
  

 

  

Abstract— Path planning in dynamic environments with 

moving obstacles is computationally complex since it requires 

modeling time as an additional dimension. While in other 

domains there are state dominance relationships that can 

significantly reduce the complexity of the search, in dynamic 

environments such relationships do not exist. This paper 

presents a novel state dominance relationship tailored 

specifically for dynamic environments, and presents a planner 

that uses that property to plan paths over ten times faster than 

without using state dominance.  

I. INTRODUCTION 

n many path planning domains it is possible to identify 

states that cannot possibly contribute to the optimal 

solution and can therefore be pruned from the search without 

affecting the optimality of the solution. One such problem is 

planning a path for a battery powered mobile robot where 

we want to optimize a path that considers cost and battery 

level. Because the available battery power is a finite 

resource, we can say that a state si is always better than 

another state sj at the same position, if it has more battery 

power available. We say that state si dominates state sj. 

This property, called state dominance [1] [2], can produce 

significant reductions in the size of the search space, which 

corresponds to significant reductions in space and time 

complexity. 

Domains with dynamic obstacles require modeling time as 

an additional dimension, and are usually considered not to 

have state dominance. Although time would seem to induce 

a natural dominance relationship in which states with 

smaller time would dominate states with higher time, in the 

presence of dynamic obstacles this is no longer true. 

Sometimes it is necessary to wait in place for a dynamic 

obstacle to pass in order to arrive at the destination faster. 

Recent results in path planning with safe intervals[3],   

prove that when the cost function to be optimized is time, it is 

possible to substitute intervals for time in the state space 

without affecting the optimality of the result. A safe interval 
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is a contiguous period of time for a given spatial 

configuration during which there are no collisions, and it is 

in collision one timestep prior and one timestep after the 

period. Since there are usually fewer safe intervals than time 

discretizations, the resulting algorithm is much faster than 

explicitly modeling time as a dimension.  

However, having time as the cost function to be optimized 

requires a binary environment where cells are either free or 

obstacles. This is a very limiting requirement that does not 

apply to outdoor environments and other types of 

environments where the cost function to be optimized is 

better described by a greater range of cost values. 

 In this paper we extend the results from planning with 

safe intervals to derive a state dominance relationship for 

dynamic environments that can be applied to continuous cost 

domains. We also present a planner called GSIPP that uses 

this dominance relationship to obtain up to ten times faster 

planning times in dynamic environments than without using 

state dominance.       

To the best of our knowledge this is the first time a state 

dominance relationship has been derived and used for path 

planning in dynamic environments.  

II. RELATED WORK 

A. State Dominance 

In path planning domains, state dominance has been used 

to achieve significant improvements in memory 

requirements and planning speed. The ISE framework [4] 

uses state dominance to reduce the dimensionality of a graph 

search problem by removing the cost function from the set 

of state variables under certain conditions. DD* Lite [5] on 

the other hand does not remove any dimensions but prunes 

dominated states as it discovers them during the search. 

Similarly, Gonzalez and Stentz [6][7] also use state 

dominance to prune states within the context of planning 

with uncertainty in position.  

B. Planning in Dynamic Environments 

Domains with dynamic obstacles require modeling time as 

an additional dimension, which significantly increases 

computational complexity.  

Some approaches model dynamic obstacles as static 

obstacles in order to avoid adding time as a dimension [8]. 

This is efficient but incomplete, as it can only model 

dynamic obstacles as a snapshot in time, or as a larger 
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dynamic obstacle that includes a series of future positions.  

Local approaches tend to be more accurate [9], as they 

model time correctly. However, they are prone to local 

minima and generally cannot solve problems that require 

waiting.  

Other approaches limit the environments to be represented 

as binary cost values: either free space or obstacles. Binary 

environments allow using roadmaps and sampling based 

planners to speed up planning [10][11]. Safe Interval Path 

Planning (SIPP)[3] also exploits the properties of binary 

environments to compress the dimensionality of time-based 

path planning when the objective function to be optimized is 

time. This approach produces very quickly paths of higher 

quality than most roadmap-based or sampling-based 

approaches. Planning in binary environments, however, has 

significant limitations. In many domains it is important to 

consider a range of costs that represents traversal cost, risk, 

fuel consumption, etc. Binary environments are unable to 

model such cost functions. 

When planning with continuous cost functions, existing 

approaches have to plan in the full state space. State 

dominance would provide much needed reduction in the size 

of the search space, but dynamic environments are usually 

considered not to have state dominance relationships. 

Although time would seem to induce a natural dominance 

relationship in which states with smaller time would 

dominate states with higher time, in the presence of dynamic 

obstacles this is no longer true. Sometimes it is necessary to 

wait in place for a dynamic obstacle to pass in order to arrive 

at the destination faster. 

III. GENERALIZED SAFE INTERVAL PATH PLANNING 

(GSIPP) 

A. Safe Interval Path Planning (SIPP) 

Recently, Phillips and Likhachev introduced SIPP[3], a 

planner that uses safe intervals to compress the 

dimensionality of time-based path planning when the 

objective function to be optimized is time. They define a 

safe interval as a contiguous period of time for a 

configuration, during which there are no collisions and it is 

in collision one timestep prior and one timestep after the 

period. The obvious exception to this is that the last safe 

interval for a configuration may go until infinity, if a 

dynamic obstacle never again is predicted to pass through 

this configuration.  

SIPP assumes that the cost function to be optimized is the 

time to reach the goal. Under this assumption, they prove 

that arriving at a state at the earliest possible time within a 

safe interval maintains the optimality and completeness of 

the planner. SIPP, however cannot maintain these guarantees 

if the cost function is not time, as is usually the case in non-

binary environments where different cost values are used to 

represent traversal cost, fuel spent, or other non-binary 

functions.  

SIPP’s key insight is the realization that arriving at a state 

at the earliest possible time within a safe interval maintains 

the optimality and completeness of the planner. SIPP uses 

this property of the search space to prune states that are 

dominated and to remove intermediate wait actions. In this 

paper we introduce Generalized Safe Interval Path Planning 

(GSIPP), which extends SIPP through the following changes 

in order to guarantee optimal planning in non-binary 

environments. 

B. State Dominance for Dynamic Environments Using 

Safe Intervals 

Formally, given two states in a search algorithm, si and sj, 

a dominance relation ⊵  is defined as a binary relation such 

that 
i j
s s⊵ , that is, si dominates sj , implies that sj cannot be 

part of a solution better than the best solution obtainable 

from si [2]. Dominated states may be deleted without 

expansion in the search, thus eliminating entire branches of 

the search tree. 

Algorithms based on dynamic programming such as A* 

apply state dominance to states with the same state-space 

coordinates, by only keeping the best path from the start to 

any given state. If a state 
i
s can be reached via two paths of 

total cost from the start ( )
i

g s and '( )
i

g s  and ( ) '( )
i i

g s g s≤ , 

then the path with cost ( )
i

g s  dominates the one with cost 

'( )
i

g s and the latter path is eliminated from the search.  

Some domains, however, have stronger types of state 

dominance where two states with different state-space 

coordinates can have a dominance relationship.  

We would like to derive a dominance relationship 

between two states 
1 2

( , ) ( , ,... , )
i i n i
s t x x x t= =X

 
and 

1 2
( , ) ( , ,... , )

j j n j
s t x x x t= =X  that share the same spatial 

location 
1 2

( , ,... )
n

x x x=X  but have different time 

coordinates. SIPP implicitly uses the relationship 

 
i j i j
s s t t↔ <⊵  (1) 

which only holds when the objective function to be 

optimized is time ( ( , ) , ( )
i j j i

C s s t t g s t= − = ) and there are 

wait actions available at any state. We define a more 

general, non-binary transition cost  

 

( , ) ( , ) ( )
i j s i j t j i

C s s C C t t= + −X X  (2) 

where Cs is the transition cost due to the static part of the 

environment, and Ct  is the cost of associated with the time 

extent of the transition. We extend the dominance 

relationship from SIPP to include this general cost function 

as follows. 

   ( ) ( )
i j i t j i j i j
s s g s C t t g s t t↔ + ( − ) ≤ ∧ <⊵  (3) 

where g(s) is the cost of the lowest cost path from the start to 

state s and ( )
t j i

C t t− is the cost to wait from ti to tj at state si 

(Figure 1). This relationship implies that 
j
s is reachable 

from 
i
s  through a wait of  j i

t t−  and that the total cost of 

reaching 
j
s  through 

i
s  ( ( ) ( )

i t j i
g s C t t+ − ) is less than 

( )
j

g s . 



  

In dynamic environments with moving obstacles we 

cannot guarantee that 
j
s

.
is reachable from 

i
s  as it is 

possible that waiting in place can lead to a collision.  

The safe intervals introduced in SIPP decompose the 

space into collision free regions, such that if a safe interval k 

at configuration 
1 2
, ,...,

n
x x x

 
spans from time 

mink
t to time 

max

,

k
t  then all times from 

mink
t to 

maxk
t are guaranteed to be 

collision free. Taking advantage of this property, it is 

possible to guarantee reachability as long as this is limited to 

states within the same safe interval. 

Additionally, we need to show that no optimal path from 

start to goal would require 
j
s (Figure 1). The total cost of 

reaching state 
l
s through state j

s  is  

 '( ) ( ) ( , ).
l j j l

g s g s C s s= +  (4) 

If we remove 
j
s  from the search, 

l
s can only be reached 

through 
k
s . The cost of reaching 

l
s through 

k
s  is 

 
( ) ( ) ( , )

( ) ( ) ( , ) ( , )

l k k l
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g s g s C s s C s s

= +
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We can guarantee that no optimal path would require 
j
s if 
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for any 
i
s , j

s , 
k
s  and 

l
s . Using the cost decomposition 

from (2), (6) becomes 
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since 
i j
=X X , 

k l
=X X and )

j i l k
t t t t( − ) = ( − , which 

shows that the dominance relationship from (3) is valid 

within a safe interval. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphic to illustrate the requirements for state dominance in 

dynamic environments. 

C. Pruning Dominated States 

SIPP prunes all dominated states from each configuration

1 2
( , ,... )

n
x x x  within each safe interval k=[

min
k
t ,

max
k
t ] 

according to (1). This leaves only one time value t within 

each interval. Because of this, SIPP drops the time 

dimension from the state space, and instead it uses a state 

space defined by 
1 2

( , , ... , )
i n
s x x x k= .  

For non-binary environments, we use the state dominance 

relationship from (3). However, this relationship now 

resembles a partial order, instead of a total order. While in 

binary worlds all states are comparable (either state  si 

dominates sj or state sj dominates  si), in non-binary worlds 

often they will not be comparable (neither state  si dominates 

sj nor state sj dominates  si). The result of this is that for a 

given configuration 
1 2

( , ,... )
n

x x x within a safe interval k, 

there can be multiples states, all with different t. For this 

reason, we cannot drop time as a dimension and we need to 

define states as 
1 2

( , ,... , )
i n
s x x x t= . We do not explicitly 

include the intervals as part of the state space. 

D. Planning with Generalized Safe Intervals 

We use regular A* search (Figure 2), except in the way in 

which successors are calculated (line 06), and in the state 

dominance function used (Dominated, Figure 3). The search 

starts with the start state, and GetSuccessors (Figure 4) 

operates as in regular A* search until there is more than one 

safe interval to consider. M(s) (Figure 4, line 02) returns the 

motions that can be performed from state s. These motions 

indicate how they change the spatial variables of a state and 

the time that it takes to execute them (lines 03 and 04).  

When more than one safe interval is available 

GetSuccessors considers all possible safe intervals to 

transition through wait and move actions (lines 07-11). This 

means that for each safe interval k = [startTime, endTime], 

at each successor, we wait the minimal amount of time 

possible to transition to it and arrive safely. start_t  is the 

earliest possible time to arrive at a successor state s’ and  

end_t is the latest possible time to safely arrive at a 

successor state s’. end_t corresponds to waiting until the end 

of the safe interval of s and then transition to the successor 

state s’. Notice that only transitions from [start_t, end_t] that 

overlap with [startTime, endTime] are safe (line 08).  

 

01  g(sstart) = 0 ; OPEN =∅ ; CLOSED =∅  

02  insert sstart  into OPEN with f(sstart) = h(sstart) 

03  while sgoal is not expanded  

04    remove s with the smallest f value from OPEN 

05    insert s into CLOSED  

06   successors = GetSuccessors(s) 

07   for each s’ in successors 

08    if s’ was not visited before 

09     f(s’) = g(s’) = � 

10    if g(s’) > g(s) + c(s,s’)  

11     f(s’) = g(s) + c(s,s’) 

12     h(s’) = g(s’) + h(s’) 

13     if �Dominated(s’) 

14      insert s’ into OPEN with f(s’) 

Figure 2. Algorithm 1: A* with generalized safe intervals  

 

Procedure: Dominated(s) 

01  //
1 2

( , , ..., ),
n

s x x x t=  

02  for each 
1 2

' ( ' , ' , ..., ' ), '
n

s x x x OPEN CLOSEDt= ∈ ∪  such that  

03    
1 2 21
' ...' '

n n
x xx x x x t t′∧ ∧ ∧= = = < ∧  

04 
   

( ') ( )interval s interval s=  

05   if ( ') ( ') ( )
t

g s C t t g s+ − ≤  

06    return true 

07  return false 

Figure 3. Dominated 
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Procedure: GetSuccessors(s) 

01 successors = ∅  

02  for each m in M(s) 

03   
1 2

( ' , ' , ..., ' )
n

x x x  = motion m applied to s 

04    m_time = time to execute m 

05    start_ t = time(s) + m_time 

06    end_t = endTime(interval(s)) + m_time 

07    for each safe interval k in 
1 2

( ' , ' , ..., ' )
n

x x x  

08     if (startTime(k) ≤ end_t  ∧  endTime(k) ≥  start_t) 

09      t'  = max(start_t, endTime(k)) 

10      s’ = 
1 2

( ' , ' , ..., ' ), '
n

x x x t  

11     insert s’ into succesors 

12  return successors; 

Figure 4. GetSuccesors 

The search then progresses over all the valid safe 

intervals. Within each safe interval the search operates as 

regular A* search with state dominance, but when different 

safe intervals become available, transitions to each one of 

those intervals are again added as possible successors.  

E. Theoretical Analysis 

As argued in section III B, a state s' that fails the test in 

line 13 (Figure 2) is dominated by some state s and therefore 

it can be shown that state s' cannot possibly lie on an optimal 

path from the start to the goal. The following theorem puts it 

formally. 

 

Theorem 1. If Dominated(s') in line 13 (Figure 2) returns 

true then pruning state s' is guaranteed to preserve at least 

one optimal path from sstart to sgoal. 

 

Theorem 2. When the generalized safe interval planner 

expands a state in the goal configuration, it has found an 

optimal collision-free path to the goal. 

 

From Theorem 1, it follows that the states that are actually 

being expanded by the search include all the states necessary 

to find an optimal path. In optimal A*, when a state is 

expanded, its g-value is minimal. Therefore when our 

algorithm expands a state in the goal configuration, its g-

value will be minimal. We also know that all states exist 

within safe intervals, which makes the entire path collision-

free, from the start state to the goal state.  

IV. EXAMPLE 

The example in Figure 5 illustrates the operation of the 

algorithm and the effect of using state dominance. The robot 

is trying to move from left to right, while three dynamic 

obstacles will cross its path. Obstacle #1 (bottom) moves up, 

while obstacles #2 and #3 move down.  

To solve this problem, a naïve planner in (x,y,t) requires a 

wait action besides the regular successors in x,y such that  

 ( ', ', ') ( , , ).x y t x y t t= + ∆  (8) 

 

 
Figure 5. Sample environment showing dynamic obstacles and resulting 

path when using state dominance. 

Figure 6 shows the states expanded for a slice of the state 

space at y=50. Notice the thick volume of states that are 

considered at each x coordinate. Also notice that in order to 

get past the intersection and avoid collisions, a wait is 

necessary. Since all waits of equal duration have the same  

cost, the planner chooses to wait at the start of the path. 

 

 

 
Figure 6. States expanded without state dominance (naïve planner in x,y,t) 

A common approach to avoid the computational 

complexity of modeling time as an additional dimension is 

to model dynamic obstacles as larger static obstacles. Each 

obstacle is usually modeled as occupying not only its current 

location, but also all positions from t to t + ∆t seconds in the 

future. This is efficient but incomplete, as it cannot model 

wait states and other complex interactions. Figure 7 shows 

the resulting path obtained after modeling the dynamic 

obstacles from Figure 5 as larger obstacles, and not using 

time as a dimension.  
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Figure 7. Solution found by modeling dynamic obstac

and not modeling time as an additional dimension. 
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Figure 8. States expanded with state dominance and saf
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with varying number of dynamic obstacles from 0 to 600. 

The distribution and motion of movers follow the same 

criteria as in the previous section. The total number of trials 

evaluated was 300. 

We compared the performance of the same planners, a 

naïve (x,y,t) planner with GSIPP running in (x,y,t), with state 

dominance applied to states at the same (x,y) location. Figure 

11 shows the results of these experiments. There is over an 

order of magnitude improvement in the number of 

expansions, with a slight decrease as the number of dynamic 

obstacles increases. The planning time shows an 

improvement of about one order of magnitude, but there is a 

greater difference between the improvement without movers 

and the improvement with 600 movers. Most of this 

difference is caused by the overhead in calculating state 

dominance. 

C. Tests on a Segbot  

We implemented GSIPP as a planner in the 

sbpl_dynamic_env stack in ROS. This stack contains a 

global planner that plugs in to ROS’ navigation stack. The 

navigation stack provides the planner with the robot’s pose 

and a map of the environment and expects a path in return.  

We ran on a Segbot at the Search Based Planning lab at 

Carnegie Mellon University. This robot is a Segway base 

with a Hokuyo lidar, using monte-carlo localization for 

position estimation. We used the tracker node from SIPP, 

which uses the lidar to predict the trajectory of dynamic 

obstacles. The tracker clusters lidar points from each scan 

and then matches the clusters from this scan to clusters from 

the last iteration. It then uses a linear regression fit to predict 

the velocity vector of the dynamic obstacle, and this vector 

is used to predict the future position of the obstacle.  

The planner implemented uses a lattice in (x,y,θ, t) , and 

we apply time-based state dominance to states with the same 

(x,y,θ) coordinates.  

We use ROS’ costmap_2d package to generate obstacle 

expansions and an exponentially decaying buffer around 

obstacles. We also penalize backward motions by applying a 

higher cost with respect to forward motion. Both of these 

options are possible because of the ability of GSIPP to 

optimize non-binary cost functions. Figure 12 shows the cost 

map for one of the experiments, in which the robot is 

moving from left to right in a narrow corridor and detects a 

dynamic obstacle coming towards it. GSIPP plans a path that 

turns to the left and waits for 5 seconds for the dynamic 

obstacle to pass. The planner was able to find a solution in 

less than 1 second on each cycle, with a maximum planning 

time of 0.9 seconds. Figure 13 shows a succession of 

snapshots from rviz and from the accompanying video for 

this paper. 

VI. CONCLUSIONS AND FUTURE WORK 

We introduced a state dominance relationship that uses 

safe intervals and can be used for continuous-cost dynamic 

environments. We also introduced a planner that uses this 

dominance relationship to obtain about an order of 

magnitude fewer expansions and faster planning times in 

dynamic environments than without using state dominance.       

To the best of our knowledge this is the first time a state 

dominance relationship has been derived and used for path 

 
Figure 10. Expansions (top) and planning time (bottom) in logarithmic 

scale for the naïve (x,y,t) planner (dashed line) and GSIPP (solid line), for 

various world sizes in a fractal environment with constant dynamic 

obstacle density. Bars indicate 95% confidence intervals. 

 

 
Figure 11. Expansions (top) and planning time (bottom) in logarithmic 

scale for the naïve (x,y,t) planner (dashed line) and GSIPP (solid line) for 

different number of dynamic obstacles in a 500x500 fractal 

environment.Bars indicate 95% confidence intervals. 
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planning in dynamic environments.  

In the near future we would like to convert the planner 

into an anytime planner for faster performance in time 

critical applications. We also would like to perform further 

experiments in different robotic platforms and in outdoor 

environments. We would also like to evaluate the results of 

using this form of state dominance to planning domains with 

higher dimensions. 
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Figure 12. Cost function generated by costmap_2d and used by GSIPP to 

calculate optimal paths. The yellow circles are dynamic obstacles detected. 

Light gray areas are low cost and darker gray areas are higher cost. Green 
areas non-traversable (expanded obstacles). The blue (solid) line shows the 

path found by GSIPP 

 

 

 
 

Figure 13.Succession of events of a GSIPP run in ROS. The robot detects a 

moving obstacle (red circles indicate present and projected path). GSIPP 
plans a path that avoids it by getting out of the way and waiting for the 

dynamic obstacle to pass. After the dynamic obstacle has passed, the robot 

continues its trajectory to the goal. 
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