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Recent debates about the conventional traditional threshold used in the fields of

neuroscience and psychology, namely P < 0.05, have spurred researchers to consider

alternative ways to analyze fMRI data. A group of methodologists and statisticians have

considered Bayesian inference as a candidate methodology. However, few previous

studies have attempted to provide end users of fMRI analysis tools, such as SPM

12, with practical guidelines about how to conduct Bayesian inference. In the present

study, we aim to demonstrate how to utilize Bayesian inference, Bayesian second-

level inference in particular, implemented in SPM 12 by analyzing fMRI data available to

public via NeuroVault. In addition, to help end users understand how Bayesian inference

actually works in SPM 12, we examine outcomes from Bayesian second-level inference

implemented in SPM 12 by comparing them with those from classical second-level

inference. Finally, we provide practical guidelines about how to set the parameters for

Bayesian inference and how to interpret the results, such as Bayes factors, from the

inference. We also discuss the practical and philosophical benefits of Bayesian inference

and directions for future research.
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INTRODUCTION

The problem of widespread false-positive findings in the literature is drawing significant attention
in scientific fields such as psychology, biology, andmedicine (Ioannidis, 2005; Simmons et al., 2011;
Pashler andWagenmakers, 2012; Open Science Collaboration, 2015). Combined with other factors
such as publication bias (Francis, 2012) and underpowered studies (Maxwell, 2004), false positives
contribute to amore general problem, ‘reproducibility crisis,’ where an undesirably high proportion
of published scientific results fails to be successfully replicated or reproduced when conducted
again (Peng, 2015; Baker, 2016). Because the reproducibility crisis significantly undermines the
reliability of science, it must be addressed for science to be credible.

Social and cognitive neuroscience is by no means an exception. False positives have been a
subject of major concern in the field, especially when it comes to the analysis of fMRI data. Due to
the extremely large number of tested hypotheses during fMRI data analysis, it is well known that
the rate of false positives, or type I errors, can be extremely high when inappropriately dealt with
(Bennett et al., 2009). As a result, the prevention of false positives has been of great interest among
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neuroscientists. For example, multiple comparison procedures
such as Bonferroni correction and controlling for False Discovery
Rates (FDRs) have been employed in practice to counter the
problem (Benjamini and Hochberg, 1995). These procedures are
currently implemented in popular fMRI data analysis software so
that researchers can use them in their analyses.

Unfortunately, reports suggest that such may not be working
well in practice. For example, an analysis by Han and Glenn’s
(2017) shows Bonferroni correction and FDR are inappropriate
for use because they are either too harsh or liberal in controlling
for type I errors. Instead, they found that random field theory
(RFT) familywise error correction (FWE)-applied voxel-wise
thresholding struck a balance between the two methods, and they
deemed it acceptable for fMRI data analysis in moral psychology.

Another recent report showcases an extremity where popular
methods for controlling for type I error fail miserably (Eklund
et al., 2016). Their analysis showed that, in the case of cluster-
wise inferences using RTF, the analytic procedures employed
in fMRI data analysis software, such as SPM, FSL, and AFNI,
did not attain the claimed nominal significance levels. Instead,
they exhibited greatly inflated false positive rates, sometimes as
high as 70%, which is clearly undesirable. These observations
are alarming in that published results in neuroscience journals
based on such procedures might be false positives, which would
translate into increased proportion of incorrect claims in the
literature. However, recent studies have shown that such a
problem may originate from the misuse of SPM’s default setting
for normalization, 2 × 2 × 2 mm3 for a voxel size, instead of
RFT itself (Flandin and Friston, 2017; Mueller et al., 2017). They
suggested SPM users use an alternative setting for normalization,
3 × 3 × 3 mm2, instead of the default setting. Still, the proposed
method and recommendation are also based on P-values, sharing
the same fundamental shortcomings of P-values, which are
difficult to address by simply changing the way thresholding is
done.

To date, most proposed methods have tried to address
those problems by changing the way how thresholding is done
based on P-values. However, to achieve a more fundamental
improvement, we propose and advocate a more radical change:
abandon P-values and switch to a completely different statistical
framework: Bayesian hypothesis testing. Problems associated
with the use of P-values abound (Cohen, 1994; Gigerenzer, 2004;
Wagenmakers, 2007; Head et al., 2015; Trafimow and Marks,
2015; Wasserstein and Lazar, 2016); we will not discuss them in
detail here, except for one point, the potential benefit of adopting
the Bayesian approach in addressing the aforementioned issues of
multiple comparison correction.

One might be interested in seeing how Bayesians deal with
the problems of type I/II errors. Regarding this, we would like
to point out that such errors-oriented framework basically comes
from the frequentist school, not the Bayesian one (Gelman
et al., 2012). The difference between the two comes from the
different ways how they see parameters. Frequentists assume that
parameters are ‘fixed but unknown constants.’ Indeed, to define
type I and II errors, one has to fix the effect size beforehand. Effect
sizes are not random; they must be assumed to be either zero or
not (Ellison, 1996). Depending on the assumption, one can define

and calculate type I or II error rates. However, this is not the
case in Bayesian statistics. For a Bayesian, everything is basically
random. Parameter values, or effect sizes, cannot be assumed to
be exactly equal to some value (Ellison, 1996). The effect size of
interest is not either zero or non-zero for sure. From the very
beginning, therefore, one can see that type I/II error framework,
which assumes that the parameter is exactly equal to some value,
is meaningless in the Bayesian framework (Gelman et al., 2012).
Instead, Bayesians express the uncertainty about the effect size
in the form of probability distribution. (Woolrich, 2012). Before
observing the data, it is called a ‘prior distribution.’ It is ‘updated’
after observing the data; the resulting, updated distribution is
called a ‘posterior distribution.’ Still, there is uncertainty about
which hypothesis, the null or the alternative, is true (Rouder et al.,
2009).

Because this alternative framework does not need to make
strong assumptions about effects that are certainly zero for
null hypotheses, it is perhaps relatively free from the issue of
inflated false positives pertaining to inflated rates of type I errors,
and might not strongly require multiple comparison corrections
during statistical tests as the frequentist framework does (Gelman
et al., 2012). This is one of the reasons why we advocate the use of
Bayesian inference in fMRI analysis.

The workhorse for hypothesis testing in the Bayesian
framework is called ‘Bayes Factor’ (BF). BF is a measure of
statistical evidence in Bayesian statistics, an alternative statistical
framework to the currently mainstream frequentist school. BF
is currently implemented in SPM version 12. Researchers can
easily compute it without much statistical and computational
knowledge. BF has several advantages when compared to
P-values, which we will discuss in the next section, particularly
in the cases of studies with small, underpowered samples, which
are prevalent in social and cognitive neuroscientific studies (Han
and Glenn, 2017).

Bayes Factors
At the heart of any Bayesian analysis is Bayes’ theorem, which is
formulated as follows:

P(H VD) =
P(D|H)

P(D)
× P(H)

where H denotes a hypothesis and D the data. The term at the
left-hand side is called ‘posterior probability,’ which represents
the updated belief in H after observing D. The expression on
the right-hand side reveals that the posterior probability is a
function of the following terms: P(H), P(D|H), and P(D). P(H)
is called ‘prior probability,’ which denotes the belief in H before
observing the data. And P(D|H) is called ‘likelihood,’ which is the
probability of observing the data given thatH is true. Lastly, P(D)
is called ‘marginal probability,’ which is simply the normalizing
constant of the numerator. In a nutshell, Bayesian inference can
be seen as the process where the initial belief about H, P(H), is
‘updated’ to be the new belief inH, P(H|D), by means of applying
Bayes’ theorem, hence the term ‘Bayesian updating.’

If we apply Bayes’ theorem in the case where two mutually
exclusive and collectively exhaustive hypotheses, say H0 and H1,
are present, we can obtain the ratio of the posterior probabilities
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ofH0 andH1, namely, the posterior odds, which are expressed as
follows:

P(H1 V D)

P(H0 V D)
=

P(H1)

P(H0)
×

P(DVH1)

P(DVH0)

where the marginal probabilities of the numerator and the
denominator, P(D), cancel each other. The second term of the
right-hand side, BF10 = P(D|H1)/P(D|H0), is called the Bayes
Factor (Kass and Raftery, 1995). A BF can be conceived as the
ratio of the amount of evidence the data provides for H1 and
H0, or vice versa, depending on the definition of the BF. (Note
that we could have defined the Bayes Factor in another way:
BF01 = P(D|H0)/P(D|H1).) One can verify that the posterior
odds, P(H1|D)/P(H0|D), are obtained by multiplying BF to the
prior odds, P(H1)/P(H0). Thus, a BF is a multiplicative factor that
is used to update the prior odds to be the posterior odds. Some
authors have provided guidelines for interpreting the values of
Bayes Factors (Jeffreys, 1961; Kass and Raftery, 1995).

In fMRI analysis, a null hypothesis, H0, can be defined in terms
of whether significant activity exists in a voxel in the case of one-
sample t-tests that were performed in the present study. More
specifically, because we were mainly interested in comparing
activity between two different conditions, we set H0 in terms of
whether there was a significant difference in activity in the voxel
between the two conditions. Hence, H0 and H1 can be defined as
follows:

H0: Activity in the voxel in condition A IS NOT greater
(or smaller) compared with that in condition B.
H1: Activity in the voxel in condition A IS greater (or smaller)
compared with that in condition B.

Thus, Bayesian inference in fMRI analysis is to test whether
and how strongly the observed functional neuroimaging data
supports H1 instead of H0 in the voxel.

We advocate the use of Bayes Factors over P-values for
hypothesis testing in fMRI studies on several grounds. First,
interpretations of BFs or posterior probabilities are clearer and
more straightforward than that of P-values, which have been
notorious for their difficult interpretation. The misconception
that they represent the posterior probability of H0, P(H0| D), is
so entrenched among researchers that it seems very difficult to
remove (Gigerenzer, 2004; Nuzzo, 2014). But even the correct
interpretation is elusive; a P-value, the probability that one will
observe values of the test statistic that are as extreme or more
extreme than is actually observed does not directly quantify the
likelihood that H0 or H1 is correct. But this is exactly what
posterior probability is about. Second, BFs allow us to accept a
hypothesis, contrary to the case of P-values. Indeed, introductory
statistics textbooks teach us that, in principle, we cannot accept
the null or the alternative; we only reject the null or not. As
researchers, however, we are sometimes interested in literally
accepting the null or the alternative, so such limited legitimate
uses of P-values are unsatisfactory. In contrast, Bayes Factors
can be used to accept a hypothesis (Rouder et al., 2009). They
denote the ratio of the posterior probability of H1 to that of H0,
or vice versa, which can be readily interpreted as ratio of the
probabilities that H0/H1 is true, which can be used to make a

decision on whether or not to accept the null of the alternative.
This is a more satisfactory way of reaching scientific conclusions
than using P-values. Fourth, by choosing appropriate priors, it is
possible to avoid inadvertently capitalizing on chance. The most
common form of this is known as P-hacking, where researchers
engage in various questionable research practices only to obtain
small P-values. It will be shown later that such an attempt is not
likely to succeed when BFs are used.

The Current Study
We aim to examine whether Bayesian inference implemented in
fMRI analysis software, SPM 12 in particular, produces better
results compared with classical frequentist inference. We are
particularly interested in the utilization of BFs as indicators
in second-level analysis examining activity in brain regions.
Although FMRIB’s Software Library (FSL) also implements
Bayesian inference based on Markov Chain Monte Carlo
(MCMC) sampling, we could not verify that FSL uses BFs
for thresholding in second-level inferences (Woolrich, 2012;
Webster, 2017). Hence, we focused on SPM 12, which is equipped
with thresholding with Bayes Factors in the present study.

Although Bayesian inference in second-level fMRI analysis has
the aforementioned benefits compared with frequentist inference,
there have been few previous studies addressing topics related
to Bayesian inference in SPM. Of course, Bayesian statistics
have been widely utilized for parameter estimation and model
selection in dynamic causal modeling (Friston et al., 2003).
Some previous studies have discussed the statistical foundations
of Bayesian inference for both first- and second-level analysis
(Friston and Penny, 2003; Neumann and Lohmann, 2003; Penny
and Flandin, 2005; Penny and Friston, 2007; Magerkurth et al.,
2015; Sidén et al., 2017) and practical guidelines for first-level
analysis in SPM (Friston and Penny, 2003; Penny, 2005; Penny
and Flandin, 2005; Penny and Friston, 2007). However, none
of these studies have suggested practical guidelines for using
Bayesian inference for second-level analysis in SPM 12, such as
the determination of threshold values that might be informative
to end users who do not have profound knowledge in statistics,
let alone Bayesian statistics.

Hence, we aim to provide practical guidelines for Bayesian
second-level analysis in SPM 12 with comparisons between
results from Bayesian and classical inference. Instead of delving
into statistical details, we intend to examine Bayesian inference
implemented in SPM 12 from the perspectives of end users
in order to provide them and potential readers of the present
study with insights into how to utilize Bayesian methods in their
research. Thus, we follow guidelines suggested by the official
manual (Ashburner et al., 2016) and use the default values set
by the software whenever possible, because end users are most
likely to stick to them in their analyses (Woo et al., 2014). Of
course, recent studies have shown that SPM 12’s default settings,
a voxel size for normalization, may significantly contribute to
the inflation of false positives and other issues, and argued that
such settings should not be used automatically (Flandin and
Friston, 2017; Mueller et al., 2017). However, in the present study,
we aimed to start with default settings, because the majority
of SPM users are likely to utilize default settings for their
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research as Woo et al.’s (2014) survey showed. In addition, we
decided to use such default settings for fair comparisons between
inference methods with widely used parameters. By starting with
default settings, we will be able to provide practical insights and
guidelines that can be conveniently implemented to end users of
SPM 12.

Because our ultimate aim in the present study is to show
how to perform Bayesian inference with SPM 12 to end
users, we intended to provide them with concrete examples,
actual Bayesian analyses with fMRI data available to public.
To this end, we first reanalyzed fMRI data collected for a
previous moral psychology research project using the Bayesian
second-level analysis procedure implemented in SPM 12 (Han
et al., 2016; Han and Glenn, 2017). While explaining our
methodology in this article, we showed screenshots from SPM
12 with details directions to provide end users with tutorials
to practice Bayesian inference with public fMRI data. Second,
we compare results from Bayesian second-level analysis and
those from classical second-level analysis by examining survived
voxels, as is done in previous studies (Eklund et al., 2016;
Han and Glenn, 2017). Third, we examine whether BFs can
be better indicators for thresholding compared with P-values
or t-values used in frequentist inference by comparing those
indicators by varying the number of subjects whose data are
entered into the analyses. The comparisons and tests were
conducted to show potential outcomes of Bayesian inference to
end users with concrete examples. Finally, we discuss the practical
implications of Bayesian inference in second-level fMRI analysis
from the perspective of end users. We also suggest some practical
guidelines for Bayesian second-level analysis and discuss how
the current fMRI analysis tools should be updated to implement
Bayesian inference more properly.

METHODS

Subjects and Materials
We reanalyzed a previously collected moral psychology fMRI
dataset with classical and Bayesian inference in the present study
(Han et al., 2016; Han and Glenn, 2017). The original data
was collected and reanalyzed based on protocols approved by
Stanford University IRB (Protocol ID: 25544) and the University
of Alabama IRB (Protocol ID: EX-16-CM-083). The fMRI data
were initially acquired from 16 participants (8 females) from
Northern California. They ranged in age from 21 to 34 years
(M = 28.59, SD = 3.18). They were asked to solve a set of
moral and non-moral dilemmas consisting of 60 dilemmatic
stories that had been previously invented for fMRI experiments

(Greene et al., 2001, 2004). The dilemma set consisted of three
different types of dilemmas: 22 moral-personal (MP), 18 moral-
impersonal (MI), and 20 non-moral (NM). The MP dilemmas
were designed to induce negative intuitive emotional responses
in participants by presenting salient potential harm to human
beings. The MI dilemmas also required participants to make
moral decisions but were designed not to induce immediate gut-
level reactions. The NM dilemmas included simple mathematical
problems that did not involve any moral judgment. Participants
were asked to make a decision about whether a presented
behavioral solution was appropriate after reading each dilemma
story. Functional images were scanned using a spiral in-and-
out sequence with TR = 2000 ms, TE = 30 ms, and flip
angle = 90◦ (Glover and Law, 2001). For each functional scan,
a total of 31 oblique axial slices were scanned parallel to the
anterior commissure–posterior commissure line with a 4-mm
slice thickness and a 1-mm inter-slice skip. The image resolution
was 3.75 × 3.75 mm2 (field of view = 240 × 240 mm2, 64 × 64
matrix).

In addition to the reanalysis of moral psychology fMRI
data, we replicated the analysis with three additional datasets
containing data collected from 16 or more participants, available
at NeuroVault1 (Gorgolewski et al., 2015), which is an open
repository for image files containing results from statistical
analyses. We downloaded image files the from three data
collections containing results from first-level analyses examining
the neural correlates of various cognitive processes (e.g., mental
calculation, face recognition) at the within-subject level (Henson
et al., 2002; Amalric and Dehaene, 2016; Gordon et al.,
2017; Kievit et al., unpublished). Further details, including the
NeuroVault ID, citation information, analyzed contrast, number
of included images, and type of statistical map for each dataset
are presented in Table 1.

Procedures
Preprocessing and First-Level Analysis

The scanned images were analyzed using SPM 12. First, we
performed RETROICOR (Retrospective Image Correction) and
RVHRCOR (respiration variations and heart rate correction)
to minimize artifacts associated with respiratory and cardiac
activities (Glover et al., 2000; Chang and Glover, 2009). These
corrections were performed by using a LINUX script provided
by Glover (2009), while spiral in-and-out functional images were
being reconstructed. Second, we conducted slice time correction,
motion correction, co-registration with structural images,
normalization into SPM’s standard MNI space (79 × 95 × 68,

1http://www.neurovault.org/

TABLE 1 | Previous studies analyzed for replications.

NeuroVault ID Study Task Images (N) Type Clusterwise Voxelwise Bayesian

1160 Kievit et al., unpublished Raven’s Matrices difficulty (correlation) 35 T-map 968 30 210

1805 Amalric and Dehaene, 2016 Equation versus baseline 29 Z-map 14,173 4,987 9,064

1811 Henson et al., 2002 Famous face versus baseline 16 Z-map 6,507 1,085 4,441

2447 Gordon et al., 2017 Face versus word 10 T-map 992 2 33
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2 × 2 × 2 mm3 voxels), and spatial smoothing with Gaussian
FWHM = 8 mm. All these preprocessing procedures were
performed following steps and using parameters suggested in
tutorials in the SPM 12 manual (Ashburner et al., 2016) and with
SPM’s default settings.

We conducted first-level analysis for each participant with the
preprocessed images. For the first-level analysis, the regressors
for the corresponding dilemma type blocks were modeled as
a boxcar function convolved with the canonical hemodynamic
response function. For each trial, we modeled neural activity,
four scans before, one during, and three after the moment of
response, similar to the analyses conducted by Greene et al. (2001,
2004). We treated each voxel according to SPM’s general linear
model. The first-level analysis was also performed following the
guidelines and parameters provided by SPM tutorials and with
SPM’s default values (Ashburner et al., 2016). Once the first-level
analysis was completed, we created a contract image, moral (MP
+MI) versus NM conditions, for each participant for the second-
level analysis. In addition to the main contrast of interest, moral
versus non-moral conditions, we created four different types of
contrasts, MP versus NM, MI versus NM, MP versus MI and MI
versus MP conditions, for exploratory purposes.

Second-Level Analysis

We performed the second-level analysis with classical and
Bayesian inference implemented in SPM 12. To examine the
difference in neural activity between moral and NM conditions,
we performed a one-sample t-test with contrast images created
from first-level analysis. All 16 contrast images were entered
into a second-level one-sample t-test model. Then, we first
used a classical inference module implemented in SPM 12.
At the end of the classical inference, we examined which
voxels survived with thresholds provided by SPM 12 by default.
The following thresholding criteria were utilized: (1) a cluster-
forming threshold p < 0.001 and a cluster-wise threshold
p < 0.05 [familywise error (FWE) corrected] and (2) a voxel-wise
threshold p < 0.05 (FWE corrected).

Secondly, we used a Bayesian second-level inference module
by setting a dependency on the output from the classical
inference module. The processed SPM.mat from the classical
inference model was used for the input for Bayesian second-
level inference (see Figure 1 for screenshots from the batch
editor with Bayesian inference modules). End users may follow
these steps to conduct the same second-level inference with
the fMRI data downloaded from NeuroVault with SPM 12.
First, a “factorial design specification” module should be added
to SPM 12’s batch editor. For the design, “one-sample t-test”
should be enabled. Similar to usual one-sample t-test cases, users
may simply choose contrast images produced from the prior
first-level analysis, sixteen moral psychology fMRI image files
shared via NeuroVault in the case of the present study. Once
the design is specified, a “model estimation” module should be
added. Similar to usual classical inference cases, users should set
“SPM.mat” as “dependency: DEP Factorial design specification,”
and select “classical” for the method. Before performing Bayesian
inference, classical inference should be completed to calculated
values required for the Bayesian inference. Finally, users should

add one additional “model estimation” module in the batch
editor. In this second “model estimation” module, the input
“SPM.mat” should be “dependency: DEP model estimation,”
and “method” should be “Bayesian 2nd-level.” Once this
batch job is completed, SPM 12 will create a SPM.mat file
containing outputs both from classical and Bayesian second-level
inference.

The results from the Bayesian second-level inference were
thresholded with the following criteria: (1) an effect size (ES)
threshold and (2) a logBF (natural logarithm of Bayes Factor)
threshold (see Figure 2 for screenshots from the results window
demonstrating how to set thresholds). The default EF threshold
value was a square root of the prior parameter covariance
stored in SPM.PPM.cB, a variable storing the square of the
conditional standard deviation of the prior parameter. In terms
of ES, the square root of SPM.PPM.Cb can be understood
as Cohen’s d = 1.0. In the base of the BF threshold, the
default value is logBF > 1.0. In addition to these SPM
12 default thresholds, we used other threshold values based
on prior statistical knowledge. For ES thresholds, we used
d> 0.2 (0.2

√
SPM.PPM.cB),>0.5 (0.5

√
SPM.PPM.cB) and>0.8

(0.8
√
SPM.PPM.cB), corresponding to a small, medium, and

large ES, respectively (Cohen, 1992). For the logBF thresholds, we
employed logBF > 3 and > 5, corresponding to the presence of
evidence strongly supporting H1: voxel contrast > ES threshold,
instead of H0: voxel contrast ≤ ES threshold, very strongly
supporting H1 instead of H0. An illustrative example is presented
in Figure 3. Figure 3 shows the prior and posterior distributions
when d = 0.5 is set as an ES threshold. Posterior distributions
plotted in dashed lines show how posteriors would be distributed
when 2logBF = 0 (no evidence supporting H1) and 2logBF = 10
(logBF = 10, very strong evidence supporting H1). Although
SPM 12 asks a voxel-extent threshold for Bayesian inference
similar to classical inference, we did not set any specific voxel
extent threshold in the present study, because there was not any
algorithm for the calculation of clusterwise threshold, such as
FWE and FDR in classical inference, implemented in Bayesian
inference. Thus, we set the voxel extent threshold as 0 similar to
the case of usual voxelwise classical inference.

End usersmay also conduct thresholding with a “SPM contrast
manager” module in SPM 12, which can be opened by clicking
“Results” button on SPM 12’s main menu. Once a contrast
manager appears, readers should create a new t-contrast with
a contrast value of “1” to examine which voxels show positive
activity. When readers are asked to choose an inference method,
they should choose “Bayesian” to enter thresholding parameters
for Bayesian inference. First, the contrast manager requires the ES
threshold value. In the text box, an ES value equivalent to Cohen’s
d = 1.0 (e.g., 0.0518 in the case of moral psychology fMRI data2)
appears as a default value. Readers may enter an ES value (e.g.,

2As explained previously, the ES threshold value can be determined from a
standard deviation value, which is identical to the square root of SPM.PPM.Cb
containing the square of the conditional standard deviation of the prior parameter.
In the case of the reanalysis of moral psychology fMRI data, the calculated
SPM.PPM.Cb was 0.0027, and its square root was 0.0518. Thus, 0.0518 was the
standard deviation value that represented Cohen’s d = 1.0, the default ES threshold
value for the second-level analysis.
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FIGURE 1 | Batch editor settings for Bayesian second-level inference in SPM 12.

0.0259 in the case of moral psychology fMRI data for Cohen’s
d = 0.53) following the guidelines related to Cohen’s d. Then,
the second thresholding parameter, “Log odd Threshold,” logBF,
should be entered. Although SPM 12 suggests 10 as a default
value, readers may use 3 (presence of strong evidence supporting
H1) or 5 (presence of very strong evidence H1). Finally, “extent
threshold (voxel)” may be left 0, because a voxel-extent threshold
will not be considered in our guidelines as mentioned previously.
Once all thresholding parameters are entered, readers will be
able to see a result screen showing survived voxels and related
information, such as voxel coordinates and cluster sizes.

In addition to the second-level analyses of the contrast of
moral versus non-moral conditions, we conducted the same
analyses for four other contrasts, MP versus NM, MI versus
NM, MP versus MI, and MI versus MP conditions. For the
aforementioned contrasts, we performed both classical and
Bayesian second-level analyses with the same threshold used for
the analyses of the moral versus NM contrast.

Result Comparison

We compared outcomes from Bayesian second-level analysis
with those from classical inference with SPM’s default methods
for multiple comparisons and clusterwise and voxelwise FWE. As
we mentioned in the introduction, the most widely used default
setting, clusterwise FWE implemented in SPM, was found to
produce inflated false positives (Eklund et al., 2016). On the other
hand, voxelwise FWE was reported to control for false positives
well; however, this correction method occasionally adjusted the
familywise error rate, which was supposed to be 5%, to lower
than 5% and produced conservative outcomes (Eklund et al.,
2016). Thus, we examined how the outcomes from Bayesian
second-level analysis were different from those from classical
inference with the aforementioned correctionmethods supported
by SPM 12.

3Because the calculated
√
SPM.PPM.cB, which represented the ES threshold value

equivalent to Cohen’s d = 1.0, was 0.0518, the ES threshold value equivalent to
Cohen’s d = 0.5 became 0.0518

2 = 0.0259.

First, we counted the number of survived voxels as an
indicator for whether a specificmethod produced was sensitive or
conservative, as Han andGlenn (2017) did. By using a customized
MATLAB code, we calculated the number of voxels that exceeded
the t-value threshold (for classical inference) or ES/logBF
thresholds (for Bayesian inference). Because there is no feasible
way to set “true activations” and test sensitivity and selectivity
based on such true activations while evaluating Bayesian
inference, which is based on different statistical foundations and
assumptions compared with classical inference, we decided to
use the number of survived voxels to approximately evaluate the
sensitivity and selectivity of Bayesian inference. Because Eklund
et al. (2016) reported that classical inference with clusterwise
FWE may produce more survived voxels than expected and that
with voxelwise FWE may be overly conservative, we examined
whether the number of survived voxels resulting from Bayesian
inference was situated somewhere between those two extreme
cases and which of the ES and logBF thresholds produced
such a result. We assumed that Bayesian inference can produce
better outcomes compared with the aforementioned two other
inference methods if the resultant number of survived voxels
from Bayesian inference is smaller than that from clusterwise
FWE inference and is greater than that from voxelwise FWE
inference. We investigated the numbers of survived voxels for all
five analyzed contrasts.

Second, in addition to the aforementioned comparisons of
the numbers of survived voxels, we examined whether Bayesian
inference was robust against possible noises for an exploratory
purpose. Because assuming true signals and examining FDRs
or something similar might not be an optimal way to evaluate
the performance of Bayesian inference given the philosophical
aspects of its methodology, such as the definition of Bayes factors
(Kass and Raftery, 1995; Wagenmakers et al., 2017), we decided
to focus on whether Bayesian inference can produce consistent
outcomes while being influenced by possible random noises.
First, to create images containing random noises, we added a
Gaussian noise (SD = approximately 25% of the mean signal
strength in each first-order image) to each first-order image; we
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FIGURE 2 | Contrast manager settings for Bayesian second-level inference in SPM 12.

decided to adopt the 0.25 SD as a parameter in this process
following the random noise parameter used for the second-level
analyses in Woo et al. (2014). We repeated this process ten
times. Second, we conducted the same Bayesian and classical
inferences with the images containing random noises. Third,
we calculated two values, false alarm and hit rates, to compare
outcomes between Bayesian and classical inferences. The false
alarm rate is defined as the ratio of voxels marked as active
from the analysis of noise-added images but as inactive from the

analysis of original images to voxels marked as active from the
analysis of noise-added images. The hit rate is defined as the
ratio of voxels marked as active from both analyses to voxels
marked as active from the analysis of the original images. These
false alarm and hit rates indicators seem similar to a FDR and
sensitivity, respectively (Nichols and Hayasaka, 2003; Woo et al.,
2014), in terms of methods of calculation. However, because we
did not assume true signals or activations in the present study,
false alarm and hit rates are not identical to a false discover
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FIGURE 3 | Illustrative example showing prior (dashed curve) and posterior

distributions when 2logBF = 0 (left filled curve) and 2logBF = 10 (right filled

curve), and ES threshold is Cohen’s d = 0.5. Figure originally created by JASP

and visualized by Adobe Illustrator. H0: a difference in activity between

conditions A and B IS NOT GREATER than d = 0.5. H1: a difference in activity

between conditions A and B IS GREATER than d = 0.5.

rate and sensitivity, which are based on frequentist assumptions.
We assumed that the lower false alarm rate and higher hit rate
indicate a better performance. Comparisons between inference
methods were performed with Bayesian ANCOVA implemented
in JASP (Love et al., 2017).We used 2logBF≥ 2 (Kass and Raftery,
1995), indicating the presence of positive evidence supporting H1

instead of H0, as a threshold for the presence of actual effects or
differences in Bayesian ANCOVA.

Third, we tested whether entering different numbers of
contrast images from the first-level analysis into the second-level
analysis model produced different outcomes in terms of t (for
classical inference) or logBF values (for Bayesian inference) for
the two inference methods. We were particularly interested in
whether Bayesian inference was more robust against the input of
subject data that might contain outliers compared with classical
inference. Thus, we counted the number of survived voxels
resulting from different inference methods while the sample size
was increasing. We first entered two randomly selected contrast
images to the second-level analysis models. Then, additional
contrast images were entered into the models. We examined the
number of survived voxel numbers for each inference method
every time an additional contrast image was entered in the
second-level analysis. This process was repeated ten times to
acquire data with different randomized orders of contrast image
entering. The order of first-level contrast images entered into the
model for each trial is presented in Supplementary Table S1.

Furthermore, we compared the statistical scores at (−4, 48,
12) calculated by the aforementioned two inference methods.
This voxel was selected because first, it survived both analyses
with SPM 12’s default thresholding settings; second, the
previous meta-analyses of fMRI studies of moral psychological
experiments reported a common activation in the voxel (Eres
et al., 2017; Han, 2017). Following the same randomization
procedure explained previously, the t-value and logBF value in
the aforementioned voxel were calculated when each additional
image was entered. Changes in these values across the different
sample sizes were plotted for comparisons between inference
methods. Moreover, we performed Bayesian repeated measures

ANOVA implemented in JASP (Love et al., 2017) to examine
the pattern of the changes. Finally, in order to test whether
the statistical indicator type (t versus logBF) influenced the
relationship between the statistical indicator values and the
sample size, we performed two-level Bayesian repeated measures
ANOVA. We conducted this test only for the contrast of moral
versus NM conditions, which was themain contrast of the present
study.

Replication

To examine whether Bayesian inference can be applicable to
fMRI datasets other than the aforementioned moral psychology
fMRI dataset, we replicated our analyses with three additional
datasets downloaded from NeuroVault. Because these datasets
contained results from the first-level analyses, we conducted
classical and Bayesian second-level analyses with downloaded
image files. Following the same procedures described above, we
calculated the number of voxels that survived classical clusterwise
inference, classical voxelwise inference (with FWE correction),
and Bayesian inference. We compared these numbers across
different inference methods in order to examine their selectivity
and sensitivity. We also compared the false alarm and hit rates
among the different inference methods.

RESULTS

Number of Survived Voxels
The number of survived voxels resulting from the classical and
Bayesian second-level analyses are presented in Table 2. Among
all the cases with different ES and logBF thresholding settings,
the number of survived voxels resulting from Bayesian inference
was smaller than that resulting from clusterwise FWE inference,
and was larger than that resulting from voxelwise FWE inference
when D = 0.2 and logBF = 5, D = 0.5 and logBF = 5, D = 0.8
and logBF = 3, D = 0.8 and logBF = 10, and D = 1.0 and
logBF = 0.3 in all five contrasts. Given these, when moderate
thresholds (a medium ES, D = 0.5, and logBF = 5, indicating
the presence of very strong evidence supporting H1 instead
of H0) were applied, Bayesian second-level analysis was more
conservative than clusterwise FWE inference while being more
sensitive than voxelwise FWE inference (see Figure 4 for analysis
results with the contrast of moral versus NM conditions with the
aforementioned criteria). As theD and logBF threshold increased,
the number of survived voxels decreased.

False Alarm and Hit Rates
The false alarm and hit rates calculated from moral psychology
fMRI data are demonstrated in Figures 5, 6, respectively.
Bayesian ANCOVA indicated that the effect of inference
type was significant in the analyses of both the false alarm
(2logBF = 58.35) and hit (2logBF = 130.31) rates. In the case
of the false alarm rate, post hoc comparisons demonstrated
that voxelwise FWE inference outperformed both Bayesian
(2logBF = 32.32) and clusterwise (2logBF = 39.97) inferences.
Bayesian inference showed a better performance compared with
clusterwise inference (2logBF = 16.90). In the case of the hit rate,
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clusterwise inference showed a better performance compared
with both Bayesian (2logBF = 22.16) and voxelwise FWE
(2logBF = 81.80) inference. Bayesian inference outperformed
voxelwise FWE inference (2logBF = 80.56). These results
show that Bayesian inference performed better than clusterwise
inference in terms of the false alarm rate, and voxelwise FWE
inference performed better in terms of the hit rate.

Changes in Analysis Results across
Different Sample Sizes
Changes in Number of Survived Voxels

Figure 7 demonstrates changes in the number of survived voxels
resulting from Bayesian second-level analysis and clusterwise
and voxelwise FWE inference. The numbers from Bayesian and
clusterwise FWE inference showed monotonically increasing
patterns. Interestingly, although the number from voxelwise
FWE showed an immediate increase when the sample size
increased from two to three, it decreased steeply when the sample
size again increased to four. It started to increase monotonically
thereafter. This trend in the case of voxelwise FWE might be
associated with the change in the voxelwise FWE-corrected
threshold. As shown in Figure 8, this threshold value showed
a radical change when the sample size increased from two to
four. When the sample size was greater than five, the threshold
value showed a steady decline that was consistent with the
aforementioned steady increase in the number of survived voxels.

Changes in t- and logBF Values in (−4, 48, 12)

In addition, we examined how the t- and logBF values in
(−4, 48, 12) changed when different numbers of contrast images
were entered into the analyses. As shown in Figure 7, the logBF
value showed a steady increase as the sample size increased. We
performed Bayesian repeated measures ANOVA with JASP in
order to examine whether the patterns of changes in the t- and
logBF values were significantly different from each other. The
result from Bayesian repeated measures ANOVA indicated that
the data very strongly supported the main effect of sample size,
logBF = 47.76. However, the change in the t-value was less
continuous than that of the logBF value. The Bayesian repeated
measures ANOVA results corroborated this point; the main effect
of sample size was verified, but it was not as strong as in the
previous case, logBF = 4.77. When we compared the patterns
of changes in the t- and logBF values, the resultant logBF value
suggested very strong evidence supporting that these patterns
were significantly different from each other, logBF = 136.82.
Given this, the pattern of the change in t-values associated with
the increase in the sample size was significantly different from
that in logBF, which showed a monotonic increase.

Replications
When moderate Bayesian thresholds (a medium ES, D = 0.5,
and logBF = 5) were applied, Bayesian inference showed better
selectivity than classical clusterwise inference with all four
datasets analyzed for replications, while showing better sensitivity
than classical voxelwise inference; in other words, the number of
survived voxels were classical clusterwise inference > Bayesian
inference > classical voxelwise inference (see Table 1). We were
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FIGURE 4 | Results from classical and Bayesian second-level inferences for the contrast of moral versus non-moral task conditions. Images created by XjView

(Cui et al., 2015). Red: classical clusterwise inference. Yellow: classical voxelwise FWE inference. Green: Bayesian inference.

FIGURE 5 | False alarm rate calculated from moral psychology fMRI data.

able to successfully replicate the findings from the reanalysis of
themoral psychology fMRI dataset with three additional datasets.
Figures 9–11 compare voxels that survived three different
inference methods in the reanalysis of Henson et al. (2002),
Amalric and Dehaene (2016), and Kievit et al. (unpublished),
respectively.

Furthermore, we examined the false alarm and hit rates with
the additional datasets. The overall results are demonstrated
in Figures 4, 5. First, in the case of the reanalyses of

FIGURE 6 | Hit rate calculated from moral psychology fMRI data.

Kievit et al.’s (unpublished) data, the effect of inference
type was significant in ANCOVA for both the false alarm
(2logBF = 37.25) and hit (2logBF = 23.51) rates. Bayesian
inference outperformed both clusterwise (2logBF = 11.46)
and voxelwise FWE (2logBF = 28.20) inferences in terms
of the false alarm rate, while clusterwise inference showed a
better performance compared with voxelwise FWE inference
(2logBF = 15.25). In terms of the hit rate, clusterwise
inference outperformed both Bayesian (2logBF = 15.61) and

Frontiers in Neuroinformatics | www.frontiersin.org 10 February 2018 | Volume 12 | Article 1

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


Han and Park Bayesian Second-Level Inference in SPM 12

FIGURE 7 | Changes in survived voxel numbers with different inference methods across different sample sizes.

FIGURE 8 | Changes in FWE threshold value, and t- and logBF values in (–4, 48, 12) across different sample sizes.

voxelwise FWE (2logBF = 16.43), while Bayesian inference
outperformed voxelwise FWE (2logBF = 6.49). Second, we
found a significant effect of inference type from the ANCOVA

of the hit rate with Amalric and Dehaene’s (2016) data
(2logBF = 77.39); however, such an effect was insignificant
in the case of the comparison of the false alarm rate
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FIGURE 9 | Results from classical and Bayesian second-level inferences with Kievit et al.’s (unpublished) data. Images created by XjView (Cui et al., 2015). Red:

classical clusterwise inference. Yellow: classical voxelwise FWE inference. Green: Bayesian inference.

(2logBF = −0.95). We could not find any significant differences
in the false alarm rates between Bayesian inference versus
voxelwise FWE inference (2logBF = −1.13), Bayesian inference
versus clusterwise inference (2logBF = −1.28), and voxelwise
FWE inference versus clusterwise inference (2logBF = 0.03).
However, in the case of the hit rate, Bayesian inference
outperformed both clusterwise (2logBF = 33.24) and voxelwise
FWE (2logBF = 55.16) inference, while clusterwise inference
outperformed voxelwise FWE (2logBF = 38.92). Third, the effect
of inference type was significant in the cases of false alarm
(2logBF = 18.32) and hit (2logBF = 15.82) rates from our
reanalyses of Henson et al.’s (2002) data. In the case of the false
alarm rate, both the Bayesian (2logBF = 23.01) and voxelwise
FWE (2logBF = 4.51) inferences outperformed clusterwise
inference. Bayesian inference also showed a better performance
than clusterwise inference (2logBF = 2.13). In the case of the
hit rate, both the Bayesian (2logBF = 17.88) and voxelwise
FWE (2logBF = 12.32) inferences showed significantly better
performances compared with clusterwise inference; however, the
difference in the rate between Bayesian and voxelwise FWE
inferences was insignificant (2logBF = −0.40).

DISCUSSION

In the present study, we compared outcomes from classical and
Bayesian second-level analyses implemented in SPM 12. We

found that first, given the number of survived voxels, Bayesian
second-level analysis was more sensitive than voxelwise FWE
inference while being more conservative than clusterwise FWE
inference when both a medium ES threshold (Cohen’s D = 0.5)
and a Bayes factor threshold indicating the presence of very
strong evidence (logBF = 5) were applied. Given the previous
studies examining inflated false positives in fMRI analysis
(Eklund et al., 2016; Han and Glenn, 2017), this result suggests
that Bayesian inference can control false positive rates better than
clusterwise FWE inference while maintaining higher sensitivity
than voxelwise FWE inference under appropriate choices of
thresholding values.

Second, the results from the comparisons of false alarm and
hit rates also support the aforementioned benefit of Bayesian
inference. Although voxelwise FWE inference showed the best
performance in the comparison of the false alarm rate, Bayesian
inference outperformed clusterwise inference. Also, in the case
of the hit rate, although clusterwise inference showed the best
performance, the hit rate of Bayesian inference was better than
that of voxelwise FWE inference and was very high (>95%). In
other words, Bayesian inference was less likely to show activations
that did not exist in results from analyses of original images
(lower false alarm rates), or to ignore activations that did exist
in results from analyses of original images (higher hit rates),
compared with other aforementioned inference methods when
random noises present in images in general. These suggest that
Bayesian inference can better reproduce results from analyses of
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FIGURE 10 | Results from classical and Bayesian second-level inferences with Amalric and Dehaene’s (2016) data. Images created by XjView (Cui et al., 2015). Red:

classical clusterwise inference. Yellow: classical voxelwise FWE inference. Green: Bayesian inference.

fMRI images without any noises (original images) even when
random noises present. Given these results, Bayesian inference
shows consistent and robust performances with images with
possible noises, and its performances might be better or at least
similar to those of classical inference methods.

Third, the pattern of change in the t-statistics found in the
present study suggests that Bayesian inference is more robust to
variations in sample sizes than classical inference. Interestingly,
the t-statistics threshold value after applying voxelwise FWE
correction fluctuated significantly when the sample size was
very small (n < 4). Similarly, our investigation of the changes
in t- and logBF values following the increase in sample size
showed that the logBF value increased steadily, while the t-value
did not, as the sample size increased. Particularly, when the
sample size was very small (n < 4), the t-value showed a slight
decrease. Although researchers may not employ such a very small
sample size for their fMRI studies due to the issue of statistical
power (Lieberman and Cunningham, 2009; Button et al., 2013),
these trends concerning the relationship among ordinary and
FWE-corrected t statistics, logBF, and sample size imply that
Bayesian inference is a more robust inferential method when the
sample size is extremely small. This result supports the previous
argument about the benefits of Bayesian methods in fMRI studies
with small, underpowered samples (Poldrack et al., 2017).

Fourth, concerns related to the de facto p threshold for
publication, p < 0.05, encourage us to utilize the Bayesian

approach in lieu of the frequentist approach. A recent study
demonstrated that findings sufficing the p < 0.05 threshold can
merely provide anecdotal or weekly positive evidence at best in
supporting H1. Thus, it is argued that researchers, particularly
those in psychological studies, should adopt p < 0.005 as a new
threshold for claiming ‘significance,’ while referring to results
with a p < 0.05 but not p < 0.005 threshold as ‘suggestive,’
not ‘significant’ (Button et al., 2013). This requirement would
make psychological studies utilizing fMRI data analysis more
challenging, because it would require studies to increase their
sample size by at least 60% (Button et al., 2013). The issue of
correction for multiple comparisons that is prevalent in fMRI
analysis also makes the situation worse because a corrected
threshold will become even higher (Nichols and Holmes, 2002;
Eklund et al., 2016; Han and Glenn, 2017). Bayesian inference
would be relatively free from these issues, because a logBF value,
which is essentially a Bayes factor, deals with the strength of
our belief about the presence of evidence supporting H1 with
available data (Kass and Raftery, 1995). In contrast, because
a P-value ‘quantifies the unusualness of the data under the
null hypothesis leaving open the possibility that the data are
even more likely under a well-specified and plausible alternative
hypothesis’ (p. 10), classical inference involves multiple tests
and is more susceptible to inflated false positives (Wagenmakers
et al., 2017). Although some argue that Bayesian inference may
also need correction for multiple comparisons (e.g., Scott and
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FIGURE 11 | Results from classical and Bayesian second-level inferences with Henson et al.’s (2002) data. Images created by XjView (Cui et al., 2015). Red:

classical clusterwise inference. Yellow: classical voxelwise FWE inference. Green: Bayesian inference.

Berger, 2010), it may not be as serious an issue as the case
of classical inference because the main interest of Bayesian
statistics is the strength of belief in the presence of evidence
instead of preventing false positives. Hence, given the issues
associated with a P-value threshold and correction for multiple
comparisons, we recommend the use of Bayesian inference in
fMRI analysis. Furthermore, our result supports that Bayesian
inference can well control for possible false positives when
statistically reasonable ES and BF thresholds were employed,
although Bayesian inference is not basically concerned about
the issue of inflated false positives (Gelman et al., 2012). In
fact, the number of survived voxels from Bayesian reanalysis
was smaller than that from clusterwise FWE inference, which
was deemed to show an inflated Type I error rate (Eklund
et al., 2016). This result suggests that Bayesian inference can
implicitly address the aforementioned issue among frequentists
perhaps by employing priors instead of frequentist assumptions
on true zero effects and BF thresholds (Gelman et al., 2012;
Wagenmakers et al., 2017), even if Bayesians are not explicitly
concerned about and does not directly control for Type I
error.

In addition to these points supporting the practical value
of Bayesian inference in second-level fMRI data analysis, we
consider its philosophical benefits as well. First, as noted earlier,
Bayesian analyses are straightforward to understand because they
provide researchers with exactly what they wish to know: P(H|D),

the probability that a hypothesis, either null or alternative, is true
given the data. In contrast, P-values, which frequentist analyses
provide, are inverse probabilities of posteriors and, thus, are at
best indirectly related to what researchers wish to learn.

Second, Bayes Factors, the Bayesian hypothesis testingmethod
we used in the present study, directly quantify how much a
statistical hypothesis is more likely to be true than another one.
This feature allows researchers to directly compare statistical
models, for example, the null and the alternative, in a way that is
readily interpretable. A counterpart in the traditional framework,
the likelihood ratio test, pursues a similar goal, but it does not
directly compare the probabilities of different hypotheses, nor
does it demonstrate to what degree a hypothesis is more likely
than another. Unfortunately, even its use has been quite limited
in practice due to the prevalence of P-values that do not take into
account the presence of alternative hypotheses.

Third, if one chooses to employ thresholds, their goals are
more straightforward in the Bayesian framework than in the
frequentist one. The traditional threshold, namely, ‘p < 0.05
(or 0.01),’ is meant to prevent the rate of false positives from being
greater than the nominal significance level specified. However,
it is silent on the scientific problems themselves: how to choose
between hypotheses and why the specific threshold value, 0.05
or 0.01, should be used. However, in the case of Bayes Factors,
researchers can be clearer about these considerations; they can
clarify how they compared the hypotheses and can provide
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grounds for the specific threshold value for accepting or rejecting
the null, or the alternative, hypothesis.

Of course, some may argue that BF interpretation guidelines
might also be arbitrary similar to the cases of P-value thresholds.
However, although BFs might not be completely free from the
arbitrariness in interpretation, it is obvious that they are better in
decision-making compared with P-values and thresholds (Stern,
2016). While thresholding P-values requires a binary decision-
making, such as accepting or rejecting H0, BFs allow us to
consider the strength of evidence supporting H1 in a continuous
manner. Although we need to set a certain threshold for BFs, such
as 2logBF = 5, because SPM 12 required us to do so, users can
examine the strength of hypothesis-supporting evidence existing
in voxels by referring to BFs. In addition, guidelines of BF
thresholding are firmly based on empirical grounds pertaining
to strength of evidence (Kass and Raftery, 1995), unlike P-value
thresholds that are difficult to clearly interpret their implications
(e.g., how should we interpret the meaning of and what should
we do with p = 0.051 in a voxel?). Thus, Bayesian inference can
be a useful alternative inference method for fMRI analysis to
address issues associated with how to do thresholding and make
judgments based on P-values. Even if Bayesian inference may not
be able to immediately replace classical inference that is currently
used for fMRI analysis, users may consider reporting results from
Bayesian inference in addition to those from classical inference in
their papers to provide readers with more and better information
for judgments.

Furthermore, we showed that the findings from the reanalysis
of a moral psychology fMRI dataset were successfully replicated
with three additional datasets and that Bayesian inference can be
applicable to various domains of fMRI studies. Also, the results
from the comparisons of false alarm and hit rates suggest that
Bayesian inference can work consistently and robustly under the
influences of possible noises given its better or at least similar
performance compared with classical inference methods. This
suggests that various types of fMRI data analyses can benefit
from applying Bayesian inference as well, similar to the case of
the analysis of the socio-moral fMRI data. The findings from the
replications will also contribute to the generalizability of the main
findings from the present study.

However, there are several limitations that warrant the
necessity of future studies. First, we only examined the case
of the simplest second-level analysis, a one-group t-test, in
the present study. Future studies may need to examine more-
complex tests, such as a two-group t-test and correlation analysis,
to see whether Bayesian second-level analysis implemented in
SPM 12 can also be applicable to these tests, which involve
multiple covariates. Second, because we aimed to compare the
results from Bayesian and classical second-level analysis, we did
not examine the case of Bayesian first-level analysis in the present
study. It would be informative to examine the combination of
Bayesian first- and second-level analysis in future studies. Third,
although we proposed some practical guidelines for Bayesian
second-level analysis, such as the application of Cohen’s D > 0.5
and logBF > 5 for thresholding, more statistical evaluations
pertaining to whether these guidelines are reliable and valid
need to be conducted. We used the number of survived voxels

and the change in statistics with different sample sizes for the
evaluation of Bayesian inference, which are very simple indicators
for evaluation. Future studies could utilize more-sophisticated
evaluation methods, such as simulations (Eklund et al., 2016).
Fourth, although we assumed that the number of survived voxels
can be used to evaluate sensitivity and selectivity, it might
not be an ideal indicator for such an evaluation. Because we
could not set true activations due to the mechanism of Bayesian
inference, which underscores the presence of supporting evidence
in data, we could not test sensitivity and selectivity by using the
same evaluation method in prior research focusing on classical
inference (e.g., Woo et al., 2014; Eklund et al., 2016). Although
we showed evaluation results of Bayesian inference in the present
study, readers should be aware of this point while interpreting
such results. In addition, future research should consider what
will be better methods to compare sensitivity and selectivity
between Bayesian and classical inference that are based on
different statistical assumptions and frameworks. Fifth, because
we only focused on SPM 12 to propose practical guidelines
for end users, additional studies examining Bayesian inference
implemented in other tools, such as FSL and AFNI (Woolrich,
2012; Webster, 2017), may also be required. Sixth, although
we attempted to acquire as many image files containing results
from first-order analyses for the replications from NeuroVault as
possible, we could only download three datasets that contained
data collected from 16 or more participants, which was the
sample size of the moral psychology fMRI study. More image files
might need to be shared through open fMRI data repositories by
researchers to facilitate reanalyses of previous datasets with novel
analysis methods, such as the Bayesian reanalyses performed in
the present study, and, finally, to promote open science for better
scientific practice.

Furthermore, related to updates on SPM 12 and fMRI analysis
methods, future studies should address unanswered questions
that could not be addressed in the present study due to its scope.
First, although merely following default settings in SPM 12, a
voxel size for normalization in particular, does not necessarily
produce optimal outcomes as shown by recent research (Flandin
and Friston, 2017; Mueller et al., 2017), we decided to follow
such default settings due to the purpose and scope of the
present study, suggesting how end users can implement a new
analysis method, Bayesian second-level analysis, with currently
and widely available tools and guidelines. Because we agree
with the recent studies that SPM’s default settings should
be carefully reconsidered, future studies should to test how
Bayesian second-level analysis works with the recommended
revised settings. Furthermore, based on findings from such
future studies, guidelines for analysis for end users might also
need to be revised and amended. Second, researchers have
developed alternative methods for inference and thresholding,
such as Statistical Non-parametric Mapping (SnPM; Nichols,
2012), Threshold-free Cluster Enhancement (TFCE; Smith and
Nichols, 2009), and 3dClustSim with autocorrelation function
(Cox et al., 2017); previous research has demonstrated that
the application of the aforementioned methods can effectively
address current issues on fMRI analysis, such as inflated false
positives (Nichols and Holmes, 2002; Smith and Nichols, 2009;
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Eklund et al., 2016; Han and Glenn, 2017). However, because
those methods are not available as basic functions in SPM 12, we
did not test the alternative methods with Bayesian inference due
to the limited scope of the present study, introducing Bayesian
inference to end users who are familiar with SPM 12’s default
settings. Hence, future studies should address such a limitation to
examine and test Bayesian inference and the alternative analysis
methods.

CONCLUSION

In the present study, we compared outcomes from Bayesian
and classical second-level analyses of first-level contrast images
implemented in SPM 12. Although we only compared the
simplest frequentist procedure, the one-group t-test, to the
Bayesian counterpart due to the lack of available statistical
and technical guidelines, we were able to show that Bayesian
inference in the second-level fMRI analysis had practical and
philosophical benefits. We also proposed practical guidelines for
second-level Bayesian analysis in SPM 12: applying an effect
size threshold of Cohen’s D = 0.5 (a medium effect size) and
a Bayes factor threshold of logBF = 5 (very strong evidence).
As Poldrack et al. (2017) argued, such a Bayesian approach will
provide a more robust analysis methodology for fMRI studies
with small, underpowered samples and will contribute to better

scientific practice. We expect to have better ideas about how
to utilize Bayesian inference, including both first- and second-
level inference, for more-complex tests, such as two-group tests
and linear regression, by conducting additional analyses in the
future.
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