may be preferred if model 3.1 is suspect. In our numerical

examples the two formulas gave nearly the same results.
Table 2 applies the corollary to the pain-score data. The quadratic model,

ˆŽ . Ž . Ž .described in 2.13 ] 2.16 has b s y2.74, y3.80 , with standard errors1
ˆŽ . Ž . w0.93, 2.45 according to 3.6a . b serves only to normalize m to m s n,ˆ ˆ0 q

Ž . x Ž2.17a , so its value is of no statistical interest. The coefficient of y s y y˜
.2 r4, the centered version of y, is nearly 3 standard errors below zero. The

coefficient of y2 is y1.55 standard errors below zero, so it is not so clear that˜
Ž . Ž 2 3.the quadratic term is significant. The cubic model, in which t y s y, y , y ,˜ ˜ ˜

has the cubic coefficient only 0.07 standard errors above zero. Either the
linear or the quadratic model seem reasonable here; the cubic model is
definitely excessive. Section 6 discusses model selection in more detail.

TABLE 2
ˆParameter estimates b and estimated standard errors for the pain-score data of Table 1. The

Ž . Ž . Ž .quadratic model is described in 2.13 ] 2.16 ; y s y y 2 r4, centered version of y; se square root˜$
Ž . Ž .of diagonal elements 3.6a ; se from 3.6b ; ‘‘ jack ’’ is jackknife standard error; ‘‘naive’’ is the usual

exponential family sterr estimated ignoring data-based choice of carrier. The cubic model uses the
Ž . Ž 2 3.same M, but t y s y, y , y ; the cubic term is not at all significant˜ ˜ ˜

Quadratic model Cubic model
$ˆ ˆ( )b se ratio se jack naive b se1 1

Ž .y y2.74 0.93 y2.95 0.96 1.07 1.18 y2.78 1.24˜
2 Ž .y y3.80 2.45 y1.55 2.50 2.66 2.85 y3.59 2.70˜
3y 0.59 8.30˜
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ˆ w Ž .The jackknife standard errors for the components of b formula 11.5 of1
Ž .xEfron and Tibshirani 1993 were computed as a check on the corollary. They

Ž . Ž .came out a little larger than the delta-method estimates from 3.6a or 3.6b ,
Ž .as is often the case; see Section 2 of Efron 1992 .

o Ž .Suppose that we ignore the fact that the carrier m in 3.2 is a function ofˆ
ˆ Ž . Ž .the data s. This amounts to taking H s 0 in 3.3 , so Z9 s X 9 in 3.4b . Then

Ž .3.6b reduces to the usual covariance estimate for exponential families,

$ y1ˆ ˆ3.7 Cov b s X 9DX ,Ž . Ž .Ž .
y1 y1ˆ ˆŽ . Ž . Ž .Ž .while 3.6a becomes the ‘‘sandwich’’ estimate X 9DX X 9DX X 9DX .

Ž .The standard error estimates from 3.7 , labelled ‘‘naive’’ in Table 2, are
considerably larger than the standard errors that take into account the
adaptive choice of the carrier.

Ž .The naive standard errors will usually exceed those from 3.6 . The reason
o ˆis that the adaptive choice of m absorbs some of the variability in b. Here isˆ

a simple normal-theory version of the same phenomenon: suppose we observe
Ž o .z ; N m q b, 1 and we wish to estimate b, the distance of the expectation
o o ˆ om s m q b from some origin of measurement m . Then b s z y m has

standard error 1. However, if the origin is chosen adaptively, say by mo sˆ
ˆ o0.75 ? z, then b s z y m has standard error 0.25. Observing z s 4, for exam-ˆ

ˆple, gives b s 1, which in the adaptive case is 4 standard errors above 0. See
Remark B in Section 9.

Ž .PROOF OF LEMMA 1. Using the D notation for diagonal matrices, 3.2 for
b̂ can be expressed as

ˆo Xb3.8 X 9 s y D m e s 0,Ž . Ž .ˆ
ˆ ˆx b x bkwhere e is the vector with components e . A small change ds in s

ˆproduces change db in the MLE vector and change

o o ˆ3.9 dm 5 D m H dsŽ . Ž .ˆ ˙ ˆ
o Ž .in m . Then 3.8 givesˆ

o o ˆ ˆ0 s X 9 s q ds y D m q dm exp X b q dbŽ .ˆ ˆ Ž .ž /
o oˆ ˆs X 9 s q D m exp Xb q ds y D dm exp XbŽ . Ž .˙ ˆ ˆŽ . Ž .3.10Ž .

o ˆ ˆyD m exp Xb X db .ˆ Ž .Ž .
ˆ ˆo Xb Xb oŽ . Ž . Ž . Ž . Ž .Using 3.8 , 3.9 and the fact that D dm e s D e dm , 3.10 becomesˆ ˆ

ˆ ˆo Xb o Xbˆ ˆ0 s X 9 ds y X 9D m e H ds y X 9D m e X dbˆ ˆŽ . Ž .
3.11Ž .

ˆ ˆ ˆ ˆs X 9 I y DH ds y X 9DX db .

Ž .This verifies 3.4 . I
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4. A bivariate example. Density estimation becomes more interesting,
and more difficult, when the sample space YY is of higher dimension. This
section introduces an example when YY is a portion of the plane. We will use
this example to illustrate some of the advantages of special exponential
family density estimation.

Ž .Figure 2 shows l s log redshift and m equal to the apparent magnitude
Ž .for 486 galaxies taken from Loh and Spillar’s 1988 redshift survey,

4.1 y s l , m for i s 1, 2, 3, . . . , n s 486.Ž . Ž .i i i

Hubble’s law, that larger redshift implies greater distance from Earth, is
apparent in the figure. The galaxies with larger values of l tend to appear
dimmer, that is, to have larger apparent magnitudes, leaving the lower right
corner nearly empty.

The data in Figure 2 are a truncated subsample of the 879 galaxies in the
Loh]Spillar catalog. It is all of the catalog entries falling into the rectangle

4.2 log 0.2 F l F log 1.2 and 17.2 F m F 21.5.Ž . Ž . Ž .
We will take this rectangle to be the sample space YY. Some of the scientific

Ž .reasons for truncation are discussed in Efron and Petrosian 1992 .
Figure 2 shows YY partitioned into K s 285 rectangular cells YY , byk

dividing the l axis into 15 equal strips and dividing the m axis into 19 equal
Ž .strips. The corresponding counts s , 3.2 , are shown on the right side of thek

figure. It is convenient to index the cells by

4.3 k s i , j , i s 1, 2, . . . , 15, j s 1, 2, . . . , 19.Ž . Ž .
Ž .The midpoint of rectangle YY is y ' l , m .k Žk . Ž i. Ž j.

Ž . ŽFIG. 2. The galaxy data: 486 galaxies from Loh and Spillar ’s 1988 redshift survey log
.redshift l and apparent magnitude m discretized into 285 s 15 = 19 equal cells. The counts s

for the 285 cells are shown at right.
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The right side of Figure 3 shows the results of applying a linear smoother
Ž .m s M l s to the 285-dimensional count vector s given in Figure 2. Theˆ

Ž . Ž .K = K matrix M l is a two-dimensional version of 2.14 , with kk9th
element

c 1k 2 24.4 M l s exp y i y i9 q j y j9Ž . Ž . Ž . Ž .k k 9 2 2ž /l 2l

Ž . Ž . Ž .for k s i, j and k9 s i9, j9 . The c are chosen to make Ý M l s 1. Thek k 9 k k 9

choice l s 1.5, suggested by the expected deviance calculations of Section 6,
o Ž .gave the smoothed estimate m s M 1.5 ? s plotted versus y on the rightˆ Žk .

side of Figure 3.
Ž .The left side of Figure 3 shows an SEF estimate m of form 3.2 , withˆ

4.5 mo s M 2 s and X s 1, i, j, i2 , j2 , ij .Ž . Ž . Ž .ˆ
Here i is the K vector with kth element i y 8, and j is the K vector with kth
element j y 9. This choice amounts to using the usual sufficient statistics for

Ž . Ž . Ž 2 2 .a bivariate normal in 1.2 , t y s l, m, l , m , lm . The fitted density
matches the empirical means, variances and correlation of the galaxy data.

The variance calculations of Section 5 and the expected deviance calcula-
tions of Section 6 suggest that these two estimates are roughly equal in their
overall ability to predict the true density. However, the SEF estimate is much
smoother than the smoothing-only choice. This is obvious in Figure 4, which
shows contour plots of the two density estimates.

o Ž .Suppose that the carrier m in 4.5 was taken to be the constant vectorˆ
o Ž . Ž .m ' 1 instead of M 2 s. Then the SEF m would be the discretized trun-ˆ ˆk

cated bivariate normal MLE for the galaxy data, the truncation being to the
Ž .rectangle 4.2 . In fact, the SEF in Figure 3 looks like the lower corner of a

bivariate normal, though there are some discrepancies due to the adaptation
of mo to the galaxy data.ˆ

Ž . o Ž .FIG. 3. Left panel: SEF estimate 3.2 for the galaxy data as discretized in Figure 2; m s M 2 ?ˆ
Ž . o Ž .s, quadratic matrix X, 4.5 . Right panel: The smoothing-only estimate m s M 1.5 ? s. Theˆ

calculations of Sections 5 and 6 suggest that the two estimates are roughly equal in accuracy.
However, the SEF estimate is much smoother.
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Ž .FIG. 4. Contour plots of the density estimates in Figure 3. The SEF contours left panel are
Ž .much smoother than those from the smoothing-only estimate right panel . The smoothing-only

estimate has a weak second mode at the starred point.

Parametric models such as the bivariate normal are fierce data smoothers.
This can be a big advantage if the statistician is interested in global proper-
ties of the density, like the general shape of its contours, and especially if the
data-sampling process is suspect. In Figure 2 we can see that the galaxy data
are quite patchy and clumpy, which is not surprising since the Loh]Spillar
catalog was a census of the brighter galaxies in a few degrees of sky, and not
a random sample of the full sky.

If those few degrees of sky are of great individual interest, then a narrow-
band smoother like that in the right side of Figure 3 may be appropriate.
w Ž . Ž . xNotice that it estimates a weak second mode near l, m s y1, 20 . How-
ever if we really want to know the density for the whole sky, then it pays to
oversmooth the estimate from a flawed sample like that in Figure 2. The SEF
methodology allows us to oversmooth without losing much estimating effi-
ciency compared to smoothing-only estimates and without making the drastic
assumptions of the usual parametric models.

Ž .Various SEF models besides the quadratic choice of X in 4.5 were tried.
Ž .One of these added a further cross-term to 4.5 ,

4.6 mo s M 2 s and X s 1, i, j, i2 , j2 , ij, i2 j2 ,Ž . Ž . Ž .ˆ Ž .orthog

Ž 2 2 . 2 2 Ž 2 2 .where i j is the component of i j orthogonal to 1, i, j, i , j , ij .orthog
ˆOrthogonalization makes the first six components of b have roughly the

Ž . Ž 2 2 . Ž .same values and standard errors as in 4.5 . The term i j in 4.6orthog
allows the regression surface to turn more quickly near the corners of the
rectangle YY.

ˆ Ž .The MLE vector b for model 4.6 appears in Table 3, along with the1
ˆŽ .standard error estimates se from 3.6a and the t-values br se. All of

2 wthe coefficients except the one for m are significantly different than zero the
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TABLE 3
ˆ Ž .Parameter estimates and standard errors for the components of b in the SEF model 4.6 . All of1

ˆ 2the components of b are significantly nonzero, except for the coefficient of m . l indicates the1
Ž . Ž .coefficient corresponding to i, lm to ij and so forth. Standard errors are from 3.6a . Model 4.5

gave similar estimates, standard errors and t-values for l, m, l2, m2, lm

2 2 2 2( )l m l m lm l m orthog

b̂ y0.105 0.084 y0.0115 y0.0018 0.0158 0.0002671

se 0.019 0.015 0.0021 0.0014 0.0027 0.000071
t-Value y5.6 5.8 y5.5 y1.4 5.8 3.75

Ž .xsame is true for model 4.5 . This includes the coefficient for the term
Ž 2 2 . Ž .l m , which takes us beyond the normal-theory SEF analogue 4.5 .orthog

Ž .Compared to the left side of Figure 3, the SEF density estimate from 4.6 has
its highest point at the upper right corner of the rectangle YY.

The next two sections discuss several criteria for choosing among possible
SEF models: observed deviance, expected deviance, degrees of freedom and so
forth. However, none of these criteria is sharp enough to entirely free the
statistician from model-choice quandries. A considerable amount of subjectiv-
ity must still go into the model-building process, just as in ordinary regres-
sion situations.

5. Total relative variance. A variety of diagnostic tools is available to
assist model selection in standard regression situations. Similar tools are
available for model selection in special exponential families. These ideas are
developed in the next two sections, beginning here with the total relative
variance, a simple measure of overall variability for an SEF density estimate.
For example, looking ahead to Table 4 the reader can compare the total
relative variances for the two galaxy-data SEF estimates in Figure 3: 6.8 for
the quadratic model in the left panel versus 8.8 for the smoothing-only model
in the right panel.

Let
5.1 m s SEF s; m , XŽ . Ž .ˆ

ˆo Xb Ž .indicate m s m e , the special exponential family estimate 3.2 . First weˆ ˆ
will compute the K = K derivative matrix of m with respect to s, which leadsˆ

Ž .immediately to a delta-method estimate of Cov m . This derivative matrixˆ
involves the projection matrices

y1 y1ˆ ˆ ˆ ˆ ˆ5.2 P s X X 9DX X 9 and Q s D y P ,Ž . Ž .
ˆ ˆŽ .where D s D m as before, P is the symmetric projection matrix into theˆ

ˆlinear space spanned by the columns of X, in the inner product D, the
ˆˆ ˆprojection of vector v being PDv, and Q is the projection orthogonal to X ’s

column space. Because they represent orthogonal projections, we have

ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ5.3 PDP s P , QDQ s Q and PDQ s 0.Ž .



B. EFRON AND R. TIBSHIRANI2444

Ž .LEMMA 2. The derivative matrix of m s SEF s; m, X with respect to s isˆ

dm̂ ˆ ˆ5.4a s DOŽ .
ds

ˆ o Ž .where, in terms of H s d log m rds, 3.3 ,ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ5.4b O s P q QDH s P q H y PDH .Ž .
o ˆ oŽ .If m s Ms, then H s D 1rm M andˆ ˆ

ˆX 9bˆ ˆ ˆ5.4c O s P q QD e M .Ž . Ž .

Ž .The proof appears below.
Ž .The canonical parameter vector for the Poisson family 3.1 is

5.5 h s log m s log m , log m , . . . , log m .Ž . Ž . Ž . Ž . Ž .Ž .1 2 k

Ž . o Ž o.Likewise, define h s log m and h s log m . Then we can write Lemma 2ˆ ˆ ˆ ˆ
as

dh dh oˆ ˆˆ ˆ ˆˆ5.6 s O s P q QD .Ž .
ds ds

ˆThis decomposes dhrds into a part P coming from the exponential familyˆ
ˆXb oˆˆŽ .factor e and an orthogonal part QD dh rds coming from the adaptiveˆ

choice of the carrier.
Lemma 2 leads directly to delta-method estimates of the covariance matrix

Ž .of m, as in 3.6 ,ˆ
$ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ5.7 Cov m s DODO9D or Cov m s DODO9DŽ . Ž . Ž .ˆ ˆ

Ž . Ž .with D s D s . The diagonal elements give variance estimates var m orˆk$
Ž .var m for the individual components. For Poisson variables it is natural toˆk

measure variance relative to the etsimate m . We define the total relativeˆk
Ž .variance TRV estimate for m to beˆ

$
K Kvar m var m$Ž . Ž .ˆ ˆk k

5.8 TRV s or TRV s .Ž . Ý Ý
m mˆ ˆk kks1 ks1

Ž .COROLLARY 2. For m s SEF s; m, X the total relative variance estimatesˆ
are

ˆ ˆ ˆ ˆ ˆˆTRV s tr DP q HDH9 DQD orŽ . ž /
5.9Ž . $ ˆˆ ˆ ˆ ˆˆTRV s p q 1 q tr HDH9 DQD ,Ž . Ž . ž /

ˆ ˆ ˆŽ . Ž .where p q 1 is the number of columns of X, D s D s , D s D m and P, Q areˆ
Ž .as in 5.2 .
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Ž .The proof of Corollary 2 follows directly from 5.7 by writing TRV in the
y1ˆ Ž . Ž .trace form tr D Cov m and using the orthogonality relationship 5.3 , andˆ$

similarly for TRV. Computationally more efficient expressions for TRV and$
TRV appear in Remark I, Section 9.

Table 4 shows TRV for various SEF estimates for the galaxy data, as
discretized in Figure 2. The three estimates correspond to three choices of X

Ž . Ž . Ž .in 5.1 : sef 2 is for X as in 4.5 , sef 3 for X as in 4.6 , and sef 0 for X s 1.
o Ž o . oThis last choice is the smoothing-only estimate m rescaled to nrm m , soˆ ˆ ˆq

that it sums to n s s . The carrier mo for the SEF isˆq

5.10 mo s M l s,Ž . Ž .ˆ

Ž . Ž .where M l is the matrix 4.4 .
All three TRV estimates decrease as the smoothing parameter l increases

because greater window width l decreases the variability of mo. If the carrierˆ
mo were prechosen instead of adaptive, then sef 2 would exceed sef 0 by aboutˆ
5, this being the increased number of free parameters, and likewise sef 3

ˆŽ .would exceed sef 2 by about 1. This is seen in 5.9 for the case H s 0. In fact,
this is nearly the case at the right side of Table 4, where l is so large that moˆ
has nearly constant entries. The difference between the three estimates
decreases at smaller values of l because the adaptability of the common

o Ž .carrier m s M l ? s absorbs some of the difference in the exponential familyˆ
ˆXbfits e .

Small variability is a good property of course, but we also want m to haveˆ
small bias for estimating the true density vector m. The next section puts
TRV into the context of bias]variance tradeoffs for Poisson regression esti-
mates.

o ˆŽ .PROOF OF LEMMA 2. In the notation following 5.5 , h s h q Xb. Differ-ˆ ˆ
Ž .entiating this with respect to s and using 3.4 gives

dĥ y1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ5.11 s H q X X 9DX X 9 I y DH s P q H y PDH ,Ž . Ž .
ds

Ž .which is 5.6 , the equivalent of Lemma 2. I

TABLE 4
Total relative variance TRV for three SEF estimates, galaxy data, at increasing values of

smoothing parameter l

l s 1.5 l s 2 l s 4 l s 6

aŽ .sef 0 smoothing only 8.8 5.2 1.2 0.4
bŽ .sef 2 4.5 9.6 6.8 5.2 5.2

Ž .sef 3 4.6 10.2 7.6 6.2 6.2
aRight panel of Figure 3.
bLeft panel of Figure 3.
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6. Degrees of freedom and estimated deviance. Selecting a good
SEF estimate m for a particular application involves making the usualˆ
tradeoffs between variance and bias. This section concerns estimating the
total expected deviance of m from the expectation vector m. This is a measureˆ
of accuracy for m that involves both variance and bias. An important role isˆ
played by the degrees of freedom of the estimator m, an idea related to theˆ
total relative variance of Section 5. The ideas here are an extension of those

Ž .in Section 6.8 of Hastie and Tibshirani 1990 . $
Figure 5 relates to the expected deviance measure EDEV developed below,

a diagnostic measure for comparing the goodness-of-fit of different SEF$ $
models. It shows EDEV for both the pain-score and galaxy examples. EDEV
is plotted versus the smoothing parameter l for the normal kernel estimates
Ž . Ž . o Ž .2.13 and 4.4 used to obtain m s M l ? s. The different curves correspondˆ

Ž .to different choices of X in the SEF formula 3.2 . ‘‘Smoothing-only’’ refers to
X s 1, which gives the estimate mo renormalized to sum to n. For theˆ

Ž .pain-score data, ‘‘linear’’ and ‘‘quadratic’’ are the cases referred to in 2.15 .
Ž . Ž .For the galaxy data, 4.5 and 4.6 are as in Table 4.$
Ž .Notice that EDEV l has a sharp minimum as a function of l for both
Žsmoothing-only cases. At l s 0.63 for the pain-score data and at l s 1.5 for

.the galaxy data. This is not true for the genuine SEF estimates. They allow
the smoothing parameter l to be chosen much larger without incurring too
much EDEV penalty. In other words, the SEF methodology allows us to
oversmooth the density estimate, with the advantages seen in Figure 4.

$
Ž .FIG. 5. Expected deviance estimates EDev, 6.22 . Left panel: SEF estimates for pain-score data

Ž . Ž .2.13 ] 2.15 . Right panel: SEF estimates for galaxy data as in Figure 5. In both cases the SEF
estimates permit the use of larger smoothing parameters l, compared to the smoothing-only
estimates.
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$
In order to motivate EDEV, it helps to begin the discussion with the

normal case. Suppose that the statistician observes a K-dimensional normal
vector
6.1 z ; N m , IŽ . Ž .K

and wishes to estimate m using some linear estimator

6.2 m s Sz,Ž . ˆ
S being a K = K matrix. Model selection amounts to making a good choice
of S.

Let err be the observed total residual squared error of m:ˆ
5 5 26.3 err s z y m .Ž . ˆ

Also define

� 46.4 n s E m , DF s tr S and TV s tr SS9,Ž . ˆ
where DF stands for degrees of freedom and TV stands for total variance.

Ž .Total variance TV equals Ý var m , and if S is a projection matrix, thenˆk k
tr S is the usual degrees of freedom. It is easy to prove the following two
relationships:

5 5 26.5a E err y K y 2DF s E m y m� 4Ž . Ž . � 4ˆ
and

5 5 26.5b E err y K y 2DF q TV s n y m .� 4Ž . Ž .
Ž . Ž .Both 6.5a and 6.5b play an important role in normal-theory model

selection. The first of these is essentially the C or AIC criterion. Its exten-p
sion to nonlinear estimators is Stein’s unbiased risk estimate. Extensions of

Ž .formula 6.5b are used in hypothesis testing. The quantity K y 2DF q TV
equals the residual degrees of freedom:

6.6 RDF s tr I y S I y S 9.Ž . Ž . Ž .
Ž .If S is a projection matrix, then 6.5b can be improved to

2 5 5 26.7 err ; x n y m ,Ž . Ž .RDF

where the notation indicates a noncentral chi-square variate with noncentral-
5 5 2ity parameter n y m . We test the adequacy of the estimate m s Sz byˆ

comparing err to a central chi-square distribution x 2 .RDF
We now return to the Poisson situation where we observe

6.8 s ; Po mŽ . Ž .K

Ž .and estimate m by some estimator m s m s , not necessarily of the SEF formˆ ˆ
Ž .3.2 , having expectation

6.9 n ' E m s .� 4Ž . Ž .ˆ
Ž .The observed error err s err s in the Poisson context is

6.10 err s s Dev s, m ,Ž . Ž . Ž .ˆ
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where Dev indicates the total Poisson deviance

Dev m , n s 2Ý log m rn y m y n .� 4Ž . Ž . Ž .k k k k k

Ž .The Poisson equivalents of K, DF and TV in 6.5 are

K m s E Dev s, m , DF m s E s y m log m ,� 4Ž . Ž . Ž . Ž . Ž .ˆÝ k k k½ 5
k6.11Ž .

TRV m s 2 E m log n rm ,� 4Ž . Ž .ˆÝ k k k
k

Ž .all expectations being with respect to s ; Po m .K

Ž . Ž .LEMMA 3. In the Poisson situation 6.8 ] 6.11 ,

6.12a E err s y K m y 2DF m s E Dev m , m� 4� 4Ž . Ž . Ž . Ž . Ž .ˆ
and

6.12b E err s y K m y 2DF m q TRV m s Dev m , n .� 4Ž . Ž . Ž . Ž . Ž . Ž .

Ž . Ž .The proof is given below. Formulas 6.12a, b are the Poisson versions of
Ž .6.5a, b .

Ž . Ž . Ž .In order to use Lemma 3, we can approximate K m , DF m and TRV m by
Ž . Ž . Ž .their plug-in estimates K m , DF m and TRV m . Using bootstrap notation,ˆ ˆ ˆ

let s* given s have Poisson distribution

<6.13 s* s ; Po m sŽ . Ž .Ž .ˆK

Ž . Ž .and let E# indicate expectations with respect to 6.13 , with s and m s fixed.ˆ
Then

K m s E# Dev sU , m� 4Ž . Ž .ˆ ˆÝ k k
k

U U Us E# 2 s log s rm y s y m .� 4Ž .Ž .ˆ ˆÝ k k k k k
k

6.14Ž .

Ž .It is easy to evaluate 6.14 numerically since it is the sum of univariate
Poisson deviances, the m being just fixed constants in the E# expectations.ˆk

Using this same notation we can write the degrees of freedom estimate
Ž .DF m asˆ

6.15 DF m s E# sU y m log mU s E# s* y m 9h*,Ž . Ž . Ž .Ž .ˆ ˆ ˆ ˆ ˆÝ k k k½ 5
k

Ž . Ž Ž .. Uwhere h* s log m* s log m s* , the vector with kth component log m .ˆ ˆ ˆ ˆk
ˆŽ . Ž .Since by 5.6 , dhrds s O, 6.15 has the Taylor series approximationˆ

$ˆ ˆ ˆ6.16 DF m 5 E# s* y m 9O s* y m s tr DO ' DF.Ž . Ž . Ž . Ž .ˆ ˙ ˆ ˆ
ˆ Ž .See Remark K. An alternative estimate is DFs tr DO as in 5.8 .
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1 2Ž . Ž . Ž .The quadratic expansion log mrn 5 mrn y 1 y mrn y 1 givesˆ ˙ ˆ ˆ2

n m var m var mŽ . Ž .ˆ ˆk k k k
6.17 E m log s s ,Ž . ˙ ˙k 2½ 5ž /m 2 2mnˆk kk

Ž .permitting us to approximate 6.11 by
var mŽ .ˆk

6.18 TRV m s .Ž . Ž . ˙ Ý
mkk$

Ž .The quantities TRV and TRV in 5.8 are the obvious plug-in estimates for
Ž . Ž .6.18 . The substitution of m for n in the denominator of 6.17 looksk k
worrisome, but Remark K of Section 9 shows that the resulting error is
asymptotically negligible.

Ž .The TRV estimates 5.8 can be written as
$ˆ ˆ ˆ ˆ ˆ ˆ ˆ6.19 TRV s tr DO9DO or TRV s tr DO9DO,Ž .

Ž .using 5.7 , compared to the DF estimates
$ˆ ˆ ˆ6.20 DF s tr DO or DF s tr DO.Ž .

Ž .Notice the similarity to the normal-theory definitions in 6.4 . Comparing
Ž . Ž .6.5b with 6.12b , we can also define residual degrees of freedom RDF for
the Poisson situation, estimated by

$ $ $
6.21 RDF s K m y 2DF q TRV or RDF s K m y 2DF q TRV.Ž . Ž . Ž .ˆ ˆ

See Remark L. The quantity graphed in Figure 5 was the expected deviance
Ž . Ž . Ž .estimate obtained from 6.12a , 6.14 and 6.20 :
$ $

6.22 EDEV s err s y K m q 2DF.Ž . Ž . Ž .ˆ
The vertical scale in Figure 5 is misleading. For the galaxy data, reducing$

Ž .l from 4 to 1.5 reduces EDEV for the quadratic SEF 4.5 from 22.2 to 11.5, a
Ž .considerable amount. Is this significant? The observed deviance error 6.10 ,$
Ž .err, decreases by 45.3, while the residual degrees of freedom RDF, 6.21 ,

decreases by 29.3. This gives the naive chi-square significance value
� 2 4prob x ) 45.3 s 0.03. A more trustworthy significance level could be29 .3

Ž .obtained by Monte Carlo methods, bootstrapping with s* ; Prob m , with mˆ ˆ
Ž .the 1.5, 2 SEF vector.

The quantitative aspects of Figure 5 cannot be taken too literally. For$
instance, using EDEV instead of EDEV moved the smoothing-only curve

Ž .below the others for l - 2 in the galaxy data. In general the careted hat
formulas gave less erratic answers than the bar formulas, but there are really$
no strong reasons for preferring EDEV. The fact is that it is usually difficult
to estimate the performance of competing decision rules, and the SEF density

Ž . Ž .estimates are no exception. Formulas like 5.9 and 6.12 help with model
selection, but considerable subjectivity remains. The main point of Figure 5 is
the qualitative one that the SEF estimates permit extensive oversmoothing.

Ž . � Ž † .4 † Ž .PROOF OF LEMMA 3. Define EE m s E Dev s , m , where s ; Po m inde-ˆ K
Ž . Ž . Ž .pendent of s, so EE m is the expected prediction error of m s . Efron 1986ˆ
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shows that
6.23a EE m s E err s q 2DF m .� 4Ž . Ž . Ž . Ž .

We also have the identities
6.23b EE m s K m q E Dev m , m� 4Ž . Ž . Ž . Ž .ˆ

and
46.23c E Dev m , m s Dev m , n q TRV m .Ž . Ž . Ž . Ž .Ž ˆ

All three of these relationships are easy to prove directly from the definition
Ž . Ž . Ž .of the total Poisson deviance. Substituting 6.23b into 6.23a gives 6.12a .

Ž . Ž . Ž .Substituting 6.23c on the right side of 6.12a gives 6.12b . I

7. Multisample problems. So far we have only considered one-sample
problems. SEF estimates are particularly useful for investigating density
differences in multisample situations. We use the exponential family model
Ž .1.2 for the different densities, with a shared carrier g estimated nonpara-0
metrically, but with possibly different values of the exponential b parame-
ters. An example will precede the theory.

Figure 6 concerns a two-sample application of SEF modelling. The data are
the compliances of men in the Stanford arm of a randomized trial of the

Ž .cholesterol-lowering drug Cholostyramine; see Efron and Feldman 1991 .
There were n s 172 men in the control group and n s 165 men in the1 2

w xtreatment group. Compliance ran from 0 to 100%, so YY s 0, 100 . A dis-
cretization YY s D YY partitioned YY into K s 46 intervals of equal length.k k
The left panel of Figure 6 shows the counts in the two groups. Compliance is
significantly worse in the treatment group, as shown by standard two-sample
tests.

FIG. 6. An application of SEF modelling to the Cholostyramine trial compliance data of Efron
Ž .and Feldman 1991 . Left panel: The count vectors for the control group and the treatment group;

w x Ž .K s 46 equal divisions of YY s 0, 100 . Right panel: SEF density estimates 7.4 for the two
Ž .groups; m and X as in 7.11 . The poorer compliance in the treatment group is graphically

evident.
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The right panel of Figure 6 is the output of a two-sample SEF analysis. It
neatly displays the compliance differences between the two groups in terms of

Ž . Ž .their estimated densities. The ratio g y rg y decreases almost lin-ˆ ˆtreat cont
early as y goes from 0 to 100%, but both densities are greatest at y s 100%.

These densities were derived from a simple extension of the previous
theory. In the multisample situation we observe independent random sam-
ples from L possibly different densities g , g , . . . , g on the same sample1 2 L
space YY ,

i.i .d .
7.1 y l ; g y for i s 1, 2, . . . , n and l s 1, 2, . . . , L.Ž . Ž . Ž .i l l

Ž .We discretize the problem as in Section 2, obtaining count vector s l for
the lth sample,

7.2 s l s a y l g YY for k s 1, 2, . . . , K and l s 1, 2, . . . , L.� 4Ž . Ž . Ž .k i k

Ž .The many-sample version of the Poisson regression model 3.1 is

ind. o Xb Ž l .7.3 s l ; Po m l for l s 1, 2, . . . , L, with m l s m e .Ž . Ž . Ž . Ž .Ž .K

Ž .The SEF estimates corresponding to 3.2 are

ˆo Xb Ž l .7.4a m l s m e ,Ž . Ž .ˆ ˆ
where

ˆo o Xb Ž l .ˆ7.4b m s m s 1 , s 2 , . . . , s L and b l : X 9 s l y m e s 0.Ž . Ž . Ž . Ž . Ž . Ž .Ž .ˆ ˆ

In this model, a common carrier mo, estimated from all of the dataˆ
ˆXb ŽL.Ž Ž . Ž . Ž ..s 1 , s 2 , . . . , s L is modified by an exponential factor e which can vary

with l.
The many-sample version of Lemma 1 in Section 3 is the following lemma:

LEMMA 4. Let

 log moŽ .ˆˆ7.5 H l sŽ . Ž .
 s lŽ .

Ž o . Ž . Ž .be the K = K matrix with kjth entry  log m rds l . Then the p q 1 = Kˆk j
ˆŽ . Ž .derivative matrix of b l with respect to s j is

ˆb lŽ . y1 Xˆ7.6a s G l Z ,Ž . Ž . l j s jŽ .
where

X Xˆ ˆ ˆ ˆ7.6b G l s X 9D l X and Z s X d I y D l H j ,Ž . Ž . Ž . Ž . Ž .l j l j l j

ˆŽ . Ž Ž ..D l ' D m l , d equalling 1 or 0 as l does or does not equal j. Ifˆ l j

7.7 mo s Ms s ' s ,Ž . ˆ Ýq q lž /
l
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then
ˆX X Xb Ž l .7.8 Z s X d I y D e M .Ž . Ž .l j l j l j

Ž .The proof is nearly the same as for Lemma 1 and will not be given here.
Lemma 4 leads to delta-method estimates of the covariance matrix for

ˆŽ . Ž .b l , just as in 3.6 ,
L

y1 y1Xˆ ˆ ˆCov b l s G l Z D j Z G l orŽ . Ž . Ž . Ž .Ž . Ý l j l j
js1

L$ y1 y1Xˆ ˆ ˆ ˆCov b l s G l Z D j Z G l ,Ž . Ž . Ž . Ž .Ž . Ý l j jl
js1

7.9Ž .

Ž . Ž .D j ' D s . We can also obtain covariance estimates for functions of thej
ˆ ˆ ˆŽ . Ž . Ž .b l . For example, if g s b 2 y b 1 , thenˆ

ĝ y1 y1X Xˆ ˆs G 2 Z y G 1 Z ,Ž . Ž .21 11 s 1Ž .
7.10aŽ .

ĝ y1 y1X Xˆ ˆs G 2 Z y G 1 ZŽ . Ž .22 12 s 2Ž .
and

92 g gˆ ˆ
Cov g s D j ,Ž . Ž .ˆ Ý ž / ž / s j  s jŽ . Ž .js1

7.10bŽ .
92 g g$ ˆ ˆˆCov g s D j .Ž . Ž .ˆ Ý ž / ž / s j  s jŽ . Ž .js1

Ž .SEF model 7.4 was used to estimate the two compliance densities in
Figure 6. The kth row of X was quadratic in compliance,

7.11a x s 1, y , y2 ,Ž . ˜ ˜Ž .k Žk . Žk .

where y s y y 50r100, y being the midpoint of YY ; mo s Ms as in˜ ˆŽk . Žk . Žk . k 1
Ž .7.7 , with
7.11b M s M 7 ,Ž . Ž .

ˆ ˆŽ . Ž . Ž .as in 2.14 . The estimated difference g s b treatment y b control wasˆ
7.12 0.26, y1.36, y0.44 " 0.22, 0.38, 1.51 ,Ž . Ž . Ž .

$
Ž . Ž .with the standard errors taken from Cov g , 7.10b . We see that the linearˆ

coefficient is significantly negative, t-value s y3.6, but the quadratic coeffi-
cient is not.

8. Other types of estimators. In the SEF methodology the application
of an initial nonparametric smoother is followed by the fitting of an exponen-

Ž .tial family parametric model. Hjort and Glad’s 1995 semiparametric density
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estimator reverses this order, with the parametric model coming before the
Ž .smoother. Backfitting, as applied to generalized linear models like 3.1 ,

repeatedly iterates between the parametric and nonparametric fitting meth-
ods. This section discusses the SEF methodology in the context of these other
possibilities.

As in Section 6, we begin with the normal case where the statistician
wishes to estimate m having observed

8.1 z ; N m , I .Ž . Ž .K

The linear model m s j q Xb, with j a known origin vector and X a known
Ž .K = p q 1 structure matrix, gives the estimate

8.2 m s PP z; j ' j q P z y j .Ž . Ž . Ž .ˆ
Ž .y1 Ž .Here P s X X 9X X 9 is the K = K projection matrix into LL X , the col-

Ž .umn space of X. In the normal case, PP z; j plays the role of the parametric
exponential family model estimator. The role of the nonparametric smoother
is played by
8.3 MM z; j s j q M z y j ,Ž . Ž . Ž .

Ž . Ž .where M is some fixed K = K smoothing matrix such as M l in 2.13 . Once
again j represents a fixed and known origin. Often we take j s 0, but it will
be important here to consider more general choices of the origin.

Ž .The normal-theory analog of the SEF estimate 3.2 is

m s PP z; MM z; 0 s P q M y PM zŽ . Ž .Ž .ˆsef8.4Ž .
s P q QM z.Ž .

H
Ž .Here Q s I y P is the projection matrix into LL X , the orthocomplement to

Ž .LL X . In other words, we begin with 0 as the origin, apply MM to get an
o Ž .updated origin m s MM z, 0 s Mz and finally take the estimate of m to beˆ

Ž o. o Ž o.m s PP z; m s m q P z y m . Notice thatˆ ˆ ˆ ˆ
8.5 X 9z s X 9mŽ . ˆ

Ž .according to 8.4 , which says that z and m have the same projection intoˆ
Ž . Ž .LL X , namely, Pz. Equality 8.5 is the normal-theory analog of the moment-

Ž .matching property 2.17 .
Reversing the order of PP and MM, as Hjort and Glad do in the density

estimation problem, gives the estimator

8.6 m s MM z; PP z; 0 s P q MQ z.Ž . Ž . Ž .Ž .ˆ HG

Ž .This no longer enjoys the moment-matching property 8.5 , but we can restore
it with one further application of PP. This defines the symmetrized estimator

8.7 m s PP z; m s P q QMQ z.Ž . Ž .Ž .ˆ ˆsym HG

If M is a symmetric matrix with eigenvalues between 0 and 1, then so is
Ž .P q QMQ. This makes m a formal Bayes estimator for m in situation 8.1 ,ˆsym

versus a normal prior distribution on m possibly having infinite variance in
some directions.
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The backfitting estimator m is defined as follows in Chapter 5 of Hastieˆ back
Ž . o 1and Tibshirani 1990 : suppose we can find vectors m and m such thatˆ ˆ

8.8a mo s MM z; m1 y m1 and m1 s PP z; mo y mo .Ž . Ž .Ž .ˆ ˆ ˆ ˆ ˆ ˆ
Then

8.8b m s mo q m1Ž . ˆ ˆ ˆback

w Ž 1. Ž o. x 1so m s MM z; m s P z; m . Letting v s z y m , it is easy to show thatˆ ˆ ˆ ˆback

H1 o8.9 v y Mv s z y m y m g LL X ,Ž . Ž .Ž .ˆ ˆ
Ž .which implies the moment-matching property 8.5 . Hastie and Tibshirani

show that m s S z for a matrix S that is symmetric and withˆ back back back
w xeigenvalues in 0, 1 if M has these same properties.

Further insight into the backfitting estimator can be gained by expressing
it in an explicit form. The backfitting estimator satisfies

y1 0b̂ s X 9X X 9 z y m ,Ž . Ž .ˆ
1 ˆm s M z y Xb .ˆ Ž .

Solving these equations yields the explicit expression
y1

b̂ s X 9 I y M X X 9 I y M z.Ž . Ž .
This looks like a weighted least squares estimate with weight matrix I y M

Ž .y1or, equivalently, variance matrix I y M . It has the same form as Hjort
and Glad’s estimator except that they use an unweighted least squares
estimator. The weights I y M can be justified from a mixed effects model in
which m1 is a random effect.

We have discussed four linear estimators m s Sz, three of which have theˆ
Ž .moment-matching property 8.5 . These three can be described as follows: the

H
Ž . Ž . Ž .LL X component of m matches the LL X component of z; the LL X compo-ˆH

Ž . Ž .nent of m equals the LL X component of a point v in the flat space z [ LL X ;ˆ
v s z for m , v s Qz for m and v equals the point or points satisfying theˆ ˆsef sym

Ž .orthogonality condition 8.9 for m . Note: All four estimators are the sameˆ back
if M and P commute, MP s PM.

We calculated the ‘‘equivalent kernels’’ for each of the four estimators, as
Ž .in Figure 2.5 of Hastie and Tibshirani 1990 . The calculation was done for

the situation that produced the quadratic estimator in Figure 1: 40 equally
Ž 2 .spaced x values, P based on a matrix X with rows 1, x, x and M of the

Ž .form 2.14 . The smoothing parameter l was chosen to give tr S s 5 in each
case. The SEF and backfitting kernels were remarkably similar, with both
the HG and symmetrical kernels being slightly different.

We can define analogs to m , m , m and m for the Poissonˆ ˆ ˆ ˆsef HG sym back
Ž .situation s ; Po m . Given a positive origin vector j and structure matrixK

Ž .X, we let the analog of 8.2 be
ˆ ˆXb Ž j . Xb Ž j .8.10 PP s; j ' D j e , where X 9 s y D j e s 0;Ž . Ž . Ž . Ž .
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Ž .m s PP s; j is the MLE estimate of m in the ‘‘offset’’ generalized linear modelˆ
Ž . Xb Ž .m s D j e . The analog of 8.3 is

8.11 MM s; j s D j MD 1rj s s D j M srj ;Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž .m s MM s; j is a discretized version of what Hjort and Glad 1994 call aˆ

nonparametric density estimate with a parametric start, the ‘‘start’’ being the
choice of j.

wŽ . Ž .xThe Poisson analogs of m , m and m 8.4 ] 8.7 areˆ ˆ ˆsef HG sym

8.12 m s PP s; MM s; 1 , m s MM s; PP s; 1 , m s PP s; m .Ž . Ž . Ž .Ž Ž . Ž .ˆ ˆ ˆ ˆsef HG sym HG

Ž . o 1 oThe backfitting estimate 8.8 is now defined by m s m q m , where mˆ ˆ ˆ ˆback
and m1 satisfy the fixed-point relationshipsˆ
8.13 mo s D 1rm1 MM s; m1 and m1 s D 1rmo PP s; mo .Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆ

Ž .Chapter 6 of Hastie and Tibshirani 1990 discusses an iterative algorithm
for computing m .ˆ back

Ž .The moment-matching property 2.17 is satisfied by m , m and m .ˆ ˆ ˆsef sym back
ˆo Xb Ž .Each of these estimators can be written in the form m e , 3.26 , withˆ

8.14 mo s Ms, mo s m and mo s M srm1 .Ž . Ž .ˆ ˆ ˆ ˆ ˆsef sym HG back

We have used m in all of our examples because it makes the computation ofˆ sef
ˆ oŽ .H s d log m rds, a crucial part of the formulas in Sections 2]7, so simple.ˆ

w Ž o.An even simpler choice, log m s Hs for some fixed matrix H, does notˆ
Ž . xsatisfy 5.14 and seems to have undesirable small-sample properties.

ˆ o Ž .In theory at least we can compute H for any choice of m s m s . Here,ˆ
ˆ owithout proof, is H for m :ˆ sym

o o ˆŽ Ž ..LEMMA 5. For m s m s MM s; PP s, 1 , the derivative matrix H sˆ ˆ sym
Ž o.d log m rds isˆ

o o o o o o o o o o o oˆ ˆ8.15a H s D m rm MD 1rm q I y D m rm MD srm P ,Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆ
where

y1o o o o o oˆ8.15b m s PP s; 1 and P s X X 9D m X X 9.Ž . Ž . Ž .ˆ ˆ

Ž Ž ..The symmetrized version of the m in Figure 3, m s PP s; MM s; m ,ˆ ˆ ˆsef sym sef
gave similar but somewhat rougher contours than those in the left panel of
Figure 4. There is no compelling theoretical reason for preferring m orˆ sym
m to m , though they seem closer in structure to Bayes and maximumˆ ˆback sef
likelihood estimators. In practice, the specific choices of M and X seem more
crucial to successful estimation than does the choice between m , m orˆ ˆsef sym
m .ˆ back

9. Remarks. The following remarks apply to the indicated sections.

Ž .REMARK A Section 2 . There is an interesting connection between moment-
matching and function-preserving properties of smoothers. For a smoother

Žm s Ms, the condition Ým s Ýs requires 19M s 19 where 1 is a column ofˆ ˆ i i
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.ones , or equivalently M91 s 1. Now most smoothers preserve constants so
that M1 s 1. For symmetric M we see that matching the zeroth moment is
the same as preserving the constant vector. However, most smoothers such as
kernels are not symmetric, and hence will not match the zeroth moment

Ž .exactly. Similarly, a smoother may preserve a vector t so Mt s t without
satisfying the moment-matching property M9t s t. In general, moment-
matching is equivalent to function-preserving for the transpose of the
smoother matrix.

Ž .REMARK B Section 3 . What is the true parameter b being estimated by
ˆ Ž . Ž .b ? Suppose that s ; Po m , but that m is not necessarily of the form m b ink
Ž . o Ž .3.1 . From m we determine m s m m and then b the solution vector to the

o Xb ˆw xequations X 9 m y m e s 0. Under reasonable conditions b will be an
asymptotically normal estimate for b, in the usual manner of an MLE. For
instance if m s np, with p fixed and n ª `, and if the mo estimate is

Ž . Ž .homogeneous, m cs s cm s , then it is easy to show that
y1 y1ˆ'9.1 n b y b ª N 0, A BA ,Ž . Ž .Ž . pq1

w Ž Xb . o xwhere, with Z9 s X 9 I y D e dm rdm ,

moe Xb m
9.2 A s lim X 9D X and B s lim Z9D Z.Ž . ž /ž /n nnª` nª`

ˆThe bias of b as an estimate of b is of order 1rn.

Ž . Ž . o Ž .REMARK C Section 3 . In case 2.13 , m s Ms, the matrix Z in 3.4a is aˆ
ˆ o ˆŽ .function of b but not of m , say Z s Z b . If ds is a K vector orthogonal toˆ

ˆŽ .the columns of Z b , then
y1ˆ ˆ ˆw x9.3 db s X 9DX Z9 b ds s 0.Ž . Ž .

ˆ Ž .This implies that the level surfaces of constant b value are K y p q 1 -
dimensional flat subspaces in the K-dimensional s space. Flat level surfaces

Ž .tend to make delta-method covariance estimates such as 3.6 more accurate.

Ž .REMARK D Section 4 . Here are the total Poisson deviances:
sk

9.4 Dev s, m s 2 s log y s y mŽ . Ž . Ž .ˆ ˆÝ k k k½ 5ž /m̂kk
o Ž . 1 o Ž .for four choices of m: m s M 2 s; m the SEF based on this m and X s 1, i, j ;ˆ ˆ ˆ ˆ

2 Ž . 3 Ž .m the SEF 4.5 ; m the SEF 9.3 :ˆ ˆ
m0 m1 m2 m3ˆ ˆ ˆ ˆ

9.5Ž .
247.1 240.3 226.1 220.3.
Ž 2 . Ž 3. 2The deviance decrease D s, m y D sm s 5.77 is much smaller than 3.75 ,ˆ ˆ

the square of the corresponding t-value in Table 3. The naive t-value,
Ž .calculated using the standard error estimate from 3.7 , is the right one for

approximating the deviance decrease. In this case the naive t-value is
0.000267r0.000111 s 2.74, predicting 2.742 s 5.76 for the deviance decrease.
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Ž . Ž .REMARK E Section 4 . Results like 3.6 can be directly derived for
Ž .continuous special exponential families 1.3 without going through the Pois-

Ž . Ž .son discretization argument. Suppose we estimate g y in 1.2 by a continu-0
Ž .ous version of 2.13 ,

n1
<9.6 g y s M y y ,Ž . Ž . Ž .ˆ Ý0 in is1

Ž < . wwhere, for any y , M y y is a distribution over YY not necessarily satisfyingi i
Ž < . x Ž .H M y y dy s 1 . We define the SEF density estimate to be g y sˆYY i b

ˆ ˆ ˆ ˆ ˆŽ . Ž Ž . . Ž .g y exp b q t y b , where b s b , b satisfies the ‘‘maximum likeli-ˆ0 0 1 0 1
hood’’ equations

n1
9.7 t y g y dy s t s t y ,Ž . Ž . Ž . Ž .ˆ ÝH b inYY is1

Ž .as well as the constraint H g y dy s 1.ˆYY b

Define

ˆ ˆ <9.8 z s t y y t y t y y t exp b q t y y t b M y y dyŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .Hi i 0 1 i
YY

$
Ž . Ž .and let Cov t indicate the covariance matrix of t y for the distribution on YY

Ž . Ž .corresponding to g y . Then the continuous analog of 3.6a isb̂

Xn1 z z$ $y1 y1i iˆ9.9 Cov b s Cov t Cov t .Ž . Ž . Ž .Ž . Ý1 n nis1

Ž . Ž . Ž .9.9 is the limit of 3.6a as the discretization 2.1 becomes infinitely fine,
ˆafter the superfluous parameter b is removed.0

Ž .In order to use 9.9 , we need to evaluate the integrals over YY involved in$
Ž . Ž . Ž .9.7 , 9.8 and Cov t . The discretization argument effectively does such
integrals by summation over k s 1, 2, . . . , K. If YY is high dimensional, we
might prefer to work in the continuous mode, doing the integrals by some
more efficient algorithm such as componentwise Simpson rules.

Ž .REMARK F Section 5 . We will often be interested in the probability
vector

9.10 p s mrm s mrn,Ž . ˆ ˆ ˆ ˆq

o Ž .rather than in m itself. Suppose that m s m s is scale homogeneous,ˆ ˆ
9.11 m cs s cm s c ) 0 .Ž . Ž . Ž . Ž .

Ž . Ž . Ž .The m s SEF s; m, X is also scale homogeneous and p cs s p s . Familiarˆ ˆ ˆ
homogeneity properties give

dm dm dp 1 dmˆ ˆ ˆ ˆ
9.12 19 s 19, s s m and s I y p19 .Ž . Ž .ˆ ˆ

ds ds ds m dsˆq
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Ž .Using 9.12 it is not difficult to show that

dp dp 1 mm9ˆ ˆ ˆ ˆ
99.13 Cov p ' D s Cov m yŽ . Ž . Ž .ˆ ˆ2ž / ž /ds ds nn

Ž .and that the diagonal elements of Cov p satisfyˆ
var pŽ .ˆ i

9.14 trv ' n ' TRV y 1.Ž . Ý
p̂ kk

Thus the comparisons in Table 4 remain valid for trv. The results for the$
equivalent of TRV are a little less neat.

Ž .REMARK G Section 5 . Let p s srn, the vector of empirical probabilities,
and define

ˆ ˆd ' D p s Drn, d ' D p s Drn,Ž . Ž .ˆ
9.15Ž .

y1 y1ˆ ˆ ˆ ˆ ˆ ˆp ' X X 9dX X 9 s nP , q ' d y p s nQ, h ' nH .Ž .ˆ ˆ ˆ
ˆ o o ow Ž . Ž . xUnder the homogeneity condition 5.14 , h s d log p rdp, for p ' m rn.ˆ ˆ ˆ

Ž .Then 5.9 can be written as
$ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ9.16 TRV s tr dp q hdh 9 dqd or TRV s p q 1 q tr hdh dqdŽ . Ž .ˆ ˆ ˆŽ . Ž .ž ž /

$
Ž .not depending on n. This shows that TRV and TRV are O 1 as n ª `. Seep

Remark K.

Ž .REMARK H Section 5 . Suppose that the discretization of YY becomes
infinitely fine, with K going to infinity and the kth cell YY having volume Dk k

Ž .going to zero. Under sufficient regularity conditions, p y rD will approachˆ Žk . k
Ž .g y , an estimate of the original continuous density with approximateˆ Žk .

variance

var p yŽ .� 4ˆ Žk .
9.17 var g y s .Ž . Ž .� 4ˆ Žk . 2Dk

Ž .Then trv, 9.14 , will approach

var g y� 4Ž .ˆ 29.18 n dy s n CV y g y dy,Ž . Ž . Ž .ˆH Hg yŽ .ˆYY YY

1r2Ž . w Ž Ž ..x Ž . Ž .with CV y ' Var g y rg y , a coefficient of variation measure for g y .ˆ ˆ ˆ
'Ž . Ž .From Remark G we see that CV y is typically O 1r n as n ª `. Thep

Ž .estimated average value for the coefficient of variation of SEF 4.5 was 0.15.

Ž .REMARK I Section 5 . A computationally more efficient expression than
Ž .5.9 is

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ9.19 TRV s tr D P q H9DH y H9DPDH .Ž .
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Ž . Ž 2 .Each of the three terms in 9.19 can be evaluated using O K multiplica-
Ž 3.tions rather than O K . This makes values of K as large as 1000 practical.

ˆ ˆ 2Ž .Letting G s X 9DX, the O K computing formula is
2y1 1r2 1r2ˆ ˆˆ5 5TRV s tr G X 9DX q D HDŽ .

9.20Ž .
y1 1r2 1r2ˆ ˆ ˆ ˆ ˆq tr G X 9DHD D H9DXŽ .Ž .

$2 2 ˆŽ5 5 .a ' Ý Ý a for matrix a , and similarly for TRV, substituting D for D.i j i j
o Ž .When m s Ms the middle term in 9.20 equals Ý m A , whereˆ ˆk k k

2
2 oˆ ˜ ˜9.21a A s M s r M s M ' m rm M ,Ž . ˜ ˆ ˆŽ .Ý Ýk k j j k j j k j k k k jž /

j j
$

and s equals s for TRV or m for TRV. For the TRV case A F 1, but A can˜ ˆj j j k k$
blow up for TRV. The calculations of Section 6 replace A withk

9.21b min A , 1Ž . Ž .k$
in the TRV case.

Ž . Ž .REMARK J Section 6 . The degrees of freedom formula 6.20 can be
rewritten as

$ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ9.22 DF s tr D P q H y PDH or DF s p q 1 q tr D H y PDH .Ž . Ž . Ž .
ˆXbˆ Ž .The P term corresponds to the e part of the SEF definition 3.2 , while the

ˆ o ˆˆ ˆH term corresponds to the choice of the carrier m . The PDH subtractionˆ
term corrects for collinearity between the carrier and the exponential family
terms. The degrees of freedom definition for p rather than m, as in Remarkˆ ˆ

Ž . Ž . Ž 2 .F, subtracts 1 from formula 6.20 or 9.22 . It takes O K multiplications to$
compute DF or DF from either formula.

Ž .REMARK K Section 6 . Write s s np as in Remark G and consider expres-
Ž . Ž . Ž . Ž . Ž .sion 6.15 for DF m as n ª ` with p fixed. Assuming m s s cm s , 9.11 ,$̂ ˆ ˆ Ž .the approximation DFs DO does not depend on n and so is O 1 just as inp

Ž .9.16 . Using higher-order expansions it is easy to show that
$

9.23 DF m y DF s O 1rn ,Ž . Ž . Ž .ˆ p
$

Ž .so at least in this sense DF is a good approximation to DF m . The corre-ˆ$
sponding results hold for DF, TRV, and TRV.

Ž .REMARK L Section 6 . The Poisson residual degrees of freedom formula

9.24 RDF m s K m y 2DF m q TRV mŽ . Ž . Ž . Ž . Ž .
Ž .is always nonnegative. To prove this we use 6.12b to write

9.25 RDF m s E Dev s, m y Dev m , n ,� 4Ž . Ž . Ž . Ž .ˆ
�Ž .4 Ž .and note that E s, m s m, n . The proof is completed with the fact that theˆ

Ž . Ž .Poisson deviance Dev m, n is a jointly convex function of m, n .
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Ž .The RDF estimates 6.21 are not necessarily nonnegative. They become so
Ž . Ž .if we replace K m in 6.21 with the Taylor series estimates

y1 y1ˆ ˆ ˆ ˆ9.26 K s tr DD or K s tr DD s p q 1 ,Ž . Ž .

but these were poor approximations in our examples.

Ž . wREMARK M Section 8 . We tried a ‘‘loess’’ smoother Cleveland and Gross
Ž .x1992 for the galaxy data, in the form of a generalized additive Poisson

w Ž .xmodel Hastie and Tibshirani 1990 . We used a degree 2 loess model, that is,
one that fits second degree polynomials locally. This gave an expected de-
viance picture similar to Figure 5. This is not surprising given the similarity
between the moment-matching and function-preserving properties mentioned
in Remark A.
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