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Abstract

The 2007 Energy Independence and Security Act mandates a five-fold increase in US

biofuel production by 2022. Given this ambitious policy target, there is a need for

spatially explicit estimates of landscape suitability for growing biofuel feedstocks. We

developed a suitability modeling approach for two major US biofuel crops, corn (Zea
mays) and switchgrass (Panicum virgatum), based upon the use of two presence-only

species distribution models (SDMs): maximum entropy (Maxent) and support vector

machines (SVM). SDMs are commonly used for modeling animal and plant distributions

in natural environments, but have rarely been used to develop landscape models for

cultivated crops. AUC, Kappa, and correlation measures derived from test data indicate

that SVM slightly outperformed Maxent in modeling US corn production, although both

models produced significantly accurate results. When compared with results from a

mechanistic switchgrass model recently developed by Oak Ridge National Laboratory

(ORNL), SVM results showed higher correlation than Maxent results with models fit

using county-scale point inputs of switchgrass production derived from expert opinion

estimates. However, Maxent results for an alternative switchgrass model developed with

point inputs from research trial sites showed higher correlation to the ORNL model than

the corresponding results obtained from SVM. Further analysis indicates that both

modeling approaches were effective in predicting county-scale increases in corn produc-

tion from 2006 to 2007, a time period in which US corn production increased by 24%. We

conclude that presence-only methods are a powerful first-cut tool for estimating relative

land suitability across geographic regions in which candidate biofuel feedstocks can be

grown, and may also provide important insight into potential land-use change patterns

likely to be associated with increased biofuel demand.
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Introduction

Concerns about domestic energy independence, green-

house gas emissions from fossil fuels, and the health of

rural economies have sparked great interest in the

development of bioenergy supplies in the United States.

Perhaps the most important policy initiative for

promoting future US bioenergy production is the Re-

newable Fuels Standard (RFS) provision of the 2007

Energy Independence and Security Act. The RFS man-

dates increasing levels of liquid biofuel (e.g., bio-etha-

nol and biodiesel) use in the US over the next decade

and a half, culminating in a biofuel target of 136 billion

liters (36 billion gallons) by 2022 (Sissine, 2007). This

goal represents five times the amount of biofuels pro-

duced by the US in 2007, almost all of which was

comprised of corn-based ethanol. The RFS also stipu-

lates that over half (approximately 80 billion liters) of

the US biofuel portfolio in 2022 must be composed of

‘advanced’ biofuels, such as cellulosic ethanol and
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biodiesel, which are not currently in large-scale com-

mercial production (Sissine, 2007).

While the RFS clearly establishes biofuels as a pri-

mary pathway for alternative energy development in

the US over the next decades, there is great controversy

about the consequences of a move toward large-scale

biofuel production. On the one hand, several recent

studies suggest that some biofuel processes may offer

important advantages over petroleum-based liquid

fuels, including an increase in domestic energy supply

and reduction of greenhouse gas emissions (e.g., Kim &

Dale, 2005; Farrell et al., 2006; Sartori et al., 2006; Schmer

et al., 2008). On the other hand, a number of other

studies argue that large-scale biofuel production –

particularly in the form of corn-based ethanol – could

exacerbate existing socio-environmental problems such

as consumptive use of freshwater (Evans & Cohen,

2009; Gerbens-Leenes et al., 2009), aquatic eutrophica-

tion (Donner & Kucharik, 2008), wildlife habitat loss

(Fletcher et al., 2010), air pollution (Jacobson, 2009), and

even increased greenhouse gas emissions (Crutzen

et al., 2008; Fargione et al., 2008; Searchinger et al., 2008).

Underlying the concerns about biofuels are the over-

all land area and concomitant land-use changes that

will be necessary to grow sufficient biomass feedstocks

for meeting biofuel targets. Development of accurate

models that delineate relative land suitability across the

geographic extent of lands on which candidate feed-

stocks can be efficiently grown is a clear priority in

efforts to better understand the potential benefits and

risks from increased biofuel production (USEPA, 2009).

Nonetheless, efforts to estimate the extent of areas

suitable for production of biofuel feedstocks have

been remarkably limited. The primary reason is that

the input and production requirements are not well-

quantified for many candidate species, meaning that

very little data are available for traditional agronomic

model construction and validation. Thus, investigators

often rely on expert opinion and broad assumptions

regarding land-use constraints to delineate the geo-

graphic suitability for prospective biofuel feedstocks

(e.g., Milbrandt, 2005).

Here, we present results from a novel application of

species distribution models (SDMs) to estimate land-

scape suitability for biofuel feedstocks. SDMs are com-

monly used for modeling animal and plant population

distributions in the natural environment, but have

rarely been used for the purpose of modeling cultivated

crop species (Miller & Knouft, 2006). We first modeled

the geographic distribution for corn (Zea mays) produc-

tion. Corn provided a good test case because it is a crop

that is already commercially produced, and thus has

readily available data for both model construction (i.e.,

model training) and independent model testing at a

national level. Two commonly used SDM techniques,

maximum entropy (Maxent) and support vector ma-

chines (SVM), were evaluated in terms of their ability to

predict both crop distribution (presence/absence) and

relative intensity for corn yields across the US at a

county-scale. Two different modeling approaches –

one based upon point inputs obtained from expert

opinion estimates, and the other based on production

at field research sites – were then developed for switch-

grass production using both Maxent and SVM. Results

of these were then contrasted to an agronomic produc-

tion model recently developed for switchgrass. Further-

more, an observed increase in corn production between

2006 and 2007, widely thought to be caused by growing

demands for corn-based ethanol (see, e.g., Westcott,

2007), provided a unique opportunity to assess SDMs

in terms of their ability to predict agricultural land-use

change associated with an increase in biofuel produc-

tion. To conclude, we discuss implications of SDM

results in terms of land-use change, differential envir-

onmental impact of feedstock production across the

landscape, and other potential applications.

SDMs and their applicability to biofuels

Models that use known location records to make predic-

tions about habitat suitability and associated distribution

of species are increasingly being used by ecologists and

conservation scientists. Also commonly called habitat

suitability and/or ecological niche models, the approach

for building a SDM is basically threefold: (1) overlay

point location records for a given species across GIS-

based layers containing socio-environmental variables

(e.g., climate, altitude, land-use, human population den-

sity, etc.); (2) apply a mathematical model to identify

relationships between observed point locations and socio-

environmental parameters at or near point locations; and

(3) use the model results from step 2) to interpolate (and

potentially extrapolate) relative habitat suitability across

the landscape in which socio-environmental parameters

are known.

Two general classes of SDMs are often distinguished

based upon the type of data required. One common

model type is known as ‘presence-absence.’ As the

name implies, presence-absence models use discrete

point location information for areas that a species is

known to be present as well as for areas in which the

species is known to be absent. Generalized linear mod-

els, generalized additive models, and classification and

regression trees are some of the more commonly used

presence-absence modeling approaches (Brotons et al.,

2004). By contrast, ‘presence-only’ modeling ap-

proaches require location information only for known

presence points and do not require explicit absence
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data. Commonly used presence-only models include

Genetic Algorithm for Rule-set Prediction (GARP),

Maxent, SVM, and climate envelope models (e.g., BIO-

CLIM).

Presence-only models have two unique attributes that

would seem to make them more useful than presence-

absence models for estimating landscape suitability for

biofuel feedstock production. First, presence-absence

models require absence data, which reflect areas un-

suitable for a species, for model development. For many

candidate biofuel feedstocks not yet widely grown, it

would be inappropriate to treat localities without cur-

rent production as unsuitable. Presence-only models

avoid this problem because they do not require the

explicit constraints indicated by absence data. Second,

most presence-only models are designed to function

well even when limited to very sparse presence data

sets (Engler et al., 2004; Hernandez et al., 2006), meaning

that useful geographic models of suitability can often be

developed with very few presence point locations. This

feature is particularly important because many prospec-

tive biofuel feedstocks currently are being grown in

only a small number of test locations.

Based upon this reasoning, we hypothesized that

presence-only SDMs, which to date have not been

widely applied to cultivated crops (Miller & Knouft,

2006), could produce useful estimates of landscape

suitability for biofuel feedstock production. Corn and

switchgrass provide ideal cases for testing of this hy-

pothesis due to the large amounts of extant information

(detailed crop data in the case of corn, and a compre-

hensive agronomic model in the case of switchgrass)

that can be used to evaluate suitability estimates de-

rived through presence-only models.

Methods and materials

Presence-only models

We used two SDM approaches to develop suitability

maps for U.S. corn and switchgrass production: Maxent

and single-classification SVM (Phillips et al., 2006;

Drake et al., 2006). Several additional models – inclu-

ding GARP, BIOCLIM, DOMAIN, and two-class sup-

port vector machines – were also tested in initial model

runs for corn. However, we chose to not use these

additional models when developing detailed corn and

switchgrass analyses because they were found to per-

form significantly less well than Maxent and SVM, a

finding that is generally consistent with other recent

SDM model evaluations (e.g., Elith et al., 2006).

Although both Maxent and SVM require only pre-

sence point inputs for model fitting, a further distinc-

tion can be made in that single-class SVM derives

suitability estimates only from socio-environmental

data at presence localities (Drake et al., 2006), while

Maxent also utilizes socio-environmental data from

randomly selected ‘background’ locations (Phillips

et al., 2006). Such background locations are commonly

referred to as ‘pseudo-absences,’ and are used because

they provide information regarding available socio-

environmental gradients relative to point locations.

Pseudo-absences can potentially increase model perfor-

mance, particularly when using sparse point input data

(Elith et al., 2006). However, some argue that pseudo-

absences are theoretically suspect in the sense that they

do not represent true absences, and may thus provide

unjustified constraints that in some cases could deleter-

iously bias the model outputs (Drake et al., 2006).

Maxent. Maxent is a supervised machine learning

method based on statistical mechanics (Jaynes, 1957).

It uses the concept of maximum entropy to estimate

suitability, which is generally thought to work well

under conditions of sparse data (i.e., ‘incomplete

information’; Phillips et al., 2006). Potential suitability

or predicted distributions are represented as an

unknown probability distribution across all sites

(study area). The algorithm constrains the probability

distribution based on environmental data at presence

locations and chooses a distribution of Maxent, i.e., the

most unconstrained. Maxent uses different classes of

linear and nonlinear ‘features’ for quantifying

information in the data (i.e., relationships of presence

locations with socio-environmental data; Phillips et al.,

2006). The Maximum Entropy Species Distribution

Modeling Version 3.2.1. package was used to run

Maxent. We used recommendations in Phillips &

Dudik (2008) for parameter tuning.

Single-classification SVMs. SVMs are another kind of

supervised machine learning technique. This

technique, based on single-classification (or ‘one-class’

classification), uses only presence locations to map

input vectors to a higher dimensional space using

kernel functions (Scholkopf et al., 2000).The objective

is to minimize the multidimensional space that

encapsulates presence data. Because SVM is not based

on an underlying theoretical distribution, there are no

assumptions regarding independence of data points.

The solution is thus deterministic, thereby greatly

reducing computation time as compared with some

other presence-only modeling approaches (Drake

et al., 2006). Use of single-classification SVM methods

in ecological niche-modeling is explained in detail by

Guo et al. (2005) and Drake et al. (2006). We used a

radial-basis kernel function, which is generally thought

to be superior for estimation and classification accuracy
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(e.g., Pirooznia & Deng, 2006). SVM was run using the

OPENMODELLER DESKTOP 1.0.7 package (de Souza Munoz

et al., 2009).

Socio-environmental data layers

A total of 27detailed climate, environmental, and social

layers covering the continental United States at a cell

resolution of 9� 9 km were originally compiled and

considered for model runs. These layers were analyzed

for correlations based on the respective values at 3000

randomly selected points, with a correlation cutoff

(r 5 0.8) used to select layers for use in final model runs.

Three primary climate variables were selected as the

basis for correlative comparisons among socio-environ-

mental variables: (1) mean annual temperature (USDA,

2009); (2) mean annual precipitation (USDA, 2009); and

(3) mean diurnal temperature range (openModeller,

2008). Eight other variables with correlation results

lower than the defined threshold were also selected

for model runs, resulting in a total of 11 explanatory

data layers for model training: (4) altitude (CGIAR-CSI,

2008); (5) mean annual temperature maximum (USDA,

2009); (6) mean annual temperature minimum (USDA,

2009); (7) mean precipitation warmest month (open-

Modeller, 2008); (8) mean wind speed (openModeller,

2008); (9) county-scale major road density as defined by

the United States Department of Transportation (data

set obtained through University of California Berkeley,

2008); (10) standard deviation mean precipitation

(openModeller, 2008); and (11) standard deviation mean

temperature (openModeller, 2008). Rejected layers in-

cluded 15 additional climate variables available

through the openModeller (2008) package and county-

scale population density (US Census Bureau, 2009). In

addition, the road density layer was removed as an

explanatory variable the from point-sparse switchgrass

models due to apparent biasing in the point data

set toward moderate road (and population) densities

found near universities, where most switchgrass trials

occurred.

Precipitation and temperature are dominant forcing

functions for determining crop suitability, and thus are

included as standard variables in models of crop dis-

tribution and production (Parry et al., 2004; Fischer et al.,

2005). Wind speed is also used in many crop production

models due to the close relationship of wind with

landscape evapotranspiration rates and, by extension,

soil water loss (Geerts et al., 2006). We included altitude

as an additional environmental variable due to the

relatively independent effects of altitude on crop suit-

ability in some locations (Mani et al., 2007). The ratio-

nale for including road density is that the availability of

sufficient road infrastructure in rural areas is likely to

have important implications for biofuel feedstock pro-

duction (Walsh, 1998).

We also note that two variables with clear importance

for agricultural production were not included in the

models: (1) soil quality and (2) availability of irrigation

water. Omission of these variables was due to the

current lack of readily available GIS data layers contain-

ing such information at the scale of the continental US.

Although an ideal crop distribution model would in-

clude these two (and potentially other) variables, we

proceeded under the hypothesis that available climate,

altitude, and infrastructure layers would provide suffi-

cient information for developing accurate estimates of

relative crop suitability at a national scale.

Presence points

The data for development of the corn model were

obtained from the 2006 National Agricultural Statistics

Service (NASS) data for county-scale field corn produc-

tion (data available at http://www.nass.usda.gov/

QuickStats/Create_County_All.jsp; county-scale map

of 2006 corn production data shown in Fig. 1). The pool

of potential training points for the corn model was

limited to a random selection containing two-third of

all counties in the continental US (n 5 2026). The re-

maining counties (n 5 1013) were held out for indepen-

dent validity testing with corn data.

The first switchgrass modeling approach (the ‘point-

intensive’ switchgrass model hereafter) was similar to

the corn model in that it used county-scale input points,

but with the important difference that points were

based upon expert opinion of potential production –

not actual production as was the case for corn. The

point-intensive switchgrass model was developed

using expert assessments, as compiled by the National

Renewable Energy Laboratory, of potential switchgrass

biomass production on Conservation Reserve Program

(CRP) lands for each U.S. county (Milbrandt, 2005). For

consistency in model-training, the point-intensive

switchgrass models were fit using the same pool of

counties randomly selected for the corn model.

A second switchgrass model (the ‘point-sparse’

switchgrass model hereafter) was constructed from a

relatively small number of presence points obtained

through a literature search of switchgrass production

field tests (supporting information Table S1). All avail-

able points were used for training the point-sparse

model due to the limited number of switchgrass study

sites (n 5 48). Because such a point-sparse approach is

likely to be the only feasible option for other prospec-

tive biofuel crops not currently produced at large scales,

switchgrass presents an interesting opportunity to com-

pare results from a point-sparse model with those from
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a much more point-intensive model based on expert

opinion. Another possible mechanism for selecting

switchgrass point locations would be to assemble spe-

cies location data from herbaria and other natural

history surveys (Graham et al., 2004). However, we

did not use this latter approach because such data

would be more appropriate for modeling the natura-

lized range for switchgrass, and would not provide

relevant information about the biomass production

rates from switchgrass grown in monotypic stands.

Point location errors in corn and point-intensive switchgrass

models. It must be noted that the point data sources for

the corn and point-intensive switchgrass models are

aggregated at a county scale. Because national-scale

land cover data are not available for determining

precise coordinates of crop locations at the county

level, the geographic centroid of each county was

used as the basis for presence points. This use of

centroids, rather than specifically verified presence

points, introduces some inherent error into the

modeling inputs. Moreover, the possibility of

significant error is greater for counties with relatively

small amounts of crop production area, as there is less

chance that the centroid represents a ‘true’ presence

point than in counties with relatively large amounts of

production. For example, there is a 1% probability that

the centroid represents a true presence point for a

county with 1% of its land area in corn production,

whereas there is a 50% probability of the centroid

serving as a true presence point for a county with 50%

corn production by area.

However, the realized importance of this error in our

models is greatly reduced by the fact that explanatory

variables were aggregated to a 9� 9 km cell size. In

practice, the precision of presence points is only

meaningful within this spatial scale, as the centroid

effectively serves as an accurate proxy for a true

presence point so long as a crop location also falls

within the 9� 9 km cell in which the centroid is

contained. This spatial tolerance is particularly

important for minimizing the realized importance of

errors in smaller counties, which generally should have

less heterogeneity in explanatory variables than larger

counties. The realized effect of spatial errors is also

reduced in the modeling process through the use of a

production weighting procedure – described in more

detail in ‘Model weighting’ – that gives less weight to

counties with low areal crop production intensity

(kg ha�1) as averaged across the county’s total land

area.

Model weighting

Because of the large differences in feedstock production

intensity at county scales, we used a method for weight-

ing multiple model runs with subsets of the presence

points that reflect different production intensity levels.

For corn, all counties that showed production in the

2006 NASS data set were ranked according to their areal

production intensity (kg ha�1) across the county. For the

point-intensive switchgrass model, all counties that

showed some level of production were ranked accor-

ding to an expert estimate of potential biomass yield

Fig. 1 Corn production intensity (as Mg ha�1 on the scale of total county area) across the United States in 2006. Source data obtained

from the National Agricultural Statistics Service (http://www.nass.usda.gov/QuickStats/Create_County_All.jsp).
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(kg ha�1) on conservation reserve program (CRP) lands

(Milbrandt, 2005). For the point-sparse switchgrass

model, each data point was ranked according to the

average biomass output reported at the study site

(supporting information Table S1).

For the corn and point-intensive switchgrass models,

we selected out five progressively less restrictive sets of

presence point classes based upon five equally spaced

quantiles of areal production intensity: upper 20%, 40%,

60%, 80%, and all counties in which the feedstock was

present (Fig. 2a). For the point-sparse switchgrass

model, only two quantiles were used due to the small

number of initial presence points available for the

model (n 5 48): upper 50%, and all points (Fig. 2b).

Model runs were then made with points from each of

these production intensity subsets.

We used results from the individual runs for each

quantile to develop a final, production-weighted model

of suitability for each feedstock. To do so, we weighted

the model results for each quantile, based on the aver-

age production for that quantile, as wq 5 pq/
P

p, where

wq is the weight for suitability for quantile q, and pq is

the average production yields for data from quantile q.

After making these weighted adjustments, we then

Fig. 2 Production weighted presence points for (a) data-intensive switchgrass model; and (b) data-sparse switchgrass model. Presence

points for data-intensive model derived from expert opinion estimates in Milbrandt (2005). Presence points for data-sparse switchgrass

model derived from study data listed in Table 1.
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calculated a weighted average of individual quantile

results to produce a production-weighted suitability

(PWS hereafter) for each feedstock model. As such,

higher weight is given to high production counties

and less weight is given to low production counties in

the aggregated PWS results. Because crop data are

reported at a county scale, we then calculated a mean

PWS value from model predictions within the bound-

ary of each US county polygon.

As discussed above in ‘Point location errors in corn

and point-intensive switchgrass models’, relatively low

production intensity correspondingly increases the like-

lihood that the centroid is not a representative presence

point. Although the primary rationale for using the

weighting procedure is to develop a model that can

reflect the different production intensities expected

across the landscape, the production weighting proce-

dure also has the effect of reducing the importance of

location errors for corn models by giving less weight to

low production counties in which the centroid would be

less likely to represent a true presence point.

Assessing model performance

We contrasted mean PWS values to corn yields reported

by NASS for 2006 and 2007 in test counties (n 5 1026)

that were not used in model development. To assess the

predictive performance of corn suitability models, we

used three measures: (1) area under the receiver oper-

ating curve (AUC) for predicting the likelihood of

production within counties; (2) Kappa; and (3) rank

correlation to determine if mean PWS correlated with

county-level production yields.

AUC is a threshold independent measure of model

performance (see Fielding & Bell, 1997). An AUC value

of 0.5 indicates a model that predicts no better than

chance, with higher values up to a maximum value of 1

indicating progressively better model performance.

AUC is frequently used for interpreting whether mod-

els correctly predict actual distributions (Elith et al.,

2006; Peterson et al., 2007), although it has received

some recent criticism regarding its utility as a standa-

lone evaluative metric (Austin, 2007; Lobo et al., 2008).

Consequently, we also used another common perfor-

mance metric, Kappa (Fielding & Bell, 1997). Kappa

measures the proportion of correctly predicted points

after the probability of chance agreement has been

removed. For the Kappa statistic, we used a threshold

cutoff value that maximized Kappa (Freeman & Moi-

sen, 2008). Rank correlation was provided as an addi-

tional test for measuring the extent to which suitability

results correlated with corn yields for test counties.

The dramatic increase in corn yields (�24%) observed

in 2007 over 2006 (USDA, 2008) provided a unique

opportunity to test if SDM results could be useful for

predicting patterns of land-use change. To examine

such potential land-use relationships, we first compared

averaged PWS scores from both models with test

county corn production data as divided into three

classes: (1) greater corn production in 2007 relative to

2006; (2) less corn production in 2007 relative to 2006;

and (3) no change in corn production between the 2

years (which for all relevant test counties meant that no

corn was produced in either years). Secondly, we calcu-

lated the percentage of available land converted into

corn for those test counties that did show an increase in

corn production in 2007, and then compared this per-

centage with the respective mean PWS suitability re-

sults provided by both Maxent and SVM.

There currently are not large-scale farms growing

switchgrass as a biofuel feedstock or corresponding

data sets that could provide information about the

landscape distribution of actual switchgrass produc-

tion. Thus, it is not possible to assess the predictive

accuracy of switchgrass models using true production

data. Instead, we used a county-scale switchgrass agro-

nomic model recently developed by the Oak Ridge

National Laboratory (ORNL) (Fig. 5) as a basis for

interpreting results from Maxent and SVM. The ORNL

model is built upon a mechanistic agronomic approach

that includes information about local climate, crop

management, plant cultivar selection, and field trial

production to provide county-scale estimates of optimal

switchgrass yield per hectare (Gunderson et al., 2008).

The data used in the ORNL model were derived from

many of the same field trial studies used in the con-

struction of our point-sparse model.

Given that the ORNL model does not necessarily

represent true presence or absence in the landscape,

use of AUC or Kappa as a method for assessing

performance of SDMs would be inappropriate. How-

ever, correlative comparisons of SDM results with the

ORNL model do provide a useful benchmark for de-

termining whether the SDMs, which can be constructed

using considerably less detailed input parameters than

mechanistic agronomic models, might serve as an effec-

tive first-cut tool for estimating landscape suitability for

other emergent biofuel feedstocks.

Results

Corn model comparisons

Qualitative comparison of Maxent and SVM results

(Fig. 3) with a map of 2006 county-scale corn production

(Fig. 2) suggests that both models capture the outline of

the Midwestern corn belt in some detail. Secondary

production areas along the Mississippi River lowlands,
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the southeastern coastal plain, and the California cen-

tral valley are also evident in both maps. All test county

validation statistics for corn models (Table 1) were

slightly, but consistently, higher for SVM than for

Maxent.

One important advantage provided by Maxent, how-

ever, is that variable contribution to model fit is pro-

vided with model output, whereas this information is

not readily provided by SVM. Standard deviation mean

temperature showed considerable importance for corn,

as it contributed 32% of the information in the fitted

model output (Table 2). Relatively large contributions

(45%) were also made by altitude, mean precipitation,

mean annual temperature maximum, mean tempera-

ture, standard deviation mean precipitation, and mean

diurnal temperature. Although other variables showed

only minor overall contribution, it is important to note

that high road density (1.7% of overall model fit) was

clearly the primary factor for significantly reducing

predicted suitability in major population centers (e.g.,

Chicago, IL, USA).

Switchgrass models

Maps for the point-intensive Maxent and SVM switch-

grass models (Fig. 4) both show high suitability for

Fig. 3 Corn suitability estimates for (a) Maxent and (b) SVM. Results displayed using equivalent scale, with darker areas indicating

higher suitability scores.
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much of the non-Appalachian southeast and the Mid-

west, marginal suitability for the northeast, and low

suitability in the mountain west. Results in the Pacific

west do diverge somewhat, as SVM shows marginal

suitability throughout wide areas of this region, while

Maxent shows very low suitability for all but a few

isolated locations.

More dramatic visual differences are found in the

point-sparse outputs for Maxent and SVM. The point-

sparse Maxent model (Fig. 4b) is more optimistic than

both point-intensive models (Fig. 4a and c) in terms of

predicting high switchgrass suitability for much of

eastern Texas, Oklahoma, and Kansas. This result likely

can be explained by the point-sparse model being

biased by the relatively high number of switchgrass

study sites in the western plains (Fig. 1b) – a geographic

distribution that reflects overall research interest in

developing switchgrass as a biofuel feedstock in mar-

ginal crop land and more arid grassland areas (e.g.,

Varvel et al., 2008). However, the SVM point-sparse

model (Fig. 4d) restricted high switchgrass suitability

to extreme southeast Texas, and showed generally

marginal suitability throughout much of the continental

USA.

Variable contribution analyses provided by Maxent

indicated that altitude had the largest effect (32.9%) on

the point-intensive model, while mean precipitation

was the single most influential variable (36.9%) for the

point-sparse switchgrass model (Table 2). Although the

relative contributions vary, the top five explanatory

variables for both switchgrass models were altitude,

mean precipitation, mean temperature, mean annual

temperature maximum, and mean precipitation warm-

est month. However, the importance of minor variables

is demonstrated by road density in the point-intensive

switchgrass model (2.3% contribution), which, similar

to the corn model, had a clear influence in suppressing

relative suitability results for major metropolitan areas

(e.g., Chicago, IL, USA and Atlanta, GA, USA). This

effect becomes particularly clear when examining

point-sparse models that do not include road density

as an explanatory variable (Fig. 4b and d), as reduced

suitabilities are not observed near major metropolitan

areas in these results for either Maxent or SVM.

Scatter plot comparisons (Fig. 5) show that the mod-

els rarely predicted high suitability in areas predicted to

be low suitability from ORNL (i.e., the absence of points

in the lower right portion of the graphs). However, the

converse was not true (i.e., when ORNL predicted high

suitabilities, a wide range of suitabilities were given by

the models). For the point-intensive models (Fig. 5a and

c), this discrepancy is largely explained by the ORNL

projecting very high switchgrass yields in the Pacific

northwest (Gunderson et al., 2008), a region that the

Maxent point-intensive model shows as having very

low (Fig. 4a) and the SVM model shows as having

marginal suitability (Fig. 4c). A similar discrepancy for

the Pacific Northwest holds for the comparison with the

point-sparse Maxent model (Figs 4b and 5b). Further

divergence is notable in the central plains areas of

Table 1 Model comparison with test counties, US corn

production

Model

AUC Kappa

Rank

correlation

2006 2007 2006 2007 2006

SVM 0.873 0.860 0.564 0.534 0.787

Maxent 0.867 0.857 0.527 0.512 0.781

AUC, maxKappa calculated using the R package ‘PresenceAb-

sence’.

Table 2 Variable contribution (%) to production weighted Maxent models

Variable Corn Point-intense switchgrass Point-sparse switchgrass

Altitude 17.0 32.9 26.4

Mean diurnal temperature 5.2 3.1 6.0

Mean precipitation 15.5 20.6 36.9

Mean precipitation warmest month 1.2 9.2 4.1

Mean temperature 8.3 9.1 14.6

Mean temperature maximum 12.2 10.9 3.9

Mean temperature minimum 0.3 1.2 0.6

Mean wind speed 1.3 0.5 0.8

Road density 1.7 2.3 na

Standard deviation mean precipitation 5.3 3.3 3.6

Standard deviation mean temperature 32.2 6.9 3.1

Variable contributions from individual Maxent model runs were weighted according to the production weighting formula method

described in ‘Model weighting’.
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Texas, Oklahoma, and Kansas that the Maxent point-

sparse model shows as having high suitability (Fig. 4b),

but are shown as having low to moderate biomass

potential by the ORNL model (Gunderson et al., 2008).

As shown in the inset to Fig. 5d, the scatter plot for the

point-sparse SVM switchgrass model for suitability

values o0.33 is visually similar to the point-sparse

Maxent switchgrass model (Fig. 5b) for all suitability

values. However, the scatter plot shows poor correla-

tion with the ORNL model for those counties, mostly

located in eastern Texas (Fig. 4d), with SVM suitability

results over 0.33.

Similar to the corn results, county-scale correlations

with ORNL’s switchgrass production model (Gunder-

son et al., 2008) were somewhat higher for the SVM

point-intensive model than for the Maxent point-inten-

sive model. By contrast, a similar comparison of the

point-sparse models indicated a higher correlation for

Maxent than SVM. Assuming that the ORNL model

provides a good basis for comparison, these results are

consistent with the corn results suggesting that SVM

performs somewhat better than Maxent when fitting

models for cultivated crops based on relatively large

amounts of data inputs. At the same time, the point-

sparse results suggest that important modeling gains

may indeed be obtained using Maxent within the con-

text of sparse data sets.

Landscape distribution of corn production increases

Several lines of evidence suggest that SDMs provided

useful information about the distribution of corn pro-

duction increases, and thus potentially land-use change,

across the United States. First, validation with 2007 corn

test data had similar AUC, Kappa, and rank correla-

tions as the 2006 data (Table 1) used for model training.

Second, the average predicted suitability estimated

from both models was much greater for counties with

increased production than for counties with lower

production or no change in production from 2006 to

2007 (One-way ANOVA: F2, 1023 5 239.40, Po0.0001; Fig.

6a). It is important to reiterate that counties with no

change in production had zero hectares in corn for both

years, consistent with the SDMs predicting the lowest

Fig. 4 Switchgrass suitability estimates for (a) Maxent point-intensive model; (b) Maxent point-sparse model; (c) SVM point-intensive

model; and (d) SVM point-sparse model. Darker areas indicate higher suitability scores.
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average suitabilities for these counties. Third, the ex-

pansion in corn production for test counties in 2007 was

significantly correlated with suitability results from

both Maxent and SDMs (Fig. 6b and c).

Discussion

Implications for using SDMs on cultivated crop species

Our results indicate that presence-only models, which

typically have been used for estimating habitat suit-

ability for plant and animal species in natural areas, can

also provide reasonable estimates of relative landscape

suitability for cultivated crops. Moreover, we found that

apparently accurate presence-only models could be

fitted based upon three distinct types of input data:

(1) weighted production records for a widely grown

crop (corn); (2) weighted production estimates (based

upon expert opinion) that are detailed across the United

States, even though the crop is not yet widely grown as

a biofuel feedstock (point-intensive switchgrass); and

(3) weighted production data from relatively few study

sites dispersed across the landscape of interest (point-

sparse switchgrass). Such data-input flexibility may be

a particularly attractive feature for managers looking to

develop first-cut landscape suitability assessments of

biofuel feedstocks, particularly because SDMs generally

are already known for their low cost, ease of use, and

transportability across spatial scales.

It should also be noted that models for other feed-

stocks do not necessarily have to be derived from

presence points in the landscape of interest (e.g., the

continental United States), but potentially could also be

fitted to presence points from remote locations in which

they are currently cultivated or found to thrive in

natural areas. The ready availability of detailed global

climate and environmental data correspondingly allows

for development of models that extrapolate suitability

into areas far beyond those from which presence points

were drawn. Estimating changes in species distribution

over time due to global climate change and predicting

the large-scale spread of non-native invasive species

represent similar types of applications in which pre-

sence-only models are being increasingly employed

(Peterson, 2003; Araujo et al., 2005; Drake et al., 2006).

Aside from the utility of such global models for asses-

sing landscape suitability for candidate crops, results

could also be used for development of risk profiles for

non-native biofuel feedstocks that have been identified

as potential invasive species (see Raghu et al., 2006;

Barney & DiTomaso, 2008).

Although it is notable that models have strong

predictive performance even when restricted to climate,

altitude, and road infrastructure as explanatory

Fig. 5 Correlations between ORNL agronomic model and species distribution models that use contrasting data sets for model

development. (a) Maxent intensive, (b) Maxent sparse, (c) SVM intensive, and (d) SVM sparse. Inset in (d) provides a finer resolution for

predictions from SVM model o0.33. For all model comparisons, Po0.0001.
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variables, one potential limitation in our approach, as

noted in ‘Presence points’, was omission of variables

such as soil quality and irrigation availability that are

not currently available at a national level. We suspect

that model performance was strong in the absence of

this information because other explanatory variables

were likely correlated with soil quality and irrigation

availability (e.g., mean precipitation). Inclusion of de-

tailed explanatory data layers – such as irrigation, soils,

slope, and potentially others – at more local spatial

scales in which they are available could be expected

to result in models that have greater spatial accuracy

and precision than those presented here. For example,

very high model accuracy (test AUCs40.945) was

shown for a Maxent model constructed to predict

occurrence of several invasive plant species in riparian

areas along Nebraska’s North Platte River using local

environmental layers assembled at a 30 m cell resolu-

tion (Hoffman et al., 2008). Similarly precise models of

biofuel feedstocks and other novel crops may be

achieved by obtaining presence locations for successful

field trials, and then fitting models to an appropriate set

of fine-scale explanatory variables.

However, we do caution that such presence-only

models should not be viewed as a ready substitute for

traditional agronomic production models. Instead, we

suggest that presence-only models might be seen as a

‘filter’ for identifying the most promising (or, in some

cases, least promising) new crop candidates for a given

region. Results presence-only models might then, for

example, facilitate allocation of advanced research to-

ward particular crop species that show high relative

suitability across large areas, and away from crops

predicted to have much more limited distributions.

Model choice

The slightly better performance of SVM relative to

Maxent for corn production was somewhat surprising.

Although we are not aware of direct comparisons of

Maxent to SVM, several recent comparisons showed

Maxent to be generally more accurate than other widely

used presence-only algorithms (Elith et al., 2006; Her-

nandez et al., 2006; Phillips et al., 2006). Overall, our

results suggest that, at least for applications with large

amounts of presence data, SVM does provides a reason-

able alternative to Maxent that has the added advantage

of avoiding assumptions associated with use of pseudo-

absences (Drake et al., 2006). However, the Maxent

program does have the important advantage of readily

providing detailed information about the relative con-

tribution of input variables – information that is not

currently provided with software that runs SVM

presence-only models. Moreover, Maxent appears to

Fig. 6 Both models [(a) black-Maxent, gray-SVM] predicted

greater suitability for corn production for test counties that

increased production from 2006 to 2007 than for counties that

decreased production. Predictions were lowest for counties that

did not change in production, which were counties with no

production in either year. Furthermore, both models [(b) Maxent,

(c) SVM] were highly correlated with the amount of corn

expansion in test counties. The predicted lines comes from

regression models fitting predicted suitability as a function of

the log of percent change of land area potentially available (i.e.,

not in production in 2006). A log-transformed model fit the data

better than a linear model (Maxent: AIClinear 5�174.1, AIClog 5

�273.2; SVM: AIClinear 5�88.5, AIClog 5�210.7).
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have performed considerably better than SVM for

point-sparse switchgrass models. This result is consis-

tent with other studies suggesting that the Maxent

algorithm has particularly high utility for applications

in which presence data are limited (e.g., Hernandez

et al., 2006; Phillips et al., 2006). Given that both models

require similar data inputs and produce results within

relatively short amounts of running time (all model

runs were completed in o5 min), we suggest that future

applications may be best served by using both Maxent

and SVM. In general, it is likely that comparison of

similarities and differences between results obtained

from these two (and potentially other) modeling ap-

proaches will provide more interpretive confidence

than the standalone results of one model (see, e.g.,

Araujo & New, 2007).

Implications for assessing environmental impacts of
biofuels

There is great interest in developing land-use change

models for anticipated increases biofuel production,

both to understand the upper bounds of fuel supply

potential and the extent of negative environmental

consequences that may be associated with large-scale

use of biofuels (Donner & Kucharik, 2008). While the

modeling results presented here do have some interest-

ing implications for addressing such land-use ques-

tions, it is important to stress that there are limitations

as to how the model output should be interpreted.

A fundamental point worth stressing is that the model

results provide a prediction of relative suitability at the

scale of the explanatory variables (9� 9 km), rather than

a prediction of absolute suitability. This limitation is

apparent in Fig. 7, which shows the land area contained

within a range of suitability thresholds (40.2 to 40.9 at

a 0.1 interval) for each of the corn and switchgrass

model results (Fig. 7). As a basis for comparison, up

to 43 million corn hectares has been forecast for max-

imum biofuel production scenarios in 2015 (e.g., Don-

ner & Kucharik, 2008), while the US Department of

Energy (DOE) estimates that 15–20 million hectares of

land could be converted into cellulosic feedstock pro-

duction by 2020 (Perlack et al., 2005). With the exception

of the point-sparse SVM switchgrass model, such re-

sults may appear to suggest that these land area re-

quirements could be met only by including lands with

relative suitability scores that are greater than 0.8 or

even 0.9. However, such a straightforward interpreta-

tion of the model outputs would be based on at least

two unreasonable assumptions: (1) all lands contained

within a 9� 9 km cell would indeed be suitable and

available for biofuel crop production and (2) all suitable

lands would be dedicated to one crop (e.g., in the case

of corn, excluding coverage for rotations with soybean,

wheat, or fallow). Thus, these aggregated threshold area

calculations should be more cautiously interpreted as

providing insight into how the models are distributing

relative crop suitability scores across the landscape,

rather than as a spatially precise measure of lands that

would truly be available for biofuel production.

While this limitation is important to note, we reiterate

that both Maxent and SVM were successful in predict-

ing relative patterns of land-use change associated with

the major increase in corn production observed in 2007

(Fig. 6). This finding provides some confidence for

potentially using presence-only suitability results as

an aggregated input (i.e., substituted for individual

climate, environmental, and social data layers) in mod-

els for forecasting more detailed land-use changes from

biofuel production. Aggregation of major explanatory

variables into one suitability metric may allow for

inclusion of more detailed data for other critically

important aspects of land-use change models, such as

vagaries in crop/biofuel market forces and understand-

Fig. 7 The predicted area (in millions of hectares) suitable for

(a) corn and (b) switchgrass production, as a function of changes

in assumptions regarding the threshold for predictions of rela-

tive suitability from models.
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ing agent (farmer) decision trees (see, e.g., Scheffran &

BenDor, 2009). At the very least, additional exploratory

research is warranted to determine whether SDM re-

sults may indeed provide advantages over current

environmental input approaches used in land-use

change models.

More speculatively, our results may suggest that

areas with low predicted suitabilities could generally

require higher agronomic inputs, and thus have poten-

tially higher environmental consequences, than those

with high suitabilities. For example, farm-scale corn

yields in the Southeast US – an area that both Maxent

and SVM showed as having low to marginal suitability

– can often exceed those of the Midwest corn belt, but

only when cultivated under relatively intense fertilizer,

irrigation, and pesticide regimes (Evans & Cohen, 2009).

Similarly, low switchgrass suitabilities were noted by

both Maxent and SVM for the Pacific Northwest, an

area in which large-scale production of this feedstock is

likely predicated on careful irrigation and field water

management (Gunderson et al., 2008). However, more

detailed analysis is necessary to determine if such quali-

tative comparisons hold at a more aggregated level.

Conclusions

We examined the performance of presence-only SDMs,

which typically have been used to model plant and

animal distributions in the natural environment, as a

tool for modeling relative land suitability for biofuel

feedstocks. The results indicated good performance by

both Maxent and SVM in predicting landscape distribu-

tion and observed production increases for corn. Re-

sults from both SDMs for switchgrass also showed

significant correlation with an agronomic switcghrass

production model recently developed by ORNL (Gun-

derson et al., 2008). We suggest that these results repre-

sent an initial, but promising, step into the use of SDMs

for modeling biofuel feedstocks and other cultivated

crops. Assessment of invasive species risks, potential

patterns of land-use change, and landscape distribution

of environmental resource demands – all of which are

research and management priorities for biofuel crops –

are further suggested applications for SDMs moving

forward.
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