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Abstract. δ18O measurements in precipitation and stream

waters were used to investigate hydrological flow paths and

residence times at nested spatial scales in the mesoscale

(233 km2) River Feugh catchment in the northeast of Scot-

land over the 2001–2002 hydrological year. Precipitation

δ18O exhibited strong seasonal variation, which although

significantly damped within the catchment, was reflected in

stream water at six sampling sites. This allowed δ18O varia-

tions to be used to infer the relative influence of soil-derived

storm flows with a seasonally variable isotopic signature, and

groundwater of apparently more constant isotopic composi-

tion. Periodic regression analysis was then used to exam-

ine the sub-catchment difference using an exponential flow

model to provide indicative estimates of mean stream water

residence times, which varied between approximately 3 and

14 months. This showed that the effects of increasing scale

on estimated mean stream water residence time was mini-

mal beyond that of the smallest (ca. 1 km2) headwater catch-

ment scale. Instead, the interaction of catchment soil cover

and topography appeared to be the dominant controlling in-

fluence. Where sub-catchments had extensive peat cover-

age, responsive hydrological pathways produced seasonally

variable δ18O signatures in runoff with short mean residence

times (ca. 3 months). In contrast, areas dominated by steeper

slopes, more freely draining soils and larger groundwater

storage in shallow valley-bottom aquifers, deeper flow paths

allow for more effective mixing and damping of δ18O in-

dicating longer residence times (>12 months). These in-

sights from δ18O measurements extend the hydrological un-

derstanding of the Feugh catchment gained from previous
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geochemical tracer studies, and demonstrate the utility of

isotope tracers in investigating the interaction of hydrolog-

ical processes and catchment characteristics at larger spatial

scales.

1 Introduction

Over the past two decades, interpretation of changes in

the stable oxygen (18O/16O) isotopic signatures of catch-

ment waters have provided insights as tracers for identi-

fying hydrological sources and flow paths under different

flow conditions and estimating mean catchment residence

times (Sklash, 1990; Genereux and Hooper, 1998; Burns,

2002). To date, most studies have focused on storm event

sampling in relatively small (<10 km2) catchments (Buttle,

1994). However, the use of isotope tracers to upscale flow

path understanding in mesoscale (ca. 102–103 km2) catch-

ments over longer timescale has been scarce (e.g. Sklash et

al., 1976; Turner and Barnes, 1998; Frederickson and Criss,

1999; Uhlenbrook et al., 2002). Moreover, investigations of

the influence of catchment scale on the mean residence time

of runoff have generally been restricted to relatively small

catchments (Brown et al., 1999; McDonnell et al., 1999;

McGlynn et al., 2003). This reflects the logistical difficulties

of sampling in larger catchments, the potential loss of iso-

topic tracer resolution at larger spatial and temporal scales

and the expense of isotope analysis (Buttle, 1998; Kendall

and Coplen, 2001). Nevertheless, where the relationship be-

tween catchment size and mean residence time has been ex-

amined, many field and theoretical studied have shown that

superficial assumptions that residence time increases with
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catchment size are unfounded (Haitjema, 1995; McGuire et

al., 2005). However, given the paucity of such studies it is

clear that the relationships between landscape characteristics

and mean residence time need fuller appraisal though nested-

catchments investigations.

From a UK perspective, there is a general lack of expe-

rience in the use of stable isotopes for investigating catch-

ment hydrology (Darling et al., 2003). This stems from the

often complex climatic and catchment-specific factors con-

trolling their composition, such that for many routine mon-

itoring purposes their measurement is deemed to be of little

practical use so data sets are scarce. From a catchment hy-

drology perspective however, it is this complexity that pro-

vides the potential for insights that are less readily avail-

able from other methods. Stable isotope tracers therefore

have the potential to play an important role as the hydrologi-

cal research community faces increasing pressure to provide

improved process understanding and quantitative knowledge

at the larger scales where water resource decision-making

occurs (Healy, 2001; Naiman et al., 2001; Soulsby et al.,

2003). These efforts are likely to be most productive in

settings where hydrological processes can be examined at

nested catchment scales, where pre-existing process under-

standing gained from small, intensively monitored headwa-

ter catchments may help interpret in relation to behaviour at

the larger scale (McGuire et al., 2005; Soulsby et al., 20041).

This paper reports the use of δ18O measurements as a nat-

ural tracer to provide insight into hydrological flow paths

and mean residence times for nested sub-catchments in the

mesoscale (233 km2) Feugh catchment in the northeast of

Scotland. Previous hydrological studies at this site have fo-

cused on the use geochemical tracers to understand the role

of hydrological flow paths over a range of temporal and spa-

tial scales and examine how water quality may be affected

by environmental change (Wade et al., 2001; Soulsby et al.,

2003, 2004). The use of δ18O measurements was antici-

pated to build on this by providing complimentary insight

on catchment residence times and the mixing of different hy-

drological sources that would further elucidate the influence

of scale on hydrological functioning. This parallels ongo-

ing work to upscale hydrological understanding in the Feshie

catchment in the Cairngorm Mountains of Scotland as part

of the NERC-funded CHASM (Catchment Hydrology And

Sustainable Management) initiative (Rodgers et al., 2004;

Soulsby et al., 20041). The aims of the paper therefore are to:

(i) characterise the spatial and temporal variation in δ18O of

precipitation and stream waters in the Feugh catchment; (ii)

establish the main hydrological processes influencing stream

water δ18O using information from other geochemical trac-

ers; (iii) estimate the mean residence time of runoff in the

1Soulsby, C., Tetzlaff, D., Rodgers, P. Dunn, S., and Waldron,

S.: Dominant runoff processes , streamwater mean residence times

and controlling landscape characteristics in a mesoscale catchment,

J. Hydrol., in review, 2004.

catchment and its major sub-catchments; and (iv) assess the

extent to which these are influenced by catchment scale, to-

pography and soil characteristics.

2 Study area

The Water of Feugh drains 233 km2 in northeast Scotland

(Fig. 1a). The catchment is predominantly upland in char-

acter, with an altitude range from 70–776 m. The climate is

cool and wet, with an estimated mean annual precipitation of

1130 mm which mainly falls as rain, though snow does oc-

cur during the winter months and snow pack accumulation

can occur in cold years (Soulsby et al., 1997). The catch-

ment is mainly (ca. 85%) underlain by granite, though the

most northern parts of the catchment, as well as the south-

ern boundary in the Water of Dye sub-basin, are underlain by

metamorphic rocks (mainly pelites and psammites) (Fig. 1b).

The Feugh is formed by three tributaries (the Dye, Aven

and Upper Feugh), which are confluent some 4 km upstream

of Heugh Head (the gauging station at the catchment outfall)

(Fig. 1a). The largest of these sub-catchments (at 90 km2),

the Water of Dye, is the most southerly and drains a granite-

dominated area, although there is a significant outcrop of

schist in its headwaters (Fig. 1b). The sub-catchment is char-

acterised by extensive plateaux areas on the interfluves above

450 m that are dominated by peats (up to 5 m deep) and peaty

podzols (<1 m deep) (Fig. 1c). Only on the more incised

catchment slopes do the most freely draining humus iron

podzols (<1 m deep) occur and the main river valley bottoms

generally have freely draining alluvial deposits and soils.

The Water of Feugh sub-catchment is the most northerly

with granite-dominated headwaters grading to metamorphic

rocks in the lower catchment near Powlair. In contrast to

the Dye, the catchment has been over widened by glacial

erosion and meltwater action, with more restricted plateaux

areas, lower peat coverage and larger areas of more freely

draining podzols on steeper slopes (Fig. 1c). More extensive

alluvial deposits of sands and gravels (>10 m deep) occupy

the valley floor, especially in the Powlair area. The smallest

sub-catchment (30 km2) is occupied by the Water of Aven,

which lies between the Dye and Upper Feugh. The upper

sub-catchment drains an extensive peat-covered plateau un-

derlain by granite, but downstream the valley is very steeply

incised, mainly due to erosion by meltwaters. In the lowest

part of the sub-catchment, extensive alluvial deposits form a

fan, where the Aven confluences with the upper Feugh, and

further extensive deposits fill the valley floor between this

confluence and the gauging station of Heugh Head (Fig. 1b).

Given the topography and soil coverage in the catchment,

land use is largely restricted to grouse (Lagopus lagopus)

and Red deer (Cervus elaphus) shooting on heather moor-

land in the upper reaches of all three sub-basins (Fig. 1d).

The moorlands are managed by regular burning to retain the

mosaic of habitats required by grouse. The long history of
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Fig. 1. Catchment maps of the Feugh, showing (a) topography and monitoring network, (b) geology, (c) soil coverage and (d) land cover.

burning may have contributed to peat erosion, as the peat is

degraded and extensively “hagged” in many places, partic-

ularly in the Aven and upper Feugh catchments (Thompson

et al., 2001). This dictates that a high density of ephemeral

drainage channels covers the peat, connecting it to the peren-

nial stream channel network. In some places erosion extends

to the organo-mineral interface, allowing seepage into the un-

derlying parent material and bedrock. In all three sub-basins,

agriculture occupies the better floodplain soils, though this

mainly comprises livestock grazing (Fig. 1d). The more ex-

tensive coverage of freely draining soils in the upper Feugh

sub-basin and the lower catchment above and below the trib-

utary confluences is the main area where arable farming oc-

curs (Table 1). Some of the valley hillslopes are forest-

covered, most notably in the lower valleys of the Water of

Dye and Upper Feugh. In the former case, the forestry is

mainly commercial woodlands, whilst in the latter, semi-

natural forests of Scots Pine (Pinus sylvestris) predominate

(Fig. 1d, Table 1).

The mean annual runoff at Heugh Head, the catchment

outfall, is 5.55 m3 s−1, with a range between a Q95 of

0.9 m3 s−1 and a Q10 of 11.4 m3 s−1. Water balance estimates

suggest annual evaporation rates of ca. 300 mm. In addi-

tion to this site, the Scottish Environment Protection Agency

(SEPA) also monitor flows for the 42 km2 Charr catchment in

the Water of Dye (Fig. 1a). Further flow records in the Water

of Dye were also collected from Brocky Burn, where a flume

and pressure transducer were established by the University of

Aberdeen (Dawson, 1999). This gave accurate nested flow

records for 233, 42 and 1.3 km2 for the Feugh, Charr and

Brocky Burn respectively (Soulsby et al., 2003).
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Table 1. Characteristics of the Feugh catchment.

  Geology Soils Land Use 

 A
re

a
 

M
e

a
n
 a

lt
it
u

d
e

 

G
ra

n
it
e

 

S
e

m
i-

p
e

lit
e

 

P
s
a

m
m

it
e

 

A
llu

v
ia

l 

 P
e

a
t 

P
e

a
ty

 P
o

d
z
o

l 

H
u

m
u

s
 I
ro

n
 

P
o

d
z
o
l 

A
llu

v
ia

l 

W
o

o
d

la
n

d
 

M
o

o
rl
a

n
d

 /
 

P
e

a
t 

G
ra

s
s
la

n
d

 

 km
2
 m % % % % % % % % % % % 

1. Brocky Burn 1.3 419 100 0 0 0 84.1 15.9 0 0 0 100 0 

2. Charr 41.8 420 73.3 21.5 3.2 1 65.9 34.1 0 0 0 99.4 0.6 

3. Bogendreip 90.1 357 80.2 12.3 2.8 4.2 48.5 38.0 13.2 0 22.1 72.4 4.2 

4. Aven 30.1 427 99.2 0 0 0.8 55.7 30.3 13.2 0.8 5.6 92.7 1.6 

5. Powlair 61.1 356 86.5 0 5.0 8.4 19.4 38.8 36.9 4.9 10.1 74.2 9.5 

6. Heugh Head 233 329 78.5 4.8 8.5 7.9 32.1 34 26 7.9 18.1 68.2 10.7 

3 Methods

Samples of stream water for the 2001–2002 hydrological

year were collected at approximately weekly intervals at

six sites in the catchment (Fig. 1a). The availability of

flow data for the three nested catchments at Brocky Burn

(1.3 km2), Charr (42 km2) and Heugh Head (233 km2), pro-

vided a concentration of sampling sites down the Water of

Dye sub-basin, which was further supplemented by Bogen-

dreip (90 km2) (Fig. 1a). Two additional sampling sites were

located on the other two sub-basins of the Feugh, the Aven

and the Upper Feugh, in order to characterise their overall

contribution to the isotopic signature of stream water leaving

the catchment at Heugh Head (Fig. 1a). Catchment precip-

itation was sampled at approximately the same weekly in-

tervals as stream water from a rain collector located in the

Water of Dye catchment at Charr. This was located at an al-

titude of 300 m which was assumed to be representative of

catchment-average inputs. Although the potential influence

of altitude on precipitation δ18O was recognised (McGuire et

al., 2005), resource constraints mitigated against a second set

of precipitation samples.

All samples were collected and stored according to stan-

dard procedures (cf. Clark and Fritz, 1997) and analysed

at the Scottish Universities Environment Research Centre

(SUERC) using a gas source isotope ratio mass spectrom-

eter. Ratios of 18O/16O are expressed in delta units, δ18O

(‰, parts per mille) defined in relation to V-SMOW (Vienna

standard mean ocean water). The analytical precision was

±0.1‰. Stream water samples were also analysed for Gran

alkalinity by acidimetric titration to end points of pH 4.5,

4.0 and 3.0. This approximates the chemically conservative

parameter of Acid Neutralizing Capacity (ANC) in natural

waters where aluminium concentrations are low (Neal et al.,

2001) thus allowing it to be used for hydrograph separation

at each site using a classical two component mixing model to

quantify groundwater contributions to annual runoff. This is

described in detail by Soulsby et al. (2003).

A range of models are available for assessing catchment

residence times using tracer data (Maloszewski and Zuber,

1982; Turner and Barnes, 1998). Given the basic data set

available, the sine wave method was used for the Feugh

data, which compares the amplitude of seasonal variations

in δ18O in precipitation and stream flow, and uses the degree

of damping to estimate residence time (Unnikrishna et al.,

1995). This assumes an exponential distribution of residence

times and is particularly useful in catchments where short

residence time flow paths (such as overland flow from the

dominant peaty soils in the Feugh) are important as it is bi-

ased to a young water component (Maloszewski et al., 1983;

Stewart and McDonnell, 1991; Unnikrishna et al., 1995;

Rodgers et al., 2005). In contrast, other commonly used

models, such as the exponential piston-flow model, are bet-

ter suited to catchments dominated by delayed sub-surface

flows. The short (1 year) run of data precluded the appli-

cation of the more accurate convolutional integral approach

where antecedent precipitation inputs would need to be ac-

curately modelled (Vitvar and Balderer, 1997). In the con-

text of the simpler sine wave method, the short run of data

was less problematic. Earlier work in the from other mon-

tane catchments in northern Scotland showed that the range

and seasonal pattern of δ18O values in observed precipitation

Hydrology and Earth System Sciences, 9, 139–155, 2005 www.copernicus.org/EGU/hess/hess/9/139/
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during the study year were broadly representative of a 3 year

period of weekly samples collected between 1995 and 1998

(cf. Soulsby et al., 2000).

Seasonal trends in δ18O in precipitation and stream wa-

ter were modelled using periodic regression analysis (Bliss,

1970) to fit seasonal sine wave curves to annual δ18O vari-

ations in precipitation and stream water (cf. DeWalle et al.,

1997), defined as:

δ18O=X + A[cos(ct−θ)] (1)

where δ18O is the modelled δ18O (‰), X is the weighted

mean annual measured δ18O (‰), A is the measured δ18O

annual amplitude (‰), c is the radial frequency of annual

fluctuations (0.017214 rad d−1), t is the time in days after the

start of the sampling period (01/10/01), and θ is the phase lag

or time of the annual peak δ18O in radians. Sine wave models

fitted to precipitation and stream water δ18O variations were

used and the mean residence time (T ) of water leaving the

system was calculated as:

T = c−1
[(Az2/Az1)−2

− 1]
0.5 (2)

where Az1 is the amplitude of precipitation δ18O (‰), Az2

is the amplitude of the stream water δ18O (‰) and c is the

radial frequency of annual fluctuations as defined in model

(1).

Application of residence time models to stream water data

in larger catchments over longer timescales is problematic.

The models generally assume some steady state condition in

catchment function, which is obviously unrealistic. In some

studies this results in high flow samples being omitted from

the analysis and baseflow residence times being estimated

(e.g. McGuire et al., 2005). In this context, the precipita-

tion δ18O inputs are accordingly weighted to try and reflect

the signature of recharge, particularly in catchments with

marked climatic seasonality (e.g. Uhlenbrook et al., 2002).

However, in a flashy catchment such as the Feugh, where

precipitation is evenly distributed in most years, meaning-

fully defining “baseflow” is extremely difficult. Moreover,

in the wet, cool montane climate, high soil moisture deficits

are not common. Given this context, sine curves were fitted

to weighted monthly mean precipitation data and stream wa-

ter data to give a snap-shot first approximation of mean res-

idence times during this particular year. Given the operation

of responsive hydrological pathways throughout the year (i.e.

effectively no baseflow period) precipitation samples were

not weighted to estimates the δ18O signature of recharge.

Subsequent volume-weighted means of δ18O in precipita-

tion and stream water showed approximate mass balance (see

Sect. 4.1). Given the simple nature of this model, the size

and complexity of the Feugh catchment, together with the

resolution of precipitation inputs and stream water outputs,

the results represent preliminary estimates of mean residence

times. The main aim of the residence time modelling was
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Fig. 2. Temporal variation in precipitation and stream water δ18O,

annual run-off and rainfall for the Feugh catchment (01/10/2001–

30/09/2002).

to compare different nested catchment responses to exam-

ine how variable isotopic responses to precipitation may pro-

vide insight into the internal hydrological functioning of the

Feugh catchment. Therefore, the exponential sine wave ap-

proach allows comparison of the natural variation between

different sub-catchment stream water δ18O signatures. As

such, the results can only be taken as indicative estimates

of mean residence times and can only be compared to re-

sults from other sites with caution. Nonetheless, studies else-

where have suggested that the model is likely to be useful for

such a first approximation (Stewart and McDonnell, 1991;

Soulsby et al., 2001; Asano et al., 2002). Furthermore, the

short run of data and the relatively coarse temporal and spa-

tial sampling procedure precluded reasonable application of

more complex residence time estimation methods (e.g. Mal-

oszewski and Zuber, 1982; McGuire et al., 2002; Kirchner

et al., 2000) which are often possible with data collected at a

finer temporal distribution.

4 Results and discussion

4.1 Seasonal variation in precipitation and stream water

δ18O

Catchment precipitation showed marked seasonal varia-

tion, with winter precipitation (November to April: mean

−9.73‰) more 18O-depleted than summer rainfall (May to

October: mean 7.42‰) (Table 2). This follows the antici-

pated seasonal pattern of precipitation δ18O whereby winter

months are dominated by colder northerly and easterly air

masses that bring rain and snow which, due to low temper-

atures, is more 18O-depleted (Fig. 2). By contrast, summer

weather systems are mainly south-westerly in origin, result-

ing in more 18O-enriched precipitation. Despite precipitation

in the Feugh generally following this seasonal pattern, it can

www.copernicus.org/EGU/hess/hess/9/139/ Hydrology and Earth System Sciences, 9, 139–155, 2005
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Table 2. Arithmetic mean, range and standard deviation of δ18O (‰) in the Feugh catchment (01/10/2001–30/09/2002).

Mean Minimum Maximum Standard deviation

Winter/Spring precipitation −9.58 −17.7 −3.9 3.59

Summer/Autumn precipitation −7.42 −11.6 −1.6 2.79

1. Brocky Burn −8.52 −10.2 −7.0 0.72

2. Charr −8.61 −9.5 −7.2 0.46

3. Bogendreip −8.82 −9.7 −7.8 0.43

4. Aven −9.06 −9.8 −8.0 0.31

5. Powlair −9.15 −10.0 −8.3 0.29

6. Heugh Head −8.61 −9.4 −7.5 0.42

be seen that there is a considerable amount of scatter; though

in general extreme δ18O values were in relative small rainfall

volumes. The most 18O-depleted precipitation occurred in

small snow-influenced events at the end of the winter months

in February and March (Fig. 2). This was when the influence

of colder weather systems was most sustained compared with

the general influence of milder, maritime weather systems

earlier in the winter. Markedly 18O-depleted depleted pre-

cipitation was observed in spring albeit in small events, when

more 18O-enriched precipitation would be anticipated. How-

ever, the hydrological year of 2001–2002 was substantially

cooler and wetter than normal and air masses with an arc-

tic origin can affect the Scottish climate well into the spring.

Thus, this transition appears to occur very abruptly (Fig. 2),

although the relative lack of rainfall/storm activity during

April means that this shift is over-emphasized in relation to

effective precipitation.

In comparison to precipitation, stream water δ18O is

highly damped at all sites, reflecting the influence of longer

residence time runoff sources with more stable δ18O, which

effectively integrates seasonally variable precipitation inputs

(see Heugh Head response in Fig. 2). However, stream wa-

ter δ18O response for different sites exhibits notable differ-

ences, which in turn reflect important sub-catchment varia-

tion in hydrological function (Table 2). The most variable

site in the catchment is the 1.3 km2, peat-dominated Brocky

Burn sub-catchment (δ18O range 3.2‰: Table 2). Increas-

ing scale downstream in the Water of Dye leads to a re-

duction in δ18O range observed for the 42 km2 Charr sub-

catchment (range 2.3‰), with the downstream site at Bo-

gendreip (90 km2) displaying a further reduction in range

(1.9‰). The overall δ18O range measured at the catchment

outfall at Heugh Head (233 km2) shows no difference to

that measured at Bogendreip (1.9‰), despite the influence of

stream water contributions from the other two sub-basins, the

Water of Aven (30 km2) and the Water of Feugh at Powlair

(61 km2). These two catchments exhibit the lowest overall

range and variability in δ18O over the year (ranges of 1.8 and

1.7‰respectively: Table 2).

In addition to the annual range for each site, there are

also variations of 0.63‰in the mean δ18O. Brocky Burn has

the most 18O-enriched mean stream water overall (−8.52‰).

The second highest δ18O was observed at both Charr and

Heugh Head, which show the same annual mean (−8.61‰:

Table 2). Bogendreip is intermediate (−8.82‰), whilst the

Water of Aven and Powlair show the lowest, most 18O-

depleted means (−9.06 and −9.15‰: Table 2). The volume

weighted mean precipitation was −8.40‰, which is reason-

ably close to that of Heugh Head and the Water of Dye sites,

indicating an approximate mass balance over the year.

4.2 Stream water δ18O response to flow

Figure 3 shows the stream water δ18O time series for the

six sub-catchments during the 2001–2002 hydrological year.

As with precipitation, stream waters exhibit seasonal dif-

ferences, being generally 18O-depleted during the winter

months when rainfall and snowmelt generate the highest

flows. The effect of more 18O-enriched precipitation is ev-

ident in summer stream water δ18O. However, it is also no-

table that the most 18O-enriched samples occur during the

first month of the sampling period in association with the

two largest flows sampled for the year (Fig. 2). Thus, in

addition to the seasonal precipitation influence determining

stream water δ18O on a catchment-wide basis, specific hy-

drological events (and therefore variability in sub-catchment

hydrological behaviour) can also lead to differences in iso-

topic composition between sites. This can be most readily

shown by comparing δ18O with corresponding stream water

alkalinity time series (Fig. 3).

Gran alkalinity has proven utility as a tracer in the UK

uplands. It effectively distinguishes between low alkalinity

high flows derived mainly from acidic, organic soil horizons

which generate rapid overland flow or shallow sub-surface

storm flow; and higher alkalinity water from lower soil hori-

zons and/or groundwater which dominates base flows (Hill

and Neal, 1997; Wade et al., 1999). As a result, Gran alkalin-

ity can be seen to vary predictably with flow in the Feugh and
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Fig. 3. Temporal co-variation in stream water δ18O and alkalinity for Feugh sub-catchments.

its sub-catchments (Fig. 4, but see Soulsby et al., 2003 for a

full analysis). Stream water samples from the different sites

show alkalinity convergence at high flows, but base flows re-

late closely to geology. Hence the low alkalinity baseflows

in the granite-dominated Water of Aven, but much high base-

flow alkalinity at Charr flume where metamorphic rocks un-

derlie the upper catchment. The availability of stream water

alkalinity measurements sampled at the same time as δ18O

for each of the six sites therefore acts as a surrogate for flow

(especially for ungauged sites), and provides insight into the

role of different hydrological flow paths that will be affecting

the observed δ18O.

It is apparent that there is considerable event-related vari-

ation in δ18O from sample to sample for the majority of sites

(Fig. 3). At the most variable site, Brocky Burn, the two

most enriched δ18O samples during the first month of sam-

pling are particularly marked. These relate to two of the

largest sampled flows of the year (as indicated by the low

stream water alkalinity), with δ18O enrichment in the inter-

vening samples (Fig. 3). The same effect is observed at the

other Feugh monitoring sites. Rather than these peaks relat-

ing closely to maximum precipitation δ18O (Fig. 2), the oc-

currence of stream water δ18O maxima at this time present

some uncertainty over the role of antecedent precipitation

in setting stream water δ18O during the initial phase of the

study. Furthermore, initial precipitation δ18O for October

2001 are not as enriched as stream water during this period

(Fig. 2). It seems likely that catchment runoff is dominated

by the displacement of 18O-enriched summer precipitation

stored in the catchment prior to sampling, especially as these

October events followed a six-week period with limited high

flows. Tracer studies during in the Scotland have previously

shown such displacement of “old” pre-event water by “new”

precipitation in summer events (Jenkins et al., 1994).
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Fig. 4. Alkalinity variation with flow for sub-catchment sampling sites in the Feugh.

After this initial period, stream water δ18O generally

reflected precipitation more directly. The small, peat-

dominated Brocky Burn shows the most marked response

to more depleted winter precipitation events with 3 particu-

larly 18O-depleted samples between January and March 2002

(Fig. 3). The first two of these occurred in January following

on from snow falls in the latter half of December. However,

the most 18O-depleted precipitation samples do not occur

until the more prolonged colder weather systems of Febru-

ary and March (Fig. 2). Stream water δ18O then exhibits

an increase through the remainder of March and then April.

Although precipitation was still 18O-depleted over this pe-

riod, it was not reflected in stream water δ18O due to the

rainfall totals being low and causing only small increases in

flow (Fig. 3). However, given the wet, cool conditions, soil

moisture deficits did not accumulate and stream water δ18O

during the summer months at Brocky Burn exhibits a rapid

response to more 18O-enriched summer precipitation. In par-

ticular, there are two periods of high flow in the summer at

the start of June and end of July (where alkalinity decreases

significantly), which result in sustained increases in stream

water δ18O (compared with downstream sites) over more sta-

ble base flow conditions for the intervening samples (Fig. 3).

The general seasonal pattern of stream water δ18O ob-

served at Brocky Burn is replicated at the increasing down-

stream scales of Charr, Bogendreip and Heugh Head, albeit

in a more damped manner (Fig. 3). The stream water δ18O

time series for the Water of Aven and the Water of Feugh
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Fig. 5. Mixing plots for stream water δ18O, showing seasonal and flow (alkalinity) related variation.

at Powlair, however, as well as being slightly more 18O-

depleted, are also notably less varied in terms of response

to short-term hydrological variation. The damped δ18O for

the Water of Aven initially appears surprising, given its rel-

atively high peat coverage (56% cf. Charr 66%: Tables 1

and 2). However, the extensive erosion of the blanket peat

in the headwaters of the Aven probably leads to more sig-

nificant recharge of groundwater and therefore longer flow

paths (Boorman et al., 1995; Soulsby et al., 2004). However,

it is also probable that this reflects the influence of the more

freely draining mineral soils that cover the steeper slopes of

the catchment as well as the significant alluvial deposits at

the base of the catchment as it emerges from its incised val-

ley. In contrast, Charr has only relatively confined valley

bottom alluvial deposits suggesting that there is more mix-

ing and greater storage in the Aven to dampen variation in
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Table 3. Precipitation and flow-weighted mean δ18O, mean modelled δ18O and amplitude, approximate mean residence times and estimated

groundwater flow contributions for sub-catchment sites in the Feugh (2001-02). Groundwater proportions based on annual two-component

mixing analysis using Gran alkalinity (see Soulsby et al., 2004).

Volume/Flow Weighted Mean Modelled Mean Amplitude Mean residence time ±95% Confidence Interval % Groundwater contribution

(‰) (‰) (‰) (months) (months) to annual flow

Precipitation −8.39 −8.39 1.36

1. Brocky Burn −8.48 −8.55 0.73 3.0 1.7 26.1

2. Charr −8.59 −8.60 0.39 6.5 4.1 38.4

3. Bogendreip −8.86 −8.82 0.40 6.3 4.1 36.6

4. Aven −9.08 −9.06 0.23 11.3 6.7 42.3

5. Powlair −9.15 −9.15 0.19 13.7 7.5 54.7

6. Heugh Head −8.61 −8.62 0.37 6.8 4.3 54.6

stream water δ18O. Previous studies using alkalinity-based

end member mixing to perform hydrograph separations in

the catchment have suggested this to be the case (Soulsby et

al., 2003, 2004). A similar influence is observed for the most

damped δ18O time series for the Water of Feugh at Powlair

(Fig. 3), given that this is the sub-catchment where the influ-

ence of freely draining humus iron podzols and valley bot-

tom alluvial aquifer deposits is most significant (Fig. 1, Ta-

ble 1). It is important to note that the term mixing is used

in this context to conceptually describe the various processes

of δ18O damping rather than implying the physical mixing

across flow lines in sub-surface flows.

These δ18O and alkalinity variations in stream water can

be viewed conceptually as the combination of two compo-

nents: a relatively stable base flow end member and a season-

ally variable storm flow end member. This conceptualisation

is consistent with the two-component end member mixing

previously used to assess the hydrology of the Feugh based

on alkalinity data alone (Soulsby et al., 2003, 2004). Fig-

ure 5 shows this relationship more clearly, presenting sea-

sonally differentiated δ18O-alkalinity mixing plots. As in

Fig. 3, alkalinity measurements are used to provide a more

direct indication of hydrological sources affecting measured

stream water δ18O. Theoretically the influence of seasonally

variable precipitation, but relatively evenly distributed rain-

fall amounts mean this should result in an approximately tri-

angular shaped plot of δ18O and alkalinity. This will reflect

a low alkalinity, seasonally variable storm flow end member

(with low δ18O during winter and higher δ18O during sum-

mer), which mixes with higher alkalinity base flow waters

with more stable, intermediate δ18O. At most sites this con-

ceptual structure is apparent, although there are significant

inter-site differences.

As expected, the most responsive site at Brocky Burn

shows the clearest seasonally differentiated δ18O variation

(Fig. 5). Sites where there is less distinction between sum-

mer and winter samples implies a greater mixing of source

waters and this is most evident for Powlair and the Aven

given their more damped δ18O variability observed in Fig. 3.

The expected downstream increase in the mixing of sources

with scale is apparent from Brocky Burn to Charr to Bo-

gendreip and Heugh Head (Fig. 5). Despite this, Heugh

Head displays considerable scatter due to the contrasting iso-

topic signature of sub-catchment drainage that it integrates.

These mixing plots also illustrate the degree to which sub-

catchment base flows (highest alkalinities) are constrained

in terms of δ18O variation. The least variable Powlair and

Aven sites unsurprisingly display the most constant δ18O

at lower flows, whereas the lowest flow (highest alkalinity)

samples for Brocky Burn exhibit notable differences. This

can probably be attributed to limited groundwater storage in

such a small headwater catchment, which contributes small

amount of groundwater that is more seasonally variable, and

readily influenced by soil water drainage than larger sub-

catchments where groundwater storage is more extensive and

well mixed. Base flow δ18O at Charr appears to be rea-

sonably well defined but variation increases downstream at

Bogendreip, and then further at Heugh Head, reflecting the

greater mix of isotopic signatures that it receives from the

three sub-basins.

4.3 Estimating sub-catchment mean residence time

The seasonal δ18O trends observed in precipitation and

stream water were used to estimate mean residence times

using periodic regression analysis to fit seasonal sine wave

models to annual δ18O time series (Fig. 6). Given the signif-

icant variation observed in the weekly precipitation samples,

it was necessary to use monthly volume weighted means

in order to represent the overall seasonal pattern more reli-

ably. Although the resulting modelled sine wave appears to

considerably under-represent the range of precipitation val-

ues, reference to Fig. 2 shows that most extreme precipita-

tion δ18O values were in small events. This use of weighted

monthly means has been used in other studies where high res-

olution sampling particularly following minor precipitation

events with extreme isotope signatures (i.e. those in April
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Fig. 6. Fitted annual regression models to δ18O for precipitation and stream water in the Feugh.
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Table 4. Pearson coefficients of correlation r between control-

ling catchment variables and both mean water residence times and

groundwater contribution.

Mean residence Groundwater

time r contribution r

Area – 0.66

Mean elevation −0.14 −0.65

Min elevation −0.56 −0.71

Max elevation 0.50 0.62

Mean slope 0.82 0.74

Max slope 0.67 0.81

Drainage density 0.59 0.84

Soils

Peat (Responsive soils) −0.72 −0.93

Iron Podzol/ Peaty Podzol 0.60 0.70

Alluvial / Humus Iron Podzol 0.68 0.91

Freely draining soils* 0.72 0.93

Land-use

Heather/Peatland −0.33 −0.71

Coniferous woodland 0.11 0.45

Grassland 0.45 0.89

Geology

Granite 0.07 −0.37

Alluvial 0.46 0.86

Groundwater contribution/ 0.71

Mean residence times

* Iron Podzol/Peaty Podzol and Alluvial/Humus Iron Podzol

2002), caused scatter around the seasonal trends in isotopic

composition which are more important when investigating

behaviour at the annual time scale (e.g. Darling and Talbot,

2003). Flow weighted monthly stream water mean δ18O

were also calculated for each site (Table 3), though these

were similar to the arithmetic mean values given in Table 2

and did not affect the modelled amplitude. For example at

Heugh Head the modelled amplitude only varied by 0.02‰.

The modelled curves, particularly for precipitation, simpli-

fies the patterns of variation evident in the data and this is

reflected in the strength of correlations between observed

and modelled δ18O for most sites (i.e. r2=<0.50). However,

the results showed approximately mass balance in terms of

weighted means and the fits were statistically robust (p<0.02

and generally <0.01), and the level of fit was generally com-

parable with results from similar studies (e.g. DeWalle et al.,

1997; McGuire et al., 2002; McGuire et al., 2005; Soulsby et

al., 2000, 2005).

In terms of stream water sampling sites, those with the

least variable δ18O stream water (the Aven and Powlair) are

those that are least well described by the seasonal sine wave

model (r2=<0.3; Fig. 6). In contrast, modelled δ18O for the

remaining four sites at Brocky Burn, Charr, Bogendreip and

Heugh Head show generally improved fits and larger δ18O

amplitude values. In line with the general annual variabil-

ity observed from Table 2, the significant downstream in-

crease in modelled δ18O annual amplitude from the head-

water scale of Brocky Burn (1.3 km2) to the sub-catchment

scale of Charr (42 km2) has the most significant impact on

modelled amplitudes (0.73‰to 0.39‰). However, at the base

of the catchment at Heugh Head, despite the much larger

catchment only a minimal further decrease in the amplitude

of modelled stream water δ18O is produced (0.37‰; Fig. 6).

The model described by Eq. (2) was used to translate the

results into estimates of mean stream water residence time

(Table 3). These also provide an indication of the degree of

mixing within each sub-catchment and thus offer a valuable

integrated assessment of the differences in the hydrological

functioning of the Feugh catchment. In the Water of Dye sub-

catchment, Brocky Burn has the shortest estimated residence

time (3 months) therefore highlights this overall effect. This

damping at Charr results in mean residence times increasing

(6.5 months), as the catchment size more than doubles at Bo-

gendreip similarity in annual δ18O variability results in the

similar residence times (6.3 months). Substantially longer

residence times were estimated for the Water of Aven and

Water of Feugh at Powlair (11.3 and 13.7 months). Despite

this, the mean residence time estimated for the catchment

outfall at Heugh Head (6.8 months) is virtually the same as

Charr and Bogendreip.

4.4 Influence of catchment characteristics

The relationships between estimated mean residence times

and catchment landscape characteristic were examined in a

more formal manner by correlation analysis (Table 4 and

Fig. 7). Sub-catchment soil cover had a dominant effect, with

percentage cover of responsive peat soils exhibiting a strong

negative correlation with mean residence time. Similarly, the

percentage coverage of more free draining podzolic and allu-

vial soils was positively correlated with mean residence time,

particularly when combined together as “free drained” soils

(Table 1). Mean residence time was also strongly correlated

(positively) with mean catchment slope. This obviously in-

fluences soil distribution with more freely draining podzols

being found on steeper slopes. Nevertheless, the relation-

ship is somewhat counter-intuitive as steeper slopes lead to

higher gravitational potential which often results in a nega-

tive correlation with mean residence times (McGuire et al.,

2005). However in the Feugh and other peat covered catch-

ments in the Scottish highlands (see Soulsby et al., 20041),

it seems that the most responsive peat soils are on the flatter

hilltops and the steeper slopes have soils that facilitate deeper

groundwater recharge.

This is reflected in the mean catchment residence times

being also strongly correlated with percentage groundwater

contributions to annual runoff in each sub-catchment (Ta-

ble 3) which were estimated from earlier work by Soulsby

et al. (2003). Unsurprisingly the percentage groundwater
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Fig. 7. Selected relationships between catchment characteristics and mean residence time and percentage groundwater contributions to flow.

contribution is also strongly correlated with soil cover and

hillslope gradient. Simply stated, higher peat coverage on

flatter catchment interfluves results in rapid hydrological re-

sponses to precipitation via overland flow or shallow subsur-

face storm flow, leading to reduced recharge, lower ground-

water contributions to baseflows and shorter residence times.

Higher coverage of freely draining podzols on steeper hill-

slopes or alluvium in valley bottom areas increases recharge,

produces higher groundwater contributions to annual flow

and longer residence times. It appears that landscape
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organisation and the combination of soil/topographic units in

different sub-catchments, rather than scale, has the strongest

influence on the hydrological characteristics of flow path par-

titioning and influencing mean residence times in the Feugh

catchment. It is also interesting that simple topographic mea-

sures (such as mean slope) can be good predictors of mean

residence time as topographic maps are readily available for

many ungauged basins whereas hydrometric data and soil

maps may not be.

5 Conclusions and implications

These results contribute to an improved conceptualisation of

catchment hydrology for the Feugh, previously based on geo-

chemical tracer analysis (Soulsby et al., 2003, 2004). Vari-

ation in stream water δ18O is generally consistent with rela-

tively simple two-component mixing, where longer residence

time groundwater sustains base flows and more recent, sea-

sonally variable precipitation in surface soil horizons that can

be translated to streams as overland flow or shallow sub-

surface storm flow (usually via macropores) which account

for the catchment storm flow response. Over the course of

the hydrological year, this mixing process resulted in a rea-

sonably well defined, seasonally evolving isotopic signature

that reflects important differences in sub-catchment hydro-

logical processes, and allows intra-catchment differences in

stream water residence times to be estimated.

The results provide interesting insights for current under-

standing on the scaling and integration of hydrological pro-

cesses in larger catchments. In particular, the results for the

largest scale at Heugh Head indicated that the hydrological

responsiveness of headwater peat soils (in the Water of Dye)

exert the dominant influence on the overall seasonal patterns

and residence times observed at the larger catchment scale,

despite significant downstream groundwater inputs and mix-

ing with more constant δ18O signatures in more groundwater

dominated sub-basin drainage. Thus, the results support both

theoretical (Haitjema, 1995) and empirical studies (McGuire

et al., 2005) that have hypothesized that catchment residence

times are not scale dependent. This also displays parallels

with recent findings from the similar sized Feshie catchment

in the Cairngorm Mountains of Scotland (Rodgers et al.,

2005; Soulsby et al., 20041). Residence times in the Feshie

ranged from 2–6 months in catchments dominated by respon-

sive soils, to 12–15 months in more groundwater dominated

catchments with extensive coverage of freely draining soils.

Mean residence time at the catchment outfall (230 km2) were

4–7 months, slightly shorter than the Heugh Head in the

Feugh catchment. This would appear to be consistent with

the higher precipitation levels in the Feshie and the more

mountainous terrain (with greater coverage of shallow, re-

sponsive alpine soils and bare bedrock).

The results from the Feugh also bear interesting compar-

ison with the findings of other tracer studies; though differ-

ent sampling strategies and analytical approaches mean that

such comparisons must be cautious. The flashy, responsive

nature of the Feugh to rainfall indicates the importance of

much shorter residence time waters in the catchment peaty

soils in headwaters like Brocky burn. Earlier isotope work

in the Allt a’ Mharcaidh in the Feshie catchment indicated

mean residence times of water in peaty soils were around

2 months (Soulsby et al., 2000). Similarly, others, such as

Robson et al. (1992) at Plynlimon in Wales and Nyberg et

al. (1999) in Sweden, have used tracer data to imply very

short residence times for responsive peaty soils in generat-

ing storm runoff. These studies showed that although tracer

breakthrough to streams could occur in a matter of minutes or

hours, catchment soils still stored significant tracer quantities

after a period of a few months.

The importance of groundwater contributions to flow

in mountainous environments has increasingly been high-

lighted in Scotland (e.g. Soulsby et al., 2004) and elsewhere.

The results of this study indicate baseflow mean residence

times of well over a year for parts of the Feugh catchment.

Similarly, Uhlenbrook et al. (2002) showed that shallow and

deep groundwater respectively accounted for 69% and 20%

of annual runoff in 40 km2 Brugga catchment in the Black

Forest of Germany. These shallow and deep groundwater

sources were each estimated as having mean residence times

in the ranges of 2–3 and 5–10 years. Similar residence times

have also been estimated in for baseflows, borehole waters

or springs in upland environments as different as Plynlimon,

Wales (Haria and Shand, 2004); Maimai in New Zealand

(McGlynn at al., 2003); pre-Alpine catchments in Switzer-

land (Vitvar and Balderer, 1997); the Bavarian Alps, Ger-

many (Maloszewski et al., 1983); in Japan (Asano et al.,

2002) and the Catskills, USA (Vitvar et al., 2002). Whilst

the mean residence times presented in this study do not give

direct groundwater residence times, earlier work by Soulsby

et al. (1999, 2000) in the Cairngorms estimated the mean res-

idence times for shallow and deeper groundwater sources at

2 and 3–5 years respectively. All these studies strongly sug-

gest the presence of long tails in residence time distributions

in such mountainous catchments (Kirchner et al., 2000).

Ultimately, it should be stressed that the residence time

estimates presented in this study are means and are specific

to the study year in question. In reality, catchment runoff is

composed of a much wider and more complex range of inter-

nal catchment residence time distributions that are currently

unknown (Kirchner et al., 2000, 2001). Future work in the

Feugh would therefore benefit from direct assessment of dif-

ferent groundwater and soil water stores that are likely to be

highly variable (Frederickson and Criss, 1999; Gonfiantini et

al., 1998). These could be assessed indirectly through more

intensive sampling of stream base flows or possibly using

other tracers such as tritium (cf. McGlynn et al., 2003) or

CFCs (cf. Uhlenbrook et al., 2002). Moreover, further in-

sights would be gained for improved spatial and temporal

resolution of precipitation and stream water samples, which
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is a key objective in future work. Another key objective is to

explore more fully the relationship between residence times

and catchment characteristics. The analysis presented in this

paper is merely a first step as it was limited by the resolu-

tion of digital topographic and soil maps available. More de-

tailed and sophisticated analysis is therefore planned which

will also be extended to include equivalent chemical and iso-

tope data from other study sites. It is encouraging that sim-

ple topographic measures (such as mean slope) can be good

predictors of mean residence time and this warrants further

investigation. Topographic maps are usually available for un-

gauged basins whereas hydrometric and isotope data and soil

maps may not be.

The results nonetheless highlight the pragmatic utility of

stream water oxygen isotope measurements as an analytical

tool in the study of mesoscale catchments given that they ef-

fectively integrate the influence of these complex catchment

heterogeneities as well as indicating the relative importance

of different sources in runoff production. This further sug-

gests that the potential of such an approach to improve cur-

rent understanding of scaling in catchment hydrological pro-

cesses remains largely underdeveloped (Brown et al., 1999;

Genereux and Hooper, 1998; McDonnell et al., 1999, Uh-

lenbrook et al., 2002). It is important, therefore, that tracer

studies such as these are continued in order to refine our un-

derstanding of flow paths and residence times, and to help

structure and validate more accurate hydrological models.
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