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ABSTRACT

Aim Modelling species distributions at the community level is required to

make effective forecasts of global change impacts on diversity and ecosystem

functioning. Community predictions may be achieved using macroecological

properties of communities (macroecological models, MEM), or by stacking of

individual species distribution models (stacked species distribution models, S-

SDMs). To obtain more realistic predictions of species assemblages, the SESAM

(spatially explicit species assemblage modelling) framework suggests applying

successive filters to the initial species source pool, by combining different

modelling approaches and rules. Here we provide a first test of this framework

in mountain grassland communities.

Location The western Swiss Alps.

Methods Two implementations of the SESAM framework were tested: a

‘probability ranking’ rule based on species richness predictions and rough

probabilities from SDMs, and a ‘trait range’ rule that uses the predicted upper

and lower bound of community-level distribution of three different functional

traits (vegetative height, specific leaf area, and seed mass) to constrain a pool

of species from binary SDMs predictions.

Results We showed that all independent constraints contributed to reduce

species richness overprediction. Only the ‘probability ranking’ rule allowed

slight but significant improvements in the predictions of community composi-

tion.

Main conclusions We tested various implementations of the SESAM frame-

work by integrating macroecological constraints into S-SDM predictions, and

report one that is able to improve compositional predictions. We discuss possi-

ble improvements, such as further understanding the causality and precision of

environmental predictors, using other assembly rules and testing other types of

ecological or functional constraints.
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Community ecology, functional ecology, macroecological models, MEM,
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INTRODUCTION

Understanding the distribution and composition of species

assemblages and being able to predict them in space and

time are important for understanding the fate of biodiversity

under global change. Different approaches have been pro-

posed to predict the composition of species assemblages,

which can work on mechanistic or empirical bases. Neutral

views have also been proposed to explain relative abundance

patterns in communities (Hubbell, 2001), which were con-

trasted to niche/trait views (Wennekes et al., 2012). Neutral

theory has been challenged for not representing forces that

actually operate in nature to shape communities and their

composition (e.g. Clark, 2009). Using a more deterministic
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approach, Shipley et al. (2006) proposed the use of predicted

community weighted means of functional traits to infer the

assemblage composition given species traits through a maxi-

mum entropy approach (Shipley et al., 2006, 2011; Sonnier

et al., 2010a; see also Laughlin et al., 2012). Mokany et al.

(2011, 2012) proposed a dynamic framework to model spe-

cies richness and composition dissimilarity based on species

data. A distinct approach, not requiring traits, is to use the

empirical relationships between species distribution data and

environmental factors to predict community types or axes of

compositional variation derived from ordination techniques

(Ferrier & Guisan, 2006).

One widely used method is to predict the distributions of

individual species with niche-based species distribution mod-

els (SDMs; also called ecological niche models, ENMs; see

Guisan et al., 2013), and then to stack them to predict spe-

cies assemblages (stacked-SDM, S-SDM; Dubuis et al., 2011).

This method pertains to the category ‘predict first, assemble

later’ in Ferrier & Guisan’s (2006) classification of commu-

nity-level models, and has been tested in recent studies to

draw conclusions about species richness (SR), assemblage

composition or species turnover under current or future cli-

matic conditions (Baselga & Ara�ujo, 2009, 2010; Aranda &

Lobo, 2011; Albouy et al., 2012; Pottier et al., 2013). Stack-

ing individual species predictions can be applied to both

rough probabilities (pS-SDM) and binary predictions from

SDMs (bS-SDM) (e.g. Dubuis et al., 2011; Calabrese et al.,

2014). pS-SDM currently allows the prediction of species

richness only, while bS-SDM also provides information on

species composition. It has been shown that bS-SDMs tend,

on average, to overpredict species richness per unit area (Al-

gar et al., 2009; Dubuis et al., 2011; Mateo et al., 2012),

whereas pS-SDMs do not (Dubuis et al., 2011; Calabrese

et al., 2014). Overprediction by bS-SDMs could be expected,

as reconstructing communities from SDM predictions

implies applying a series of species-specific abiotic filters,

without consideration for macroecological constraints on the

general properties of the system as a whole (Guisan & Rah-

bek, 2011). As an alternative explanation, it has also been

suggested that overprediction could result from a mathemati-

cal artefact if the stacking process is applied to binary SDM

predictions, i.e. after thresholding the rough probability of

species’ predictions (Calabrese et al., 2014).

Guisan & Rahbek (2011) proposed a framework – SESAM:

spatially explicit species assemblage modelling – that aims to

improve predictions of species assemblages. The main idea of

the SESAM framework is to reconstruct species assemblages

by applying successive filters of the assembly process through

four main conceptual steps (Hortal et al., 2012). First, the

species pool of each modelling unit in the study area must

be defined. Second, species are filtered from the species pool

according to their suitability to the environmental conditions

in the modelling unit, e.g. by fitting SDMs. Third, limits pre-

viously set to one or several properties of each assemblage

(e.g. richness or functional properties) are used to apply

constraints on the assemblage in each unit, based on model

predictions. Fourth, the species to be kept in the assemblage

are chosen among the potential coexisting species (i.e. those

predicted by the S-SDM), through biotic assembly rules.

Macroecological constraints can be defined by macroecologi-

cal models (MEMs), i.e. models of emergent properties or

attributes of communities, such as species richness (SR) or

other functional characteristics (e.g. functional richness) that

are theoretically predictable directly from environmental

variables (Francis & Currie, 2003; Moser et al., 2005; Sonnier

et al., 2010b; Dubuis et al., 2011, 2013). MEMs, which

belong to the ‘assemble first, predict later’ category of Ferrier

& Guisan (2006)’s classification, have been shown to provide

less biased predictions of SR than bS-SDMs (Dubuis et al.,

2011). Yet, no attempt has been made to implement and test

the SESAM framework.

In the SESAM framework, assemblage properties are pre-

dicted to define constraints to be applied to the assemblage in

each unit. In this study, we test three macroecological con-

straints: (1) richness predicted by the sum of probability S-

SDM (pS-SDM); (2) direct predictions of species richness

(MEM) (Dubuis et al., 2011); and (3) predicted values of

three functional traits (Dubuis et al., 2013). In particular, we

test the use of functional traits as macroecological constraints,

as they can be predicted spatially (Dubuis et al., 2013) and

may provide an understanding of the functional underpin-

nings of plant communities, allowing generalization beyond

species identities (e.g. Hooper et al., 2005; McGill et al.,

2006). Functional traits are supposed to enable the refinement

of predictions of community composition along environmen-

tal gradients, by contrasting trait values for individual species

to the ones aggregated at the community level (Shipley et al.,

2006; Douma et al., 2012). We consider extremes in trait val-

ues to represent a filtering effect, i.e. the trait values that allow

a species to be included in a community in a given environ-

ment (Keddy, 1992a,b). In order to build macroecological

constraints, the same rationale applies to both richness and

traits extreme values: limited amount of resources or environ-

mental conditions (e.g. heterogeneity) defines ‘how many’ or

‘what type of’ species can strive in the considered unit. Here,

both species richness and the functional characteristics of the

community are assumed to be mainly controlled, among

other possible factors, by available energy, as expressed by cli-

matic predictors (Wright, 1983; Currie, 1991; Hawkins et al.,

2003; Shipley et al., 2006; see Guisan & Rahbek, 2011).

By integrating over these sources of information, we set

macroecological constraints on the pool of species predicted

to potentially co-occur in each site according to SDM pre-

dictions only. Doing this, we test – for the first time – a sim-

plified version of the SESAM framework (i.e. without

elaborated biotic assembly rules), using outputs from MEMs

or pS-SDMs as constraints to limit the number of species

predicted by bS-SDMs, this way attempting to improve

predictions of community composition. More specifically,

we ask the following questions:

1. Does combining different modelling techniques developed

for biodiversity prediction improve the predictions of
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community attributes such as richness, species composition,

traits distribution?

2. Does the use of assembly rules (driven either by habitat

suitability or functional characteristics) to select the species

that enter in the predicted community from SDMs improve

the predictions of community richness and composition?

MATERIALS AND METHODS

Vegetation and traits data

The study area is located in the Alps of western Switzerland

(http://rechalpvd.unil.ch) and covers c. 700 km2, with eleva-

tions ranging from 375 to 3210 m. The species occurrence

data used in our analysis originate from fieldwork conducted

between 2002 and 2009 in the study area following a ran-

dom-stratified sampling design and limited to open, non-

woody vegetation (for more information see Dubuis et al.,

2011). A first dataset of 613 vegetation plots of 4 m2 each

was inventoried and used for SDM and MEM calibration

(‘calibration dataset’). An additional set of 298 plots was

identically surveyed to evaluate S-SDMs, and test the effi-

ciency of MEM constraints (‘evaluation dataset’) (Fig. 1 –
Data box). This evaluation dataset was shown to be spatially

independent of the first one, and thus valid for model evalu-

ation, by calculating the spatial correlation of SDMs’ residu-

als between the calibration and the evaluation datasets based

on neighbourhood graphs and Moran’s I coefficient (Pottier

et al., 2013).

A total of 241 species were recorded in the study area,

with traits data available for a subset of the 189 most fre-

quent species of this pool (Fig. 1; Pottier et al., 2013; Dubuis

et al., 2013). We selected three traits (vegetative height, spe-

cific leaf area and seed mass) that are expected to represent

the key axes of plant ecological strategies following the leaf–
height–seed (LHS) scheme of Westoby (1998), already widely

used for studying plant assembly rules. In particular, vegeta-

tive height (H) and specific leaf area (SLA) were measured

on the field (for each species between 4 and 20 individuals

were sampled over its entire bioclimatic range). We used the

average trait value among all sampled individuals for each

species for further analyses (Dubuis et al., 2013). Height was

measured for each species in the field as the distance between

top photosynthetic tissues and the ground, expressed in mm.

This trait is related to competitive ability and is correlated

with above-ground biomass (Cornelissen et al., 2003). SLA

was calculated as the ratio of leaf surface to its dry mass and

expressed in mm2 mg�1. SLA is correlated with the relative

growth rate and photosynthetic ability of plant species (Cor-

nelissen et al., 2003). Seed mass (SM) data originate from lit-

erature and field measurements (Pellissier et al., 2010) and

are expressed in milligrams. This trait is a good predictor of

colonization ability of the species and seedling survivorship

(Moles & Westoby, 2006). To account for trait range limita-

tion, we calculated percentiles of trait distribution in sites

where the 189 species for which trait data were available

represented more than 80% of the total vegetation cover

(Pakeman & Quested, 2007; see Pottier et al., 2013; Dubuis

et al., 2013).

General analytical framework

We tested different implementations of the SESAM frame-

work to predict species composition, by applying two differ-

ent types of species assembly rules:

1. ‘Probability ranking’ rule: this rule is based on the

assumption that species with the highest habitat suitability

are competitively superior. According to this rule, commu-

nity composition is obtained by selecting the species in

decreasing order of their predicted probability of presence

from SDMs up to the richness prediction (i.e. predictions

from MEM or pS-SDM).

2. ‘Trait range’ rule: we applied a filter based on important

functional characteristics of plant species that relate to com-

petitive and reproductive abilities. We used percentile predic-

tions from MEMs of three functional traits, individually or

in combination, as criteria to discard species that do not fall

into the predicted functional range of the sites. We imple-

mented this approach with the three percentiles boundaries.

We fitted all the models (both SDMs and MEMs) by

applying three modelling techniques in R (2.14.1) with the

biomod package (Thuiller et al., 2009): generalized linear

models (GLMs), generalized additive models (GAMs) and

generalized boosted models (GBMs). The resulting projec-

tions were averaged to implement an ensemble forecasting

approach.

We applied the SESAM framework following the four step

design described by Guisan & Rahbek (2011) and adapted to

our study case (Fig. 1).

Step 1 – Species pool

As the first component of the SESAM framework, we consid-

ered a unique species pool for all modelling units, defined as

the most frequent plant species occurring in our study area

(241 species). This pool was used to test the ‘probability

ranking’ rule. A subset of this pool was used to test the ‘trait

range’ rule (189 species).

Step 2 – Abiotic filtering

Single species models were fitted with environmental predic-

tors calculated from temperature and precipitation data

recorded by the Swiss network of meteorological stations

and from a digital elevation model at 25 m resolution (see

Dubuis et al., 2011). We used growing degree-days (above

0 °C), moisture index over the growing season (difference

between precipitation and potential evapotranspiration), the

sum of solar radiations over the year, slope (in degree), and

topographic position (unitless, indicating the ridges and val-

leys). These five variables have been shown to be useful for

predicting the topoclimatic distributions of plant species in

3

ht
tp

://
do

c.
re

ro
.c

h



mountainous environment (Dubuis et al., 2011). The models

were evaluated on the evaluation dataset with the area under

the curve (AUC) of a receiver operating characteristic

(ROC) plot and the true skill statistic (TSS; Allouche et al.,

2006). Ensemble predictions were obtained by computing

the weighted average of the predictions by the three tech-

niques. To do this, we used weights from the internal cross-

validation with both AUC (Swets, 1988) and TSS (Allouche

et al., 2006) evaluation metrics. The predictive ability of the

final ensemble models was then tested with the same metrics

using the external evaluation dataset. The raw predictions

for the 241 species represent the ‘probability pool’ used in

the ‘probability ranking’ rule test. In ‘trait range’ rule tests

the projected species distributions for the 189 species were

transformed into binary presences and absences using two

threshold approaches: (1) the threshold corresponding to

equal values of sensitivity and specificity (Liu et al., 2005);

and (2) the threshold maximizing TSS. The resulting binary

projections were stacked to predict assemblages in each of

the evaluation plots (bS-SDM). This way, we obtained a

Figure 1 Workflow of the analytical steps followed in the study. Data box: We used a calibration and an evaluation datasets derived
from field samplings carried out on 613 and 298 (192 with trait data) plots, respectively. These datasets were used to test the

‘probability ranking’ rule (left side of the figure with dashed arrows) and the ‘trait range’ rule (right side of the figure with dotted
arrows). Step 1 – species pool: a total of 241 species collected in the study area were considered the ‘species pool’ to test the ‘probability

ranking’ rule, (a) and (b). A subset of this species pool (189 species with trait data) was used to test the ‘trait range’ rule (c) and (d).
All models were fitted by an ensemble forecasting approach based on the average of three techniques: generalized linear models (GLMs),

generalized additive models (GAMs), and generalized boosted models (GBMs). (e). Step 2 – abiotic filtering: distribution of individual
species (a) and (c) were modelled and then stacked to create binary stacked species distribution model (bS-SDM) predictions to

represent a ‘probability pool’ for the ‘probability ranking’ rule test (f) and a ‘traits pool’ for the ‘trait range’ rule test (g). Step 3 –
macroecological constraints: three different methods were used to define macroecological constraints, resulting in models with the stacked

probabilities from SDMs (h; pS-SDM) and two different macroecological models (MEMs). These were created by modelling directly
species richness values (i; SR_MEM) and three pairs of traits percentiles (j; Traits_MEM). Step 4 – ecological assembly rules: in the test of

the ‘probability ranking’ rule (k) we limited species richness to fit the MEM or pS-SDM predictions and the species composition was
determined (1) as a random selection from the pool or (2) selecting the species in decreasing order of predicted probability. In the test

for the ‘trait range’ rule (l) we used the predicted values of MEM of functional traits (each trait separately and combinations of traits)
to discard species functionally outside the assemblage. Assemblage prediction box: all the outputs resulting from the different approaches

were compared and evaluated using the evaluation dataset (solid arrows).
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pool of species potentially present filtered by topoclimatic

factors.

Step 3 – Macroecological constraints

Three different methods were used to define macroecological

constraints. First, we summed probabilities from SDMs

(Dubuis et al., 2011) for the 241 species, obtaining a predic-

tion of richness for each unit (pS-SDM). Second, observed

species richness (SR) was calculated as the number of species

(among the 241 used in this study) present in each sampling

plot. Total SR was predicted with the same environmental

predictors and modelling techniques used for SDMs fitted

with a Poisson distribution. Also in this case, we applied the

ensemble forecasting approach (as described above) to obtain

a final richness prediction (‘species richness’ MEM; see Dub-

uis et al., 2011). Finally, we modelled traits values, consider-

ing three pairs of percentiles limits: 1st–99th, 5th–95th and

10th–90th. We modelled each trait percentile as a function

of the environmental predictors and assuming a normal dis-

tribution (‘traits range’ MEM; Dubuis et al., 2013). The

modelling procedure was the same used for species richness

prediction. Prior to modelling, trait data were log-trans-

formed. The predictive power of the SR and traits range

models were measured by computing a Spearman rank cor-

relation between the observed and predicted indices values

for the evaluation dataset.

Step 4 – Ecological assembly rules

We applied our rules to couple results coming from previous

steps. To test the ‘probability ranking’ rule, we determined

the community composition by ranking the species in

decreasing order of their predicted probability of presence

from SDMs up to the richness prediction by pS-SDM or

MEM. We further compared the application of this rule with

a random selection of species in the number of the richness

predictions, as a null test of composition prediction success.

This was performed on the full evaluation dataset of 298

plots not used in model calibration.

In the ‘trait range’ rule, for each site, among the species pre-

dicted as present by the binary SDMs (‘traits pool’), we

excluded from the final community prediction those species

with traits valued outside the predicted functional range pre-

dicted by MEMs. In particular, for each percentile pair (1st–
99th, 5th–95th, and 10th–90th), we considered the predicted

trait values and we excluded all species having traits values

outside these quantiles. All seven combinations of the three

functional traits were considered (taken singularly, in pairs, or

all together) to constraint community composition. As a

result, we tested a total of 21 macroecological constraints based

on traits. The ‘trait range’ rule was applied to the 192 plots of

the evaluation dataset for which we had trait data for more

than 80% of the vegetation cover for the second test.

Finally, species richness and composition outputs resulting

from the SESAM approaches were compared to the evaluation

dataset. Assemblage predictions were evaluated with several

metrics based on a confusion matrix where all species (species

pool: SP) are classified into: TP: the species observed as well as

predicted as present (true positive), FN: the species observed

as present but predicted as absent (false negative; omission

error), FP: the species observed as absent but predicted as pres-

ent (false positive; commission error) and TN: the species both

observed and predicted as absent (true negative) (see Appen-

dix S1 in Supporting Information). We computed the species

richness error (predicted SR – observed SR, expressed as a

number of species in Fig. 2), the assemblage prediction success

(a), and the Sørensen index, related to Bray–Curtis dissimilar-

ity (b).

(a) Prediction success ¼ TP þ TN

SP

(b) Sørensen index ¼ 2TP

2TP þ FN þ FP

RESULTS

SDMs for most species had an AUC value higher than 0.7

and can therefore be considered as useful for predictions (see

Appendix S2). The MEM for species’ richness and pS-SDM

gave similar results: both predictions showed fair correlations

between observed and predicted values of richness in the

evaluation dataset (q = 0.529 and 0.507, respectively, Spear-

man rank correlation test). Macroecological models for traits

were all above 0.5 (q values, Spearman rank correlation test)

except for the 1st and 5th percentiles of log(SM) (Appendix

S2). The ‘trait range’ rule was applied by considering all cou-

ples of percentile, but as the results are consistent (see

Appendix S3), in the following section we only show results

coming from the 5th–95th percentiles. The S-SDM built with

binary SDMs (bS-SDM) overpredicted species richness (SR)

in all plots (Figs 2a & 3). All filtering types, both coming

from the ‘probability ranking’ rule and the ‘trait range’ rule

contributed on average to reduce SR overprediction, i.e.

reduction of SR error (Figs 2a,d & 3), except when using the

combination of SLA and SM trait limits as constraining rule.

Considering composition predictions, the prediction suc-

cess was increased when applying either the ‘probability

ranking’ rule or the ‘trait range’ rule (Fig. 2b,e), again with

the exception of the combination of SLA and SM trait limits.

Results from the Sørensen index (Fig. 2c) indicate that the

‘probability ranking’ rule increased the predictive capability

by using both predicted SR from MEM and pS-SDM, as a

limit, with the former slightly outperforming the latter. In

both cases, the Sørensen index was significantly higher than

the one of the simple bS-SDM (Wilcoxon signed rank test,

P-value < 0.005). On average, this approach was less affected

by errors of commission (false positive; Appendix S1) than

other approaches and had the highest rate of correctly pre-

dicted absences (Fig. 4a). Using SR as a limit (from both

MEM and pS-SDM) but choosing species randomly among

those predicted yielded the worst assemblage composition
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predictions (Fig. 2c). We observed a decrease in the ability

to correctly predict species identities when using the ‘trait

range’ rule to constraints bS-SDM predictions (Fig. 2f).

Predicted functional traits did not provide a sufficient

constraint to improve composition, and did not allow for a

complete reduction of the SR over-prediction. Their use

(a) (b) (c)

(d) (e) (f)

Figure 2 Boxplots comparing unconstrained stacked species distribution model (bS-SDM) predictions to results from the ‘probability
ranking’ rule and random tests when applied constraining richness by the sum of probabilities from SDMs (PRR.pS-SDM and rand.pS-

SDM, respectively) or by macroecological models (PRR.MEM and rand.MEM, respectively) (a, b, c), and to results from the ‘trait range’
rule test for single traits and all their combinations (d, e, f). The metrics utilized in the comparison are: species richness error, i.e.

predicted SR – observed SR (first column); prediction success, i.e. sum of correctly predicted presences and absences divided by the
total species number (second column); and Sørensen index, i.e. a statistic used to compare the similarity of two samples (third column).

Abbreviations: H, height; SLA, specific leaf area of the community; SM, seed mass.

(a) (b) (c) (d)

Figure 3 Predictions of species richness for the whole study area produced by (a) the unconstrained stacked species distribution model
(bS-SDM), and by the application of the SESAM framework implemented with (b) the ‘probability ranking’ rule implemented with the

sum of probabilities from SDMs (pS-SDM), (c) the ‘probability ranking’ rule implemented with the richness estimation by the
macroecological model (MEM) and (d) the ‘trait range’ rule (using the combination of the three traits as constraints).
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allowed species richness prediction to be improved, but at

the cost of slightly decreasing assemblage composition pre-

diction success (Sørensen index) (Fig. 4b). The applications

of our rules did not produce a prediction of species assem-

blage compositions better than an average Sørensen’s similar-

ity of 0.5.

Results for community predictions using TSS and the ‘trait

range’ rule were similar to those using AUC and are thus

presented in Appendix S1.

DISCUSSION

This study represents the first formal test of the SESAM frame-

work (Guisan & Rahbek, 2011). We have shown different ways

to implement the SESAM framework, by integrating stacked

predictions from species distribution models (S-SDMs) with

richness predictions from macroecological models (MEMs) or

from the sum of rough probabilities from S-SDM (pS-SDM).

Our results show that the application of macroecological con-

straints on single species predictions from SDMs improve the

overall quality of assemblage’ composition estimation. As

expected, all the macroecological constraints considered

reduced the overprediction of species richness. But more

importantly, the sequence of steps of the framework allowed a

more accurate prediction of the realized species assemblage as

measured with metrics equally weighting commission (false

presence) and omission (false absence) errors. This positive

result encourages further developments of the SESAM frame-

work to improve the prediction of community attributes.

Among the implementations of the SESAM framework

tested here, the application of the ‘probability ranking’ rule

improved the predictions of species richness and composition.

First, both ways of producing species richness predictions, i.e.

stacking of probabilities from SDMs (pS-SDM), and directly

predicting species’ richness (MEM), gave more reliable results

than the simple binary S-SDMs, a result shown previously (e.g.

Dubuis et al., 2011; Calabrese et al., 2014). Second, this

approach also produced better predictions of community

composition, by selecting single species from the pool pre-

dicted by SDMs by decreasing order of predicted probability

(until the predicted richness is reached). One possible explana-

tion for this positive result is that the same species that are

least likely to be present, i.e. the ones removed by the rule, are

also the ones most likely to be overpredicted by bS-SDMs.

The ‘trait range’ rule (as applied here) proved less effective

in constraining community predictions, and no specific func-

tional trait or any percentile interval proved more efficient

than another in reducing species richness overprediction.

Although surprising because MEMs for traits were on aver-

age better than those for species richness (see Dubuis et al.,

2011, 2013), we can hypothesize some explanations for this

result: (1) we used trait averages for each species, whereas

each of these traits is known in situ to exhibit intraspecific

variation along environmental gradients (Albert et al., 2010);

(2) the traits that we used have been shown not always to

relate significantly to species’ habitat suitability (Thuiller

et al., 2010); (3) a larger dataset of traits, as used in trait-

based modelling approaches (e.g. Shipley et al., 2011), could

have been more efficient in setting specific functional limits

for the community prediction than the three traits used here.

Still, the use of the combination of three traits as a

constraint allowed an efficient decrease in the overprediction

Figure 4 Histograms showing the
proportion (mean among all plots) of true

and false positive, as well as true and false
negative for all the implementations of the

SESAM framework, compared with the
unconstrained sum of the binary species

distribution model (bS-SDM). In the upper
plot are results from the ‘probability

ranking’ rule test implemented with
macroecological models and sum of

probabilities from SDMs (PRR MEM and
PRR pS-SDM, respectively) and random

selections (rand MEM and rand pS-SDM,
respectively). In the lower plot are results

from the ‘trait range’ rule test for single
traits and all their combinations (H, height;

SLA, specific leaf area of the community;
SM, seed mass).
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of species richness, supporting the need to put restraints on

species pools based on a simple stacking of species predic-

tions. Roots traits, indicating below-ground competition,

could be good additional candidates to complement the

functional constraints. These and other possible trait types

should be assessed in future studies testing the SESAM

framework. A potential limitation to the use of particular

functional traits is that they must relate to the ability of spe-

cies to cope with the environment and be reliably predicted

in space by MEM (e.g. Dubuis et al., 2013), which may not

always be possible. Finally, we used three different percentiles

ranges to depict minimal and maximal trait values as func-

tional constraints, but the results for community predictions

were not significantly different, so that we can be confident

that our outcomes were not dependent on the choice of per-

centiles.

Overall, and even after strongly reducing the species rich-

ness overprediction bias, predicted assemblage composition

was improved but still remained significantly distinct from

the observed ones, a result consistent with those by Aranda

& Lobo (2011) and Pottier et al. (2013). Even if the indi-

vidual SDMs have reasonably good independent evaluations,

each of them nevertheless contains substantial errors that

can be unevenly distributed among species and along envi-

ronmental gradients (Pottier et al., 2013). By stacking

SDMs, small errors in many individual species models can

accumulate into quite large errors in the community pre-

dictions, degrading assemblage predictions accordingly (Pot-

tier et al., 2013). In this regard, the values of the Sørensen

index of community similarity obtained in this first formal

test of the SESAM framework – above 0.5 – can be consid-

ered a reasonable first achievement. A correction for the

probability values based on the true species richness has

been recently proposed by Calabrese et al. (2014). Their

maximum likelihood approach, however, still does not

allow the determination of which species in the list of

probabilities will enter the final community. The error

propagation could be even more severe if the single species

predictions were binarized before reconstructing the com-

munity composition, because the choice of a threshold can

matter (Liu et al., 2005). Moreover, a statistical bias was

recently proposed as the main cause of the general overpre-

diction in richness estimation shown by summing binary

SDMs (e.g. Calabrese et al., 2014). As just discussed, we

acknowledge the fact that stacking binary SDMs could add

biases to the community prediction, but on the other hand

it has the strength to allow an easy identification of the

component species. The prediction of community composi-

tion is largely desired for applied conservation initiatives

(e.g. Faleiro et al., 2013; Leach et al., 2013). In order to

partially control for the additional uncertainty introduced

by thresholding, we ran all our analyses using both AUC

and TSS threshold maximization metrics. The results of

both analyses were consistent and therefore we can be con-

fident that our outcomes are not too sensitive to this

threshold choice.

The possibility of predicting species composition in a

probabilistic way, without thresholding, holds the promise of

reducing methodological biases, but it is still an unresolved

issue that will need further developments. In the test of the

‘probability ranking’ rule, we proposed one solution, which

avoids the binary transformation of SDM predictions, while

still maintaining information about species composition. We

did this by selecting a number of species equal to the predic-

tion of species richness on the basis of decreasing probability

of presence calculated by SDMs. Predictions of species com-

position is a great challenge for community ecologists and

not many applicable solutions have been proposed (e.g.

Webb et al., 2010; Shipley et al., 2011; Laughlin et al., 2012).

Our results thus provide new insights to achieve this goal by

using SDMs, while avoiding the statistical bias potentially

occurring when stacking binary SDM predictions (Calabrese

et al., 2014).

Yet, several issues still need to be resolved; in particular,

new approaches are needed to decrease rates of omission

error in SDMs and in the resulting community predictions.

One route to improve compositional predictions could come

from producing single species models that are more efficient

at predicting presences correctly (i.e. limiting omission errors

by optimizing sensitivity). A source of omission errors in

our case may come from limitations related to the environ-

mental predictors and resolution used to build the SDMs

(Pradervand et al., 2014). Available predictors can themselves

include some level of errors (e.g. from measurement, inter-

polation, calculation) and other important predictors (see

below) may be missing in the underlying SDMs (Austin &

Van Niel, 2010). As a result, species’ realized niches are likely

to be incompletely described and some suitable or unsuitable

situations for a species cannot be captured in the model.

Two recent papers have shown similar problems of assem-

blage predictions in the case of butterflies and plants, respec-

tively (Pellissier et al., 2012; Pottier et al., 2013). In both

cases, the sensitivity (true-positive rate) of assemblage pre-

dictions was lower at higher elevations, which was probably

due to the more fragmented, mosaic-like environmental con-

ditions there and to missing substrate predictors (e.g. rock

type, soil depth). Regarding our study area, snow cover and

geomorphology (Randin et al., 2009), soil moisture and soil

temperature (Le Roux et al., 2013), as well as edaphic condi-

tions (Dubuis et al., 2012) and finer micro-climatic measure-

ments (Pradervand et al., 2014), are potential missing

predictors that could contribute to improve SDMs and hence

the resulting community composition predictions. Yet, these

missing predictors are currently not available or only avail-

able for some plots, and none of them exist in a spatially

explicit way to support the final predictions to be generalized

to the whole study area.

CONCLUSIONS AND FUTURE PERSPECTIVES

In the last decade, the range of possible approaches to model

species communities has been expanding. Remarkably, most
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of the very recent solutions agree on the idea of combining

complementary approaches into a single framework, as we

did here with SESAM (e.g. Webb et al., 2010; Mokany et al.,

2012; Fernandes et al., 2013). A framework approach has a

number of highly desirable characteristics, in particular the

flexibility to integrate different drivers and processes to rep-

resent the complexity of factors that influence community

assembly and the possibility to couple strengths of different

pre-existing techniques in a unique workflow. Community

ecology research is in continuous development and any new

technical improvement coming from theoretical advances

could be promptly accommodated in a framework approach.

An innovative way to model species categories would be the

species archetypes model (SAM; Dunstan et al., 2011; Hui

et al., 2013), which predicts communities using a finite mix-

ture of regression model, on the basis of common responses

to environmental gradients. Also, macroecological models

not based on correlative statistics could be included to

explicitly incorporate the mechanisms responsible for the

observed distributions (e.g. Gotelli et al., 2009).

Among the great challenges in predictive community ecol-

ogy is the inclusion of biotic rules. This has been repeatedly

attempted in simple SDMs (e.g. by adding other species or

simple biotic variables as predictors of the modelled species)

with the result of improving significantly the predictions

(reviewed in Kissling et al., 2012 and Wisz et al., 2013). In

contrast, community-level models most often incorporate the

effect of biotic interactions indirectly by considering syn-

thetic community attributes (as we did in this study), while

only in a few cases were biotic interactions accounted for in

an explicit fashion (e.g. Laughlin et al., 2012; Fernandes

et al., 2013; Pellissier et al., 2013). This gap could partly be

explained by the shortage of data available to characterize

interactions among species in diverse communities (Ara�ujo

et al., 2011). A potential way to overcome the lack of biotic

interaction information could be the analysis of the spatial

patterns of geographical overlap in the distributions of spe-

cies. These can inform about potential interactions between

species, but approaches to control for species habitat require-

ments should be applied in co-occurrence analyses to cor-

rectly infer biotic interactions from observed patterns (e.g.

Gotelli et al., 1997; Peres-Neto et al., 2001; Ovaskainen et al.,

2010). Because considering each pairwise interaction as a

separate process is difficult, some alternative solutions to

reduce this complexity have been also suggested, such as the

analysis of separate smaller ‘community modules’ (as applied

in food web analyses; Gilman et al., 2010), or the use of

proxies of interactions (‘interaction currencies’) based on

measures of non-consumable environmental conditions

(described in Kissling et al., 2012).

The implementation of the full SESAM framework, i.e.

implementing the ‘step 4’ through the definition of biotic

assembly rules coming from empirical patterns of co-occur-

rence or experiments, could represent a promising route to

further define the group of species that can coexist at each

site, and help decreasing the rate of omission error. This

fourth component of the framework has not been tested in

an ecologically explicit way in this study, although using

ranked probabilities of occurrence per site can be considered

a form of implicit biotic rules. Identifying and quantifying

other biotic assembly rules that can be applied generally

along wide environmental gradients appears still to be diffi-

cult given our current state of knowledge and the heteroge-

neity of approaches used (G€otzenberger et al., 2012; Kissling

et al., 2012; Wisz et al., 2013), but it constitutes a necessary

target if we want to improve our capacity to predict assem-

blages in space and time.

Further important drivers of community assembly are

stochastic processes, associated with environmental distur-

bance and demographic dynamics within local and regional

species pools (Dornelas et al., 2006). The potential presence

of stochastic effects would deviate the community assem-

blage process from being fully deterministic, i.e. from yield-

ing a specific community configuration for a given

environmental combination and species pool, but instead

be probabilistic so that the projections could for instance

consist of a density function of various possible end com-

positions (Ozinga et al., 2005; Shipley, 2010; Pellissier et al.,

2012; Pottier et al., 2013). Therefore, assemblage composi-

tion will always entail some level of prediction errors. In

this regard, what would prove useful in future studies

would be to understand and discern better the different

sources of errors in the single techniques integrated in the

SESAM framework. In particular, it would be useful to

assess how errors propagate from individual SDMs to S-

SDMs, and what value of the Sørensen index (or other

evaluation metric of community similarity) would qualify

as a fair value of assemblage prediction. This will help esti-

mate the level of similarity and reliability with which one

can ultimately expect species assemblages to be successfully

predicted, and how far the latter may contribute to a better

understanding and prediction of community assembly in

space and time (Hortal et al., 2012).
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