

Abstract— Path planning in dynamic environments with

moving obstacles is computationally complex since it requires

modeling time as an additional dimension. While in other

domains there are state dominance relationships that can

significantly reduce the complexity of the search, in dynamic

environments such relationships do not exist. This paper

presents a novel state dominance relationship tailored

specifically for dynamic environments, and presents a planner

that uses that property to plan paths over ten times faster than

without using state dominance.

I. INTRODUCTION

n many path planning domains it is possible to identify

states that cannot possibly contribute to the optimal

solution and can therefore be pruned from the search without

affecting the optimality of the solution. One such problem is

planning a path for a battery powered mobile robot where

we want to optimize a path that considers cost and battery

level. Because the available battery power is a finite

resource, we can say that a state si is always better than

another state sj at the same position, if it has more battery

power available. We say that state si dominates state sj.

This property, called state dominance [1] [2], can produce

significant reductions in the size of the search space, which

corresponds to significant reductions in space and time

complexity.

Domains with dynamic obstacles require modeling time as

an additional dimension, and are usually considered not to

have state dominance. Although time would seem to induce

a natural dominance relationship in which states with

smaller time would dominate states with higher time, in the

presence of dynamic obstacles this is no longer true.

Sometimes it is necessary to wait in place for a dynamic

obstacle to pass in order to arrive at the destination faster.

Recent results in path planning with safe intervals[3],

prove that when the cost function to be optimized is time, it is

possible to substitute intervals for time in the state space

without affecting the optimality of the result. A safe interval

Manuscript received September 16, 2011. This work was supported by

the U.S. Army Research Laboratory under the Robotics Collaborative
Technology Alliance program, Cooperative Agreement W911NF-10-2-
0016. The views and conclusions contained in this document do not
represent the official policies or endorsements of the U.S. Government.

J.P. Gonzalez is with the Autonomous Perception Research Lab, General
Dynamics Robotic Systems. Pittsburgh, PA 15221 USA (Phone 412-473-
2164; e-mail: jpgonzal@gdrs.com).

M. Likhachev and A. Dornbush are with the Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213 USA (e-mail:
maxim@cs.cmu.edu).

is a contiguous period of time for a given spatial

configuration during which there are no collisions, and it is

in collision one timestep prior and one timestep after the

period. Since there are usually fewer safe intervals than time

discretizations, the resulting algorithm is much faster than

explicitly modeling time as a dimension.

However, having time as the cost function to be optimized

requires a binary environment where cells are either free or

obstacles. This is a very limiting requirement that does not

apply to outdoor environments and other types of

environments where the cost function to be optimized is

better described by a greater range of cost values.

 In this paper we extend the results from planning with

safe intervals to derive a state dominance relationship for

dynamic environments that can be applied to continuous cost

domains. We also present a planner called GSIPP that uses

this dominance relationship to obtain up to ten times faster

planning times in dynamic environments than without using

state dominance.

To the best of our knowledge this is the first time a state

dominance relationship has been derived and used for path

planning in dynamic environments.

II. RELATED WORK

A. State Dominance

In path planning domains, state dominance has been used

to achieve significant improvements in memory

requirements and planning speed. The ISE framework [4]

uses state dominance to reduce the dimensionality of a graph

search problem by removing the cost function from the set

of state variables under certain conditions. DD* Lite [5] on

the other hand does not remove any dimensions but prunes

dominated states as it discovers them during the search.

Similarly, Gonzalez and Stentz [6][7] also use state

dominance to prune states within the context of planning

with uncertainty in position.

B. Planning in Dynamic Environments

Domains with dynamic obstacles require modeling time as

an additional dimension, which significantly increases

computational complexity.

Some approaches model dynamic obstacles as static

obstacles in order to avoid adding time as a dimension [8].

This is efficient but incomplete, as it can only model

dynamic obstacles as a snapshot in time, or as a larger

Using State Dominance for Path Planning in Dynamic Environments

with Moving Obstacles

Juan P. Gonzalez, Andrew Dornbush, and Maxim Likhachev

I

dynamic obstacle that includes a series of future positions.

Local approaches tend to be more accurate [9], as they

model time correctly. However, they are prone to local

minima and generally cannot solve problems that require

waiting.

Other approaches limit the environments to be represented

as binary cost values: either free space or obstacles. Binary

environments allow using roadmaps and sampling based

planners to speed up planning [10][11]. Safe Interval Path

Planning (SIPP)[3] also exploits the properties of binary

environments to compress the dimensionality of time-based

path planning when the objective function to be optimized is

time. This approach produces very quickly paths of higher

quality than most roadmap-based or sampling-based

approaches. Planning in binary environments, however, has

significant limitations. In many domains it is important to

consider a range of costs that represents traversal cost, risk,

fuel consumption, etc. Binary environments are unable to

model such cost functions.

When planning with continuous cost functions, existing

approaches have to plan in the full state space. State

dominance would provide much needed reduction in the size

of the search space, but dynamic environments are usually

considered not to have state dominance relationships.

Although time would seem to induce a natural dominance

relationship in which states with smaller time would

dominate states with higher time, in the presence of dynamic

obstacles this is no longer true. Sometimes it is necessary to

wait in place for a dynamic obstacle to pass in order to arrive

at the destination faster.

III. GENERALIZED SAFE INTERVAL PATH PLANNING

(GSIPP)

A. Safe Interval Path Planning (SIPP)

Recently, Phillips and Likhachev introduced SIPP[3], a

planner that uses safe intervals to compress the

dimensionality of time-based path planning when the

objective function to be optimized is time. They define a

safe interval as a contiguous period of time for a

configuration, during which there are no collisions and it is

in collision one timestep prior and one timestep after the

period. The obvious exception to this is that the last safe

interval for a configuration may go until infinity, if a

dynamic obstacle never again is predicted to pass through

this configuration.

SIPP assumes that the cost function to be optimized is the

time to reach the goal. Under this assumption, they prove

that arriving at a state at the earliest possible time within a

safe interval maintains the optimality and completeness of

the planner. SIPP, however cannot maintain these guarantees

if the cost function is not time, as is usually the case in non-

binary environments where different cost values are used to

represent traversal cost, fuel spent, or other non-binary

functions.

SIPP’s key insight is the realization that arriving at a state

at the earliest possible time within a safe interval maintains

the optimality and completeness of the planner. SIPP uses

this property of the search space to prune states that are

dominated and to remove intermediate wait actions. In this

paper we introduce Generalized Safe Interval Path Planning

(GSIPP), which extends SIPP through the following changes

in order to guarantee optimal planning in non-binary

environments.

B. State Dominance for Dynamic Environments Using

Safe Intervals

Formally, given two states in a search algorithm, si and sj,

a dominance relation ⊵ is defined as a binary relation such

that
i j
s s⊵ , that is, si dominates sj , implies that sj cannot be

part of a solution better than the best solution obtainable

from si [2]. Dominated states may be deleted without

expansion in the search, thus eliminating entire branches of

the search tree.

Algorithms based on dynamic programming such as A*

apply state dominance to states with the same state-space

coordinates, by only keeping the best path from the start to

any given state. If a state
i
s can be reached via two paths of

total cost from the start ()
i

g s and '()
i

g s and () '()
i i

g s g s≤ ,

then the path with cost ()
i

g s dominates the one with cost

'()
i

g s and the latter path is eliminated from the search.

Some domains, however, have stronger types of state

dominance where two states with different state-space

coordinates can have a dominance relationship.

We would like to derive a dominance relationship

between two states
1 2

(,) (, ,... ,)
i i n i
s t x x x t= =X

and

1 2
(,) (, ,... ,)

j j n j
s t x x x t= =X that share the same spatial

location
1 2

(, ,...)
n

x x x=X but have different time

coordinates. SIPP implicitly uses the relationship

i j i j
s s t t↔ <⊵ (1)

which only holds when the objective function to be

optimized is time ((,) , ()
i j j i

C s s t t g s t= − =) and there are

wait actions available at any state. We define a more

general, non-binary transition cost

(,) (,) ()
i j s i j t j i

C s s C C t t= + −X X (2)

where Cs is the transition cost due to the static part of the

environment, and Ct is the cost of associated with the time

extent of the transition. We extend the dominance

relationship from SIPP to include this general cost function

as follows.

 () ()
i j i t j i j i j
s s g s C t t g s t t↔ + (−) ≤ ∧ <⊵ (3)

where g(s) is the cost of the lowest cost path from the start to

state s and ()
t j i

C t t− is the cost to wait from ti to tj at state si

(Figure 1). This relationship implies that
j
s is reachable

from
i
s through a wait of j i

t t− and that the total cost of

reaching
j
s through

i
s (() ()

i t j i
g s C t t+ −) is less than

()
j

g s .

In dynamic environments with moving obstacles we

cannot guarantee that
j
s

.
is reachable from

i
s as it is

possible that waiting in place can lead to a collision.

The safe intervals introduced in SIPP decompose the

space into collision free regions, such that if a safe interval k

at configuration
1 2
, ,...,

n
x x x

spans from time

mink
t to time

max

,

k
t then all times from

mink
t to

maxk
t are guaranteed to be

collision free. Taking advantage of this property, it is

possible to guarantee reachability as long as this is limited to

states within the same safe interval.

Additionally, we need to show that no optimal path from

start to goal would require
j
s (Figure 1). The total cost of

reaching state
l
s through state j

s is

 '() () (,).
l j j l

g s g s C s s= + (4)

If we remove
j
s from the search,

l
s can only be reached

through
k
s . The cost of reaching

l
s through

k
s is

() () (,)

() () (,) (,)

l k k l

l i i k k l

g s g s C s s

g s g s C s s C s s

= +

= + +

 (5)

We can guarantee that no optimal path would require
j
s if

() '()

() (,) (,) () (,)

l l

i i k k l j j l

g s g s

g s C s s C s s g s C s s

≤

+ + ≤ +
 (6)

for any
i
s , j

s ,
k
s and

l
s . Using the cost decomposition

from (2), (6) becomes

() (,) () () (,)

() ()

i s i k t l k j s j l

i t j i j

g s C C t t g s C

g s C t t g s

+ + − ≤ +

+ (−) ≤

X X X X
 (7)

since
i j
=X X ,

k l
=X X and)

j i l k
t t t t(−) = (− , which

shows that the dominance relationship from (3) is valid

within a safe interval.

Figure 1. Graphic to illustrate the requirements for state dominance in

dynamic environments.

C. Pruning Dominated States

SIPP prunes all dominated states from each configuration

1 2
(, ,...)

n
x x x within each safe interval k=[

min
k
t ,

max
k
t]

according to (1). This leaves only one time value t within

each interval. Because of this, SIPP drops the time

dimension from the state space, and instead it uses a state

space defined by
1 2

(, , ... ,)
i n
s x x x k= .

For non-binary environments, we use the state dominance

relationship from (3). However, this relationship now

resembles a partial order, instead of a total order. While in

binary worlds all states are comparable (either state si

dominates sj or state sj dominates si), in non-binary worlds

often they will not be comparable (neither state si dominates

sj nor state sj dominates si). The result of this is that for a

given configuration
1 2

(, ,...)
n

x x x within a safe interval k,

there can be multiples states, all with different t. For this

reason, we cannot drop time as a dimension and we need to

define states as
1 2

(, ,... ,)
i n
s x x x t= . We do not explicitly

include the intervals as part of the state space.

D. Planning with Generalized Safe Intervals

We use regular A* search (Figure 2), except in the way in

which successors are calculated (line 06), and in the state

dominance function used (Dominated, Figure 3). The search

starts with the start state, and GetSuccessors (Figure 4)

operates as in regular A* search until there is more than one

safe interval to consider. M(s) (Figure 4, line 02) returns the

motions that can be performed from state s. These motions

indicate how they change the spatial variables of a state and

the time that it takes to execute them (lines 03 and 04).

When more than one safe interval is available

GetSuccessors considers all possible safe intervals to

transition through wait and move actions (lines 07-11). This

means that for each safe interval k = [startTime, endTime],

at each successor, we wait the minimal amount of time

possible to transition to it and arrive safely. start_t is the

earliest possible time to arrive at a successor state s’ and

end_t is the latest possible time to safely arrive at a

successor state s’. end_t corresponds to waiting until the end

of the safe interval of s and then transition to the successor

state s’. Notice that only transitions from [start_t, end_t] that

overlap with [startTime, endTime] are safe (line 08).

01 g(sstart) = 0 ; OPEN =∅ ; CLOSED =∅

02 insert sstart into OPEN with f(sstart) = h(sstart)

03 while sgoal is not expanded

04 remove s with the smallest f value from OPEN

05 insert s into CLOSED

06 successors = GetSuccessors(s)

07 for each s’ in successors

08 if s’ was not visited before

09 f(s’) = g(s’) = �

10 if g(s’) > g(s) + c(s,s’)

11 f(s’) = g(s) + c(s,s’)

12 h(s’) = g(s’) + h(s’)

13 if �Dominated(s’)

14 insert s’ into OPEN with f(s’)

Figure 2. Algorithm 1: A* with generalized safe intervals

Procedure: Dominated(s)

01 //
1 2

(, , ...,),
n

s x x x t=

02 for each
1 2

' (' , ' , ..., '), '
n

s x x x OPEN CLOSEDt= ∈ ∪ such that

03
1 2 21
' ...' '

n n
x xx x x x t t′∧ ∧ ∧= = = < ∧

04

(') ()interval s interval s=

05 if (') (') ()
t

g s C t t g s+ − ≤

06 return true

07 return false

Figure 3. Dominated

t

x

si

sj
sk

sl

∆t

∆t

position, meters

1

2

3

20 40 60 80 10

10

20

30

40

50

60

70

80

90

100

Procedure: GetSuccessors(s)

01 successors = ∅

02 for each m in M(s)

03
1 2

(' , ' , ..., ')
n

x x x = motion m applied to s

04 m_time = time to execute m

05 start_ t = time(s) + m_time

06 end_t = endTime(interval(s)) + m_time

07 for each safe interval k in
1 2

(' , ' , ..., ')
n

x x x

08 if (startTime(k) ≤ end_t ∧ endTime(k) ≥ start_t)

09 t' = max(start_t, endTime(k))

10 s’ =
1 2

(' , ' , ..., '), '
n

x x x t

11 insert s’ into succesors

12 return successors;

Figure 4. GetSuccesors

The search then progresses over all the valid safe

intervals. Within each safe interval the search operates as

regular A* search with state dominance, but when different

safe intervals become available, transitions to each one of

those intervals are again added as possible successors.

E. Theoretical Analysis

As argued in section III B, a state s' that fails the test in

line 13 (Figure 2) is dominated by some state s and therefore

it can be shown that state s' cannot possibly lie on an optimal

path from the start to the goal. The following theorem puts it

formally.

Theorem 1. If Dominated(s') in line 13 (Figure 2) returns

true then pruning state s' is guaranteed to preserve at least

one optimal path from sstart to sgoal.

Theorem 2. When the generalized safe interval planner

expands a state in the goal configuration, it has found an

optimal collision-free path to the goal.

From Theorem 1, it follows that the states that are actually

being expanded by the search include all the states necessary

to find an optimal path. In optimal A*, when a state is

expanded, its g-value is minimal. Therefore when our

algorithm expands a state in the goal configuration, its g-

value will be minimal. We also know that all states exist

within safe intervals, which makes the entire path collision-

free, from the start state to the goal state.

IV. EXAMPLE

The example in Figure 5 illustrates the operation of the

algorithm and the effect of using state dominance. The robot

is trying to move from left to right, while three dynamic

obstacles will cross its path. Obstacle #1 (bottom) moves up,

while obstacles #2 and #3 move down.

To solve this problem, a naïve planner in (x,y,t) requires a

wait action besides the regular successors in x,y such that

 (', ', ') (, ,).x y t x y t t= + ∆ (8)

Figure 5. Sample environment showing dynamic obstacles and resulting

path when using state dominance.

Figure 6 shows the states expanded for a slice of the state

space at y=50. Notice the thick volume of states that are

considered at each x coordinate. Also notice that in order to

get past the intersection and avoid collisions, a wait is

necessary. Since all waits of equal duration have the same

cost, the planner chooses to wait at the start of the path.

Figure 6. States expanded without state dominance (naïve planner in x,y,t)

A common approach to avoid the computational

complexity of modeling time as an additional dimension is

to model dynamic obstacles as larger static obstacles. Each

obstacle is usually modeled as occupying not only its current

location, but also all positions from t to t + ∆t seconds in the

future. This is efficient but incomplete, as it cannot model

wait states and other complex interactions. Figure 7 shows

the resulting path obtained after modeling the dynamic

obstacles from Figure 5 as larger obstacles, and not using

time as a dimension.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

x, meters

t,
 s

e
c
o
n
d
s

Dynamic

Obstacles
Wait

25.5 s

Start Goal

1

2

3

Wait
25.5 s

States expanded

1

2

3

Dynamic

Obstacles

Optimal path

position, meters

1

2

3

20 40 60

10

20

30

40

50

60

70

80

90

100

Figure 7. Solution found by modeling dynamic obstac

and not modeling time as an additional dimension.

GSIPP has a computational complexity

that of a naïve (x,y,t) planner, yet preserve

models time as a full dimension. Figure 8

expanded for the same slice of the state spa

when using state dominance and safe inter

when using safe intervals, the only wait

place are at the boundary of a safe interv

wait needed to clear the intersection now

intersection. The duration of the wait is the

and so is the total cost of the path.

In general, only a thin slice is needed

interval. However, this is not always the ca

the dynamic obstacles there are two thin s

moving towards the goal. The top one is

solution that ultimately leads to the goal. T

another solution that has shorter time but hig

Figure 8. States expanded with state dominance and saf

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

x, meters

t,
 s

e
c
o
n
d
s

Dyn

Obsta
Enlarged

obstacles

Start

3

1

2

Wait

25.5 s

1

2

3

Safe

intervals

Optimal path

80 10

cles as static obstacles

 much lower than

es optimality and

 shows the states

ace from Figure 6

rvals. Notice that

 actions that take

val, therefore the

 happens near the

e same as before,

 within each safe

ase. After passing

slices of solutions

s the lowest cost

The bottom one is

gher cost.

afe intervals (GSIPP).

V. EXPERIMENTAL

In order to evaluate the exper

GSIPP we performed two sets of si

experiments in a segbot running RO

A. Performance with respect to di

sizes

In order to evaluate performance

of the environment we generated se

different random seeds and sizes v

500x500 cells. The density of mov

such a way that the number of mov

200. The start location was fixed n

and the goal location was fixed ne

50% of the dynamic obstacles were

were 5x5 cells big. Dynamic obst

locations and followed paths with

heading, with the small movers chan

time steps, following a uniform dis

degrees; and the large movers

distribution from -10 to 10 degree

trials evaluated was 500. Figure

environments.

Figure 9.Sample environment with dynamic

as well as the resulting path.

We compared the performance o

with GSIPP running in (x,y,t), with

to states at the same (x,y) location

results of these experiments. The

magnitude improvement in the

independently of the size of the wo

shows over an order of magnitude im

decrease as the size of the envir

increase is caused by the overhead i

dominance, which increases w

environment.

B. Performance with respect to nu

In order to evaluate performance

we again generated several fractal wo

80 90 100

Dynamic

stacles

Goal

Path with
higher cost

but shorter

time

Safe

intervals

 RESULTS

rimental performance of

imulations and one set of

OS.

ifferent environment

e with respect to the size

everal fractal worlds with

varying from 100x100 to

vers was kept constant in

vers at 500x500 cells was

near the lower left corner

ear the top right corner.

re 1x1 cell big, and 50%

tacles started at random

th random variations in

nging heading every four

stribution from -45 to 45

s following a uniform

es. The total number of

 9 shows one of these

 obstacles and their trajectories,

of a naïve (x,y,t) planner

 state dominance applied

n. Figure 10 shows the

ere is over an order of

number of expansions,

orld. Processing time also

mprovement with a slight

ironment increases. This

 in the calculation of state

with the size of the

umber of movers

 with number of movers,

 worlds of 500x500 cells,

with varying number of dynamic obstacles from 0 to 600.

The distribution and motion of movers follow the same

criteria as in the previous section. The total number of trials

evaluated was 300.

We compared the performance of the same planners, a

naïve (x,y,t) planner with GSIPP running in (x,y,t), with state

dominance applied to states at the same (x,y) location. Figure

11 shows the results of these experiments. There is over an

order of magnitude improvement in the number of

expansions, with a slight decrease as the number of dynamic

obstacles increases. The planning time shows an

improvement of about one order of magnitude, but there is a

greater difference between the improvement without movers

and the improvement with 600 movers. Most of this

difference is caused by the overhead in calculating state

dominance.

C. Tests on a Segbot

We implemented GSIPP as a planner in the

sbpl_dynamic_env stack in ROS. This stack contains a

global planner that plugs in to ROS’ navigation stack. The

navigation stack provides the planner with the robot’s pose

and a map of the environment and expects a path in return.

We ran on a Segbot at the Search Based Planning lab at

Carnegie Mellon University. This robot is a Segway base

with a Hokuyo lidar, using monte-carlo localization for

position estimation. We used the tracker node from SIPP,

which uses the lidar to predict the trajectory of dynamic

obstacles. The tracker clusters lidar points from each scan

and then matches the clusters from this scan to clusters from

the last iteration. It then uses a linear regression fit to predict

the velocity vector of the dynamic obstacle, and this vector

is used to predict the future position of the obstacle.

The planner implemented uses a lattice in (x,y,θ, t) , and

we apply time-based state dominance to states with the same

(x,y,θ) coordinates.

We use ROS’ costmap_2d package to generate obstacle

expansions and an exponentially decaying buffer around

obstacles. We also penalize backward motions by applying a

higher cost with respect to forward motion. Both of these

options are possible because of the ability of GSIPP to

optimize non-binary cost functions. Figure 12 shows the cost

map for one of the experiments, in which the robot is

moving from left to right in a narrow corridor and detects a

dynamic obstacle coming towards it. GSIPP plans a path that

turns to the left and waits for 5 seconds for the dynamic

obstacle to pass. The planner was able to find a solution in

less than 1 second on each cycle, with a maximum planning

time of 0.9 seconds. Figure 13 shows a succession of

snapshots from rviz and from the accompanying video for

this paper.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a state dominance relationship that uses

safe intervals and can be used for continuous-cost dynamic

environments. We also introduced a planner that uses this

dominance relationship to obtain about an order of

magnitude fewer expansions and faster planning times in

dynamic environments than without using state dominance.

To the best of our knowledge this is the first time a state

dominance relationship has been derived and used for path

Figure 10. Expansions (top) and planning time (bottom) in logarithmic

scale for the naïve (x,y,t) planner (dashed line) and GSIPP (solid line), for

various world sizes in a fractal environment with constant dynamic

obstacle density. Bars indicate 95% confidence intervals.

Figure 11. Expansions (top) and planning time (bottom) in logarithmic

scale for the naïve (x,y,t) planner (dashed line) and GSIPP (solid line) for

different number of dynamic obstacles in a 500x500 fractal

environment.Bars indicate 95% confidence intervals.

50 100 150 200 250 300 350 400 450 500 550
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

world size

lo
g
1
0
(e
x
p
a
n
s
io
n
s
)

50 100 150 200 250 300 350 400 450 500 550
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

world size

lo
g
1
0
(p

la
n
n
in

g
 t

im
e
,

s
)

-100 0 100 200 300 400 500 600 700
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

number of dynamic obstacles

lo
g
1
0
(e
x
p
a
n
s
io
n
s
)

-100 0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

number of dynamic obstacles

lo
g
1
0
(p

la
n
n
in

g
 t

im
e
,

s
)

planning in dynamic environments.

In the near future we would like to convert the planner

into an anytime planner for faster performance in time

critical applications. We also would like to perform further

experiments in different robotic platforms and in outdoor

environments. We would also like to evaluate the results of

using this form of state dominance to planning domains with

higher dimensions.

ACKNOWLEDGMENT

We would like to thank Michael Phillips for making

available the source code of his implementation of SIPP,

and for his help in setting up our planner to run within ROS.

REFERENCES

[1] T. Fujino and H. Fujiwara, “An efficient test generation algorithm
based on search state dominance,” in Fault-Tolerant Computing,

1992. FTCS-22. Digest of Papers., Twenty-Second International

Symposium on, jul 1992, pp. 246 –253.
[2] E. Horowitz and S. Sahni, “Fundamentals of computer algorithms,”

1978.

[3] M. Phillips and M. Likhachev, “Sipp: Safe interval path planning for
dynamic environments,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2011.

[4] P. Tompkins, A. Stentz, and D. Wettergreen, “Mission-level path
planning and re-planning for rover exploration,” Robotics and

Autonomous Systems, Intelligent Autonomous Systems, vol. 54, no. 1,

pp. 174 – 183, February 2006.
[5] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, “Dd* lite: Efficient

incremental search with state dominance,” in Twenty-First National

Conference on Artificial Intelligence (AAAI-06), July 2006, pp. 1032–
1038.

[6] J. P. Gonzalez and A. Stentz, “Using linear landmarks for path

planning with uncertainty in outdoor environments,” in Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International

Conference on, 2009, pp. 1203 –1210.
[7] ——, “Planning with uncertainty in position: An optimal and efficient

planner,” in Proceedings of the IEEE International Conference on

Intelligent Robots and Systems (IROS ’05), August 2005.
[8] M. Likhachev and D. Ferguson, “Planning long dynamically feasible

maneuvers for autonomous vehicles,” Int. J. Rob. Res., vol. 28, pp.

933–945, August 2009. [Online]. Available: http://portal.acm.org/-
citation.cfm?id=1577179.1577184

[9] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach

to collision avoidance,” Robotics & Automation Magazine, IEEE,
vol. 4, no. 1, pp. 23–33, 1997.

[10] J. Van Den Berg, D. Ferguson, and J. Kuffner, “Anytime path

planning and replanning in dynamic environments,” in Robotics and

Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International

Conference on. IEEE, pp. 2366–2371.
[11] J. Van den Berg and M. Overmars, “Roadmap-based motion planning

in dynamic environments,” Robotics, IEEE Transactions on, vol. 21,

no. 5, pp. 885–897, 2005.

Figure 12. Cost function generated by costmap_2d and used by GSIPP to

calculate optimal paths. The yellow circles are dynamic obstacles detected.

Light gray areas are low cost and darker gray areas are higher cost. Green
areas non-traversable (expanded obstacles). The blue (solid) line shows the

path found by GSIPP

Figure 13.Succession of events of a GSIPP run in ROS. The robot detects a

moving obstacle (red circles indicate present and projected path). GSIPP
plans a path that avoids it by getting out of the way and waiting for the

dynamic obstacle to pass. After the dynamic obstacle has passed, the robot

continues its trajectory to the goal.

Wait

5 s

Dynamic
Obstacle

