
798 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY 1989

Using Statecharts for Hardware Description and
Synthesis

DORON DRUSINSKY AND DAVID HAREL

Abstrad-Statecharts have been proposed recently as a visual for-
malism for the behavioral description of complex systems. They extend
classical state-diagrams in several ways, while retaining their formality
and visual nature. In this paper we first argue that statecharts can be
beneficially used as a behavioral hardware description language. We
illustrate some of the main features of the approach, including: hier-
archical decomposition, multi-level timing specifications and flexible
concurrency and synchronization capabilities. We also present a VLSI
synthesis methodology, through which layer area and delay periods
can be reduced relative to the conventional finite state machines (FSM)
synthesis method.

I . INTRODUCTION
Finite state machines (FSM’s) have been one of the main for-

malisms underlying the prevailing approaches to hardware descrip-
tion and synthesis. Two of the major drawbacks of FSM’s, how-
ever, are their inherent sequentiality and flat, non-hierarchical
nature. Without catering naturally for concurrency and multi-level
descriptions a state-based approach is bound to be unsuitable for
describing the behavior of large and complex digital hardware
components. These facts seem to be almost universally accepted as
indicating the inherent limitations of state-machine descriptions.

Recently, an attempt at overcoming these limitations has been
made with the advent of statecharts 161, [7] , which extend the fa-
miliar FSM’s in several ways, while retaining both their formality
and their visual nature. Statecharts enable modular, hierarchical
descriptions of system behavior, catering for multi-level descrip-
tions, concurrency, and state-history . This paper presents the re-
sults of an initial assessment of the feasibility of using statecharts
in the realm of digital hardware description and synthesis.

Section I1 provides a brief description of statecharts, and Section
I11 presents an example of their use in describing a relatively com-
plex traffic-light controller. Several of the features relevant to hard-
ware description are then discussed. Section IV contains an over-
view of the conventional synthesis method for FSM’s, and presents
the principles of a statechart-based VLSI synthesis methodology.
Finally, Section V presents a programmable approach to statechart
synthesis.

11. THE STATHCHART FORMALISM
The statecharts method was introduced recently ([6] , and see

also [7]) as a visual formalism for specifying the behavior of com-
plex reactive systems (see 191, 1161.) Like FSM’s, statecharts are
based on states, events, and conditions, with combinations of the
latter two causing transitions between the former. Both states and
transitions can be associated in various ways with output events,
called actions, which can be triggered either by executing a tran-

Manuscript received October 6, 1987: revised March 1, 1988 and De-
cember 5. 1988. This work was supported in part by grants from Ad-Cad.
Ltd., and by the Israel Aircraft Industries. The review of this paper was
arranged by Associate Editor M. R. Lightner.

This paper is an expanded version of the work originally presented at
the ICCAD-87.

D. Drusinsky was with The Weizmann Institute of Science, Rehovot.
Israel 76100. He is now with the CAD Department, Sony Corporation.
Atsugi, Japan.
D. Hare1 is with the Department of Applied Mathematics and Computer

Science, The Weizmann Institute of Science. Rehovot. Israel 76100.
IEEE Log Number 8826963.

sition or by entering, exiting, or simply being in a state. The SYS-

tem’s inputs are thus the (external) events and its outputs are the
(external) actions; their union comprises the interface set of exter-
nally observable events, conditions, and outputs.

This basic idea is well known, and is actually a simple combi-
nation of the Moore and Mealy definitions of conventional finite
state automata. The allowed sequences of interface elements cor-
respond to the language accepted by the automaton. Moreover, such
automata come complete with a standard visual rendering, the tran-
sition diagram. In its naive form, this classical state transition
method has been unsuccessful at specifying the behavior of com-
plex systems since it provides no modularity o r hierarchical struc-
ture, and suffers acutely from the exponential blowup in the num-
ber of states that need be considered. Indeed, a state/event
description seems to have to consider all possible combinations of
states in all the components of the system: hence the exponential
growth. Various notions of communicating FSM’s have been sug-
gested, but the lack of modularity in such approaches appears to
cause users to decompose behavior according to the physical de-
composition of their system, thus loosing the advantages of car-
rying out conceptual behavior specification before the design stage.

The statechart method is rooted in an attempt to revive the nat-
ural FSM approach to the specification of systems, by extending it
to overcome these difficulties. The extensions apply to the under-
lying nongraphical formalism, too, but there are advantages in pre-
senting the ideas in terms of the graphical version. Some of the
extensions are now briefly described, but the reader is urged to
consult [6] for a fuller treatment.

States in a statechart can be repeatedly combined into higher
level states (or, alternatively, high-level states can be refined into
lower-level ones) using A N D and OR modes of clustering. Fig. 1
shows a state B whose meaning is “to be in B the system must be
in precisely one of D , E, o r F,” and Fig. 2 shows a state A whose
meaning is “to be in A the system must be both in B and in C.”
Notice, however, that in Fig. 2 , B and C are themselves OR states,
thus the actual possibilities are the state configurations (D , G),
(D , H) , (E , G) , (E , H) , (F , G) , a n d (F , H) . W e s a y t h a t D , E ,
and F are exclusive and B and C are orthogonal.

Transitions in a statechart are not level-restricted and can lead
from a state on any level of clustering to any other. A transition
whose source state is a superstate means “the system leaves this
state no matter which is the present configuration within it.” In
this way, while event a in Fig. 3 causes a simple transition from
state K to L , the event b exemplifies a concise way of causing the
system to leave L or M, i.e., any possibility of being in J , and to
enter K . Likewise, c causes the system to exit any one of the A-
configurations listed above and enter M. If the target of a transition
is a superstate, as in the case of events d or e in Fig. 3, a default
arrow must be present, indicating which of the lower-level states
is actually to be entered (L , or the combination (E , G) , in Fig. 3).

Transitions are in general from configurations to configurations,
owing to the possibility of orthogonal components in the source
and target states. Thus in Fig. 3 if eventf takes place in configu-
ration (F , H) the system enters P , and if the same happens in P
the system enters (D , H). Concurrency and independence are both
made possible by orthogonality: on the one hand event m causes
simultaneous transitions in B and C if the configuration is (E , G)
and on the other hand p causes E to be replaced by D regardless
of, and with no change to, the present state in C. It is noteworthy
that orthogonality (and hence the possibilities it raises) is allowed
on any level of detail. Accordingly, a configuration can be layered
too, containing orthogonal state components on many levels.

Outputs can now be associated with transitions as in Mealy au-
tomata by writing a / b along an arrow; the transition will be trig-
gered by a and will in turn cause b to occur. Similarly, b can be
associated with (entering, exiting, or simply being in) a state, in
line with Moore automata. In either case b can be an external event

0278-0070/89/0700-0798$01 .OO O 1989 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 7, J U L Y 1989 799

Fig. 1 . OR-ing states.

Fig. 2 . AND-ing states.

N

-

Fig. 3 . An output-free statechart:

Fig. 4. Upper and lower time bounds for being in a state.

or an internal one, in the latter case triggering perhaps other tran-
sitions elsewhere in some orthogonal state. Formal syntax and se-
mantics for statecharts appear in [101 and [1 I] .

The formalism presented in [6] offers a number of additional
features, among which the following is rather important for hard-
ware applications: one is allowed to specify upper and lower bounds
on the time to be in a state, as in the self-explanatory diagram in
Fig. 4.

Specifying behavior by statecharts encourages thinking in terms
of the system’s conceptual states and their interconnections, and
caters for modular “chunking” of behavior by using exclusivity
and orthogonality of states. Note that the exponential blowup in
states is avoided by the orthogonality construct.

111. STATECHARTS VIA A TRAFFIC-LIGHT CONTROLLER
Fig. 5 describes the behavior of a traffic-light controller whose

I/O-interface is described in Fig. 6. In the figures we have used
some abbreviations: the colors red, green, and yellow are simply
RD, GR, and YL. A condition followed by t is the event that oc-
curs when the condition changes from false to true: the opposite
change is depicted by a 1. In addition, we abbreviate certain events
as follows:

timeout becomes E;
entered(state) becomes *(state);
timeout[pd-main V new-car-sec] becomes y;
new-car-sect becomes 6 .

There are two sets of lights: one is positioned over the main road
(MAIN) entering the cross-junction, a n d t h e other is over the sec-
ondary road (SEC). During the day (D / N = 1) the controller op-
erates according to one of two possible programs: program A (prog
= 1) gives two minutes to the vehicles in MAIN, and half a minute
to the vehicles in SEC, alternatingly, and program B (prog = 0)
gives half a minute to the cars in SEC once the sec-full signal goes
high. During the night (D / N = 0) the controller gives precedence
to the cars in MAIN until one of the two possibilities occurs: (1)
two minutes have passed since MAIN became green and either a
pedestrian wants to cross MAIN (pdmain = 1) or a new car has
appeared in SEC (new-car-sec = 1); or (2) three cars have al-
ready appeared in SEC. Once one of these conditions occurs, ve-
hicles in SEC are given half a m i n u t e . The controller can be op-
erated manually as well (A / M = 0) . In this mode, whenever a
policeman pushes a special button (police becomes 1) a transition
is triggered from MAIN to SEC o r vice versa. This manual oper-
ation, and any transition from DAY to NIGHT and vice versa, starts
with 5 s of flashing yellows lights and then MAIN receiving the
green lights. A hidden CAMERA can be operated by the controller
when it is in AUTOMATIC mode only. The CAMERA will take
a photo of the MAIN entrance to the junction, by producing the
fmain signal when MAIN is in the red state and a car enters the
junction from MAIN (enter-m = l) , and similarly for the SEC
entrance (using the enter-s signal, and producing the fsec signal).
An ambulance signal can arrive (amb = 1), notifying the control-
ler that an ambulance is approaching the junction from MAIN
(dmain = 1) or from SEC (dmain = 0). It then sets the lights
according to the direction of the ambulance, and ignores all other
events. Once the ambulance enters the junction the controller is
notified (ambj = 1), and it returns to its previous operation mode,
namely DAY or NIGHT. The controller can receive an
ERROR message (errin = 1) and then both yellow lights flicker.
Another possibility for an ERROR occurs when the controller op-
erates manually for more than fifteen minutes without the police-
man pushing the police button, in which case the errout signal is
produced. A reset signal resets the controller to the AUTOMATIC
state.

In Fig. 5 , we have exclusive states (e.g., DAY and NIGHT),
and orthogonal states (e.g.. AUTOMATIC and CAMERA). We
have default entrances (e .g . , the entry to WAIT within
MANUAL), and entrances by history (e .g . , from AMBULANCE
upon the event ambj, returning by history only one level back-
wards, i.e., to AUTOMATIC o r MANUAL, and then by default).
We have rime bounds on the duration of being in a state (e .g . ,
precisely 5 s in six of the states in LIGHTS, and at most 15 min in
a substate of MANUAL). We also use conditional connecrors<e.g..
the entrance to AUTOMATIC, which is dependent upon D/N).

Actions can appear along transitions as in Mealy automata (e .g . .
CY or p is generated when making the transition between two states
of MANUAL, triggered by the police event). They can also appear
in states as in Moore automata, in which case, by convention, they
are carried out upon entrance to the state (e .g . , the red and green
lights are zeroed upon entering ERROR).

Let us try pointing out some of the general capabilities offered
by the likes of Fig. 5 .

Hierarchical Descriptions:
The ability to provide hierarchial descriptions becomes vital as

the complexity of the described system grows. Specifying in a hi-
erarchical fashion makes the development process clearer, easier,
and more manageable. The hierarchical decomposition that state-
charts offer uses a mechanism that condenses information. Thus in
Fig. 5, for example, the event amb operates in all of NORMAL‘S
substates, by the semantics of statecharts. There is no need to ex-
plicitly send such an event to each substate. More generally, the
event b in Fig. 3, for example, operates both on states L and M in
J . On the other hand, in a conventional block diagram describing
the same configurations, although b operates on the whole of J, the

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 7 , JULY 1989

TRAFFIC - LI G H T - C O N T R O L L E R

L I G H T S

tm

RO2, GRI :=I (G R I : = O (YLZ,RDI:=I/ RDI ,GR2:= I

tm tm

RDt,RD2,GRI,GRZ:= I

\

DAY]

2min

I- I

L L

[-pp-’ Y L I : = l YLZ: =o E YLI YL2::I : =o

errout: = I
RDI. R D 2 , G R i , G R 2 : = 0

I

Fig. 5 . Statechart for the traffic-light-controller.

description must usually show how it is sent, explicitly, to both L
and M, as in Fig. 7 .

MATIC, but LIGHTS is orthogonal to both of them, on a much
higher level.

Concurrency Descriptions:
The ability to describe concurrency is crucial. Statecharts sup-

port a natural way of describing concurrency at any hierarchical
level, without causing sequential descriptions to become an awk-
ward exception. In Fig. 5 , CAMERA is orthogonal to AUTO-

Timing Specijications:
Statecharts offer local-looking capabilities for timing specifica-

tion in states. However, since such timing constraints can appear
in states on any level, and in any orthogonal component, this ac-
tually admits global timing constraints, too. Fig. 8 illustrates multi-

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8, NO. 7. JULY 1989 801

Input
Conditions

errin
new-cor- sec

TRAFFIC LIGHT
CONTROLLER

dmain
sec -full
pd-main GR2

Input
Events

ent-m
ent-s

fmain

errout

Fig. 6 . The I/O interface for the traffic-light-controller.

41
Fig. 7 . A hierarchical description that does not condense information

Fig. 8. Multi-level timing constraints.

level timing constructs, combinations of which can yield quite sub-
tle behavior.

Sjn cli ron iza tion Meth ods :
Fig. 5 contains several user-specified synchronization mecha-

nisms, such as the event A/M I. which causes a transition from
AUTOMATIC to MANUAL. One should notice how the arrow
crosses both the NORMAL and CONTROL boundary lines, thus
causing the system to exit LIGHTS also and then immediately
reenter it through the default entrance. The side-cffect is to syn-
chronize LIGHTS to its default state upon the A/M 5 event. Fig.
9 illustrates some similar possibilities: a synchronizes all orthog-
onal states into their default substrates; 6 synchronizes B into B1
while moving from A 1 to A 2 ; C i s synchronized into C 2 as A enters
A 2 (i .e . . A 2 is essentially used as a common state); and D is syn-
chronized into 0 2 as C enters C2 (i .e . , x is used as a common
variable).

Fault Speci’jcation:
A discussion of HDL’s with respect to fault modeling can be

found in [17] . Since the event-based descriptions in statecharts can
be highly hierarchical, any event, including those thought of as
faults, can be represented at any desired level in the hierarchy. This
alleviates the need for a special effort of “planting” the test for the
event in the low-level components of the described system. One
should notice, however, that statecharts can only treat high-level
behavioral faults and cannot naturally deal with circuit-level faults,
for example.

Visuality:
Statecharts appear to enable visual representations in a some-

what broader spectrum than most common diagrammatic systems,
covering hierarchy, concurrency, timing aspects, and synchroni-
zation.

The main apparent disadvantage of the statechart approach is
that i t separates control from data. Statecharts are predominantly

.U
Fig. 9. Various synchronization mechanisms.

tailored for control, with the data portions being related to the ac-
tivities within states or along transitions. A computerized graphical
tool, STATEMATE, which is available from i-Logix, Inc. (see
[SI), utilizes statecharts for control and, in addition, supports a
graphical language of hierarchical data-flow nature, called activity-
charts, which is integrated with the statecharts, for the data and
functional aspects of the system under description.

IV. THE STATECHART SYNTHESIS METHODOLOGY‘
Note: Throughout this section and the next, n is taken to be the

number of states in a statechart, i.e., the size of the state tree, and
d is a bound, assumed to be enforced, on the outdegree of the tree,
i .e. , on the maximal number of immediate substates of a state.

As discussed above, statecharts are an extension of the Moore
and Mealy variants of FSM’s. These have typical implementations
using PLA’s (programmable logic arrays) for the specification of
the combinatorial logic (Fig. 10). Here, an n-state FSM is repre-
sented by its (at most) O (n 2) state transitions,2 represented by a
“next-state” disjunctive normal form formula, implemented on a
PLA. The state register contains the “present-state’’ between two
consecutive state transitions. PLA’s enable simple and regular im-
plementations of control units (see [14]) but have the disadvantage
of being highly area-consuming as the number of states grows. The
area of a PLA for such an implementation is determined mainly by
the number of minterm lines, which is on the order of n2-at least
one minterm for each FSM transition. Thus even without consid-
ering I/O wires, FSM area might reach O(n2 . log n) . The clock
cycle, using this technique, is O (n 2) , due to the time for the slow-
est signal to propagate from the state register, through the PLA,
back to the state register. Folding and partitioning techniques are
often used to overcome this area blowup. However, the problem
of applying such techniques after-the-fact is NP-complete [5] , [181.
Our methodology can be viewed as recommending that such a par-
titioning be carried out during the specification phase, using the
designers’ knowledge of the problem to generate an efficient prod-
uct.

The basic idea of our synthesis methodology is to trade the con-
cept of single machine implementing an FSM for a tree of inter-
connected machines implementing a statechart. Each state, at each
nonatomic level of the statechart hierarchy, is represented by a ma-
chine implementing the FSM corresponding to its substates on the
next immediate level. Thus for the statechart of Fig. 11, for ex-
ample, fifteen small machines are built, implementing the seven
FSM’s of Fig. 12 and another eight trivial machines for the atomic
states. The machine connection scheme is illustrated in Fig. 13.
An event entered X is created by the machine one level higher in
the hierarchy when it reaches state X . The left signals are the duals

‘The methods presented in this section and the next are part of U . S .
patent 4 799 141, dated January 17, 1989, granted to the authors via Yeda
Research and Development Corp., Ltd.

’If the FSM has k > 1 input lines, the number of state transitions grows
even larger. However, for simplicity we shall be concerned only with the
asymptotic growth of the FSM implementation as a function of n.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

802 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY I Y 8 Y

‘C -

Moore Machine Mealy Machine

Inputs
Camb.

Logic Logic

Present
State State State State
Present

>-TGcy
outputs

Fig. 10. Two implementations of the FSM model

PI
r

7 2

r 9

\83

&1
822 I 812

Fig. 1 1 . A statechart example

of thc entered signals, and notify the lower level machines to move
into their Idle state. The leave signals are created by the lower level
states, to notify their predecessors about their termination (e.g.,
A1 notifies C in Figs. 11 and 12). Similarly, the enter X signal is
created by a high-level state when one of its substates (that is not
the default) is required to start operating in the X state (e .g . , C
notifies A2 in Figs. 11 and 12). Concurrency is implemented in a
natural manner as illustrated in Fig. 14, where the entered and left
signals are sent from A to both B and C.

W e use a one-bit code for coding states, with each state having
its unique representing bit. This “horizontal” coding scheme seems
exponentially expensive in comparison to the usual “vertical”
coding scheme, but since the coding is per machine (and by our
convention each of these is of limited size), its cost is bounded.

Three possible layouts for the resulting tree-machine come to
mind. We can use area O (n) via the general algorithm of [13].
This layout, however, has the disadvantages of creating a non-reg-
ular structure and ignoring the I/O wires from the individual ma-
chines. Also, in this layout a basic machine and a wire are of the
same width, causing considerable waste. A better layout can be
obtained using the configureable techniques of [13]. This layout is
of area O (n . log2 n). and is illustrated in Fig. 15 for the example
of Fig. 13. All vertices (machines o r processors) are lined up on
the baseline and their connections run vertically. Parallel to the
baseline are O(log2 n) horizontal wires (each such wire can really
be a multitude of entered, left, enter, and leave wires). The top
O(log n) wires run all the way across the layout, the next
O (log n) wires are broken halfway, and so on. The only remaining
decision is where to put the “solder dots” that determine the actual
connections. The method of [13] uses the fact that any finite tree
with n vertices and bounded outdegree can be partitioned into two
sets of L n / 2 J and r n / 2 1 vertices by cutting at most O (log n)
edges. Once the cut-set is determined, the two sets of vertices can
be laid out recursively and combined; the edges in the cut-set will
appear as horizontal lines in the layout.

A even better layout, with area O (n . log n), can be achieved
using the 1-separator theorem for trees [13], and is illustrated in
Fig. 16 for the same example. Using the theorem, the tree is bi-

sected into two sets, each consisting of between n / 4 and 3 n / 4
vertices, by removing at most a constant number of edges. Each
set is then laid out recursively along the baseline, and the removed
edges are placed horizontally above.

Several timing problems can occur in the example of Figs. 11-
13. The natural choice is to implement each individual FSM using
a Moore machine, as was actually done in Fig. 13. In this way, it
might take several clock cycles for the event 63 at A12, for ex-
ample, to propagate up to D’s machine and cause the transition to
state B12, a delay which is in conflict with the formal semantics of
statecharts [6], [l o] and also with our intuition that such a transi-
tion should be instantaneous in a synchronous system. Similar time
delays will occur when a lower level machine enters its first state
after the parent has already been entered (e .g . , entering A21 after
C has moved from A1 to A2 in Fig. 11), or when lower level states
are terminated by a high-level transition (e .g . , the transition 0 1
causing exit from A l l , A12, and A l) . Such timing problems be-
come especially acute in an example such as that of Fig. 17, where
the time it takes for D to get the message that it should be left might
be so large as to cause a situation where D is still active after E
has become active.

Such problems can be overcome in several ways. For example,
we can implement each individual FSM as a combination of a Mealy
machine and a Moore machine as in Fig. 18. Actually, this will be
a Moore machine with asynchronous leave, entered, enter, and
left signals that will propagate up o r down the hierarchy using
asynchronous logic rippling. It can be guaranteed that no spikes
(that is, non-valid output signals, created because of several non-
synchronized input signal transitions) will occur. This solution can
solve the timing problems at the price of cutting down the clock
frequency, so that such asynchronous signals will be able to prop-
agate up o r down the whole hierarchy in one cycle.

Now, in general, Q (&/log n) is a lower bound for any layout
technique (see [15]), meaning that there exists a constant c for
which every layout will have an edge of length at least c . &/log
n. (Note that an n . log n area layout is optimal for trees in which
all nodes are required to be layed out on the perimeter of a convex
region [11 .) For the two latter layout techniques we have suggested,
the distance between two nodes is at most O (n) . The big 0 con-
stants are influenced, of course, by the maximum outdegree d al-
lowed in the statechart, which determines both the maximal size of
an elementary machine and the maximal cut-set in both the recur-
sive procedures. Consequently, the clock period for the preceding
layout techniques is O (n . log n) for a balanced statechart, because
of the O (n) distance between nodes, and the O (l o g n) levels of
hierarchy. For an unbalanced statechart the clock period will be at
most O (n 2) . W e should remark that the special history operator of
[6] can be implemented using the local state storage devices to hold
return addresses.

This statechart-based layout methodology thus offers a number
of advantages, including reduced area and a natural implementa-
tion scheme for the concurrency and synchronization capabilities
of statecharts. Some other apparent advantages of the approach
(with either of the two layouts) are the following: (1) the input and
the output wires to the control unit do not need routing inside the
layout because the machines are on the perimeter; (2) the individ-
ual PLA’s can be laid out in a single block in a rather regular fash-
ion, similar to the way conventional PLA’s are layed out, demand-
ing no special solutions for the ground, voltage and clock wires;
(3) each individual machine is small and fast, and the connection
part consists only of wires, thus its area is not measured in machine
units but rather in the usual X unit; (4) the internal communication
of [6], [l o] can be layed out in the area beneath the machines, and
needs no special routing inside the machine-tree layout.

We have thus seen that an n-state statechart of bounded degree
can be layed out in area O (n . log n), whereas the layout of an n-
state FSM might result in O (n 2) area. It is important to realize that,
in addition, statecharts are considerably more succinct than FSM’s,
in fact exponentially more succinct, so that this difference is all the

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8, NO. I. JULY 1989 803

* leave - Al -a / leave C- b

A 2
on entry : entered A2
on exit : le f t A 2

-

entry. entered A21
ex i t : le f t A21

entry : entered A22
e x i t ; le f t A 2 2

entry : entered 91,
entered 9 2

exit : lef t 91 ,
left 92

84/1eave*

(b)

entered BI A enter 912

le f t 91 entered BI A -enter912

entry : entered 911
exi t : l e f t 911

entry : entered 912
exit : l e f t 912

entry : entered C
ex i t : l e f t C

leave C-a
leoveC-b/
enter912

entry : entered B
w i t : le f t B

entry : entered A l l
exit . left A l l

entry : entered A12
ex i t : le f t A12

entry : entered 921
exit: le f t 821

entry : entered 9 2 2
e x i t : left 9 2 2

(8)

Fig. 12. The seven FSM’s for Fig. 1 1 . (a) FSM for C . (b) FSM for B .
This FSM transfers the “enter B12” signal directly from input to output.
(c) FSM for A I . (d) FSM for A 2 . (e) FSM for B I . (f) FSM for B 2 . (g)
FSM for D.

enter B12,enteredB.left B entered C. leftC.leave C-a, leave C-b

ntered BI,enlerB12,Wt El
1 Ieave Al-b

Fig. 13. Processor connection schemes for Figs. 1 1 and 12.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

-

804 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO 7. J U L Y 1989

- - -v

entered A, Ie f tA I t leoveA

Fig. 14. Machine configuration for orthogonal states

Fig. 15. Layout of processors in Fig. 13.

I I

I I n I n I I n I n

Fig. 16. A slightly better layout of the processors in Fig. 13.

Fig. 17. An example of a timing problem

PLANE PLANE

S t a t e

Inputs Outputs

entered/ entered /

leave, enter leave. enter

Fig. 18. A PLA implementation of a Mealy/Moore machine

more significant. Specifically, in [2] it is shown that an n-state non-
deterministic statechart can describe a problem for which the small-
est deterministic3 FSM has at least 2’’’ states, and an n-state deter-
ministic sequential statechart (i.e., a statechart without

’The conventional synthesis method described at the beginning of the
Scction IV, suits only deterministic FSM’s because it uses a log n sized
state register for an n-state FSM. Our methodology, because of its “hori-
zontal” state coding, suits the implementation of nondeterministic state-
charts.

orthogonality) with history states, can describe a problem for which
the smallest deterministic FSM has at least 2” states. Such succinct
descriptions exploit the orthogonality and history-state features of
statecharts, and our design methodology is tailored to suit these
features, with the area-complexity of the layout depending only on
the fact that the statechart is o f bounded degree.

In [2] , [3] we have investigated the theoretical background of
statecharts, including a comparison of their descriptive complexity
with other well-known regular-event formalisms, such as deter-
ministic, nondeterministic and alternating finite automata, (condi-
tiodevent) Petri-nets and regular expressions. Regular expressions
have been suggested in [I81 as a description language for VLSI,
and a synthesis method is included therein. It should be noticed
that, whereas all of these formalisms have the same expressive
power (they all recognize the regular sets), there are significant
discrepancies in their descriptive complexity. Specifically, regular
expressions are, in the worst case, exponentially less succinct than
deterministic FSM’s [4] which are similarly exponentially less suc-
cinct than deterministic statecharts. Also, regular expressions do
not enjoy many of the convenient features mentioned earlier.

V . A PROGRAMMABLE APPROACH
In this section we would like to suggest the implementing the

methodology of Section IV as a programmablc I,,;lchine that exe-
cutes statecharts. The idea is that after being programmed, the ma-
chine results in a hierarchical machine-tree similar to those found
in [14]. As in Section IV, each machine implements a superstate
in the statechart, and the machines connected beneath it implement
its immediate substates. Here, however, the FSM for each super-
state will be programmed into memory rather than being hand-
wired. Like the original machine-trees of [14], these machines can
be conventional von Neumann processors with local memory, data
connections between them and local timers for the hierarchical tim-
ing notation of statecharts. There will also be a control connection
between a machine and its descendants, consisting of the entered,
left, enter, and leave signals described in Section IV. (A different
possibility is to have the machines in the machine-tree be only fi-
nite state machines that produce signals to a common processing
and data unit, in which case no data collections are needed.)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8, NO. 7, JULY 1989 805

reset

, e r r in;? (Troffic- ,
Light-

errout Controller)

r-l ERROR

* 1
timeout 2 1 o m b d T \

CONTROL
ombj count

dmoin

in MAIN

count

I I

: rq&] e n t s 4 - F CAMERA in MAIN et-- D/R
substotes entm in SEC P I

a = a1 v a 2 v a 3
p - 0 1 v p 2 v p3

Note :
(I)

(2)

(31

Each line is o group of
control wires,
d = 2 in t h i s example

The count ond timeout signals
r u n to externol timers

I , timewt I
timeout 2
cwnt I
count 2

a2

sec -f uI I
NIGHT w in M A I N

8

new-cor-sec -
pd m a i n -

8 3 8 2
ount 2

count I
timeout 2

timout 1

Fig. 19. The machine tree for the traffic-light-controller of Fig. 5

Since in Section IV the machines are hardwired together, whereas
here the presented machine is programmable, programmers might
want to define different tree structures. Consequently, the chip's
most convenient layout appears to be the O (n . log' n) one dis-
cussed in Section IV. This technique enables the manufacturer to
create general-purpose chips for which the specific machine struc-
ture can be easily determined by adding the appropriate contacts.
Dynamic (run-time) machine-structure programming, which will
enable the implementation of several statecharts on one machine,
can be achieved using switches instead of permanent contacts.
Concurrency, in the form of orthogonal states, is achieved by pro-
gramming the chip so that a number of machines are mapped to-
gether as one substate. Hence, the layout technique enables a flex-
ible machine definition including hierarchical relationships,
concurrency, and even overlapping states (see [6]), dealt with by
connecting a machine to a number of ancestors.

The chip is programmed in three main stages, which we merely
outline here. The first consists of programming the machine struc-
ture, by defining the exact contacts (or switch-states in the dynamic
version). The second stage consists of programming each of the
individual machines in a standard way, and is carried out as in a
conventional processor. The third and last stage, which we might
call reactive programming, consists of generating the intra-ma-
chine signals. The last two stages are carried out in the following
manner: each superstate is programmed as a single flat finite state
diagram. In addition, the processor machine-language will have
special commands that produce the intra-machine control signals
presented in Section IV. These signals run between machines on
the layout that was programmed in the first stage. All these pro-

gramming details can be extracted from the statechart description
automatically by a compiler.

Fig. 19 is the machine-tree for the example of the traffic-light
controller of Fig. 5 . Each machine is programmed in a conven-
tional way, using a flat finite state diagram. Fig. 20 consists of two
of the appropriate diagrams for Fig. 19. Each machine in our ex-
ample consists of memory (containing the local finite state pro-
gram) and control (that fetches the next command from the local
memory). In Fig. 19 each communication line represents all con-
trol signals discussed in Section IV. Finally, Fig. 21 is the resulting
layout, including the specific contact cuts for traffic-light-control-
ler.

VI. CONCLUSION

An attempt has been made to show the benefits of using state-
charts as a hardware description language and for the synthesis of
digital reactive components. The three most important features ap-
pear to be information-condensing hierarchy, orthogonality (mod-
eling concurrency), and broadcast communication. It is not clear,
however, what design methodology should be used to generate suc-
cinct and "well-structured" statecharts. We feel that a well-
founded design methodology might be needed to help guarantee
that the user produces correct and clear statecharts. This issue re-
quires further investigation.

Another interesting issue not treated here is the possible exis-
tence of other applications. It seems that the methodology of Sec-
tion IV is suitable for synthesizing statecharts into systolic arrays
(cf. [12, 131). Hence, it is especially interesting to understand

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

806 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8, NO. 7. JULY 1989

IeftCONTROL

FSM for CONTROL

leaveAUTOMATIC/leaveNO

start stop

FSM for NORMAL

Fig. 20. Two of the FSM’s for Figs. 5 and 19

Fig. 2 I . The regular layout for the traffic-light-controller

whether and how statecharts can be used as a programmning Ian-
guage for such concurrent systems.

[7] -, “On visual formalisms,” Comm. Assoc. Compuf. Mach., vol.
31, no. 5, pp. 514-510, 1988.

[8] D. H a d , H. Lachover, A. Naamad, A. Pnueli, M. Politi, R . Sher-
man, and A. Shtul-TraurinR, “STATEMATE: A working environ- ACKNOWLEDGMENT

The authors would like to thank A. Pnueli, S . Ruhman, A. Caspi,
T . Larndan, and M. Cohen for helpful discussions, and technical
personnel from Intel and Motorola (Israel) for their helpful feed-
back. Y. Barbut did a superb job with the figures.

REFERENCES

[I] B . P. Brent and H. T. Kung, “On the area of binary tree layouts,”
Inf. Proc. Lett . , vol. 1 1 , pp. 46-48, 1980.

[2] D. Drusinsky, “On synchronized statecharts,” Ph.D. thesis, Dep. of
Appl. Math. Comp. Sci., The Weizmann Inst. of Sci., 1988.

131 D. Drusinsky, and D. Harel, “On the power of cooperative concur-
rency,” in Concurrency ’88, Lecture Notes in Computer Science, vol.
335, pp. 74-103, Springer-Verlag. New York, 1988.

[4] A . Ehrenfeucht and P. Zeiger, “Complexity measures in regular
expressions,” J . Comp. Syst. Sci. , vol. 12, pp. 134-146, 1976.

[5] G. D. Hachtel, “Techniques for programmable logic array folding,”
in Proc. 19fh Con$ on Design Automation, ACMIIEEE, pp. 147-155.
June 1982.

[6] D. Harel, “Statecharts: A visual formalism for complex systems,”
Sci. Comput. f r o g . vol. 8, pp. 231-274, 1987. (Preliminary version
appeared in CS84-05, Weizmann Institute of Science, Rehovot, Is-
rael, Feb. 1984.)

-
merit for the development of complex reactive systems,’’ in Proc.
10th lnt. Conf. on Soft. Eng. New York: IEEE Press, Apr. 1988.
pp. 396-406.

[9] D. Hare1 and A. Pnueli, “On the development of reactive systems.’’
in Logics and Models of Concurrent Systems, K. R . Apt, Ed., Nato
AS1 Series, Springer-Verlag, Berlin, 1985, pp. 477-498.

[I O] D. Harel, A. Pnueli, J . P. Schmidt, and R . Sherman, “On the formal
semantics of statecharts,” in Proc. 2nd IEEE Symp. ot7 Logic in Com-
puter Science, Ithaca, NY, pp. 54-64, 1987.

[I l l C. Huizing, R. Gerth, and W. P. deRoever, “Modelling statecharts
behaviour in a fully abstract way,” in Proc. 13th Coll. Trees Algebra
and Programming (CAAP’88); see also Lecture Notes in Computer
Science, (M. Dauchet and M. Nirat, Eds.), vol. 299, Berlin, Ger-
many: Springer-Verlag, pp, 271-294, 1988.

[I21 H. T. Kung, “Why systolic architectures?,” Computer, vol. 15. no.
I , pp. 37-46, 1982.

[131 E. L. Leiserson, Area-E@cient VLSI Computation. Cambridge, MA:
MIT Press, 1983.

[I41 C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.

[I51 M. S . Paterson, W. L. Ruzzo. and L. Synder, “Bounds on minimax
edge length for complete binary trees,” in Proc. 13th ACM Symp. on
Theory of Computing, pp. 293-299, 1981.

1161 A. Pnueli, “Applications of temporal logic to the specification and

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY 1989 807

verification of reactive systems: A survey of current trends,” in Cur-
rent Trends in Concurrency. de Bakker et al. Eds., Lecture Notes in
Comp. Sci., vol. 224, Springer-Verlag, Berlin, pp. 510-584, 1986.

[171 A. K . Singh and J. H. Tracey, “Development of comparison features
for computer hardware description languages,” in Cornpurer Hard-
ware Description Languages and their Applications, M. Breuer and
R. Hartenstain, Eds. Amsterdam, The Netherlands: North-Holland,
1981, pp. 247-263.

New York: Com-
puter Science, 1984.

1181 J . D. Ullman, Computational Aspects of VLSI.

Limitations of Switch Level Analysis for Bridging
Faults

ROCHIT RAJSUMAN, YASHWANT K. MALAIYA, MEMBER, IEEE,

A N D ANURA P. JAYASUMANA, MEMBER, IEEE

Abstract-Switch level models are widely used for fault analysis of
MOS digital circuits. Switch level analysis (SLA) provides significantly
more accurate results compared to the gate level models and also avoids
the complexities of circuit level analysis. The accuracy of SLA is crit-
ically examined, and conditions under which switch level analysis may
generate incorrect results are specified. Such conditions may occur
when the bulk of a transistor is connected to its source. These condi-
tions are especially applicable under certain types of bridging faults.
A simple technique is suggested for accurate switch level modeling un-
der such conditions.

I . INTRODUCTION
In the past, test generation and simulation were conducted ex-

clusively at the gate level. Recently, however, it has been pointed
out that the classical stuck-at-fault model does not represent some
important failure modes, especially in the case of MOS devices. In
a complex gate, the physical nodes do not directly correspond to
nodes in an equivalent gate level network [l] , [2]. Hence, many
physical opens and shorts cannot be satisfactorily represented at
the gate level. Gate level fault models, even for simple gates, can
become quite complex [2]-[4]. Consideration of failure modes at
the switch level or circuit level are alternatives to gate level mod-
eling. Circuit level simulators, such as SPICE, can be used for the
study of failure modes but due to the high CPU time requirement,
they become impractical even for moderate sized devices. As a
consequence, switch level modeling is gaining wide acceptance for
fault modeling and test pattern generation of MOS circuits [2]-[7].
The following assumptions are generally used for a simple switch
level analysis (SLA).

1) A transistor is an ideal switch. For an n-channel transistor an
H (definitely recognized high voltage level) at the gate causes
it to represent low resistance and an L (definitely recognized
low voltage level) causes it to represent very high resistance.

Manuscript received October 28, 1987; revised May 18, 1988, Septem-
ber I , 1988, and January 11, 1989. This work was supported in part by the
Innovative Science and Technology Office of the Strategic Defense Initia-
tive and administered through the Office of Naval Research. The review of
this paper was arranged by Associate Editor V . K . Agarwal.

R. Rajsuman is with the Department of Computer Engineering, Case
Western Reserve University, Cleveland, OH 44106.

Y. K . Malaiya is with the Department of Computer Science, Colorado
State University, Fort Collins, CO 80523.

A. P. Jayasumana is with the Department of Electrical Engineering,
Colorado State University, Fort Collins. CO 80523.

IEEE Log Number 8926961.

When the input is not H or L (i .e. , indeterminate), the tran-
sistor pre3ents an indeterminate resistance.

2) The resistance of the depletion load transistor in an nMOS
gate is much larger than the ON resistance of an enhancement
mode transistor, but much less than the OFF resistance of an
enhancement mode transistor.

3) A node, when connected to both Vdd and ground only through
high resistance paths, will retain the previous voltage level
(at least for a limited time). A node connected to both Vdd
and ground through low resistance paths will have an inde-
terminate voltage level.

It is sometimes possible to resolve an indeterminate situation by
assuming a specific resistance ratio for enhancement and depletion
type transistors. However, this makes the model more complex.
Also, the resistance depends not only on the transistor dimensions,
but also on the position of transistor in a network.

In this paper the problem of modeling faults in a two terminal
network of n-channel or p-channel transistors is considered. The
results obtained are applicable to the n-network in nMOS as well
as the p-network and the n-network in CMOS. The results can be
used in both voltage testing and current testing [8] environments.
We present conditions under which SLA may generate wrong re-
sults. In the presence of a bridging fault, unexpected structures
may be formed, giving rise to such situations. Techniques for ac-
curate analysis using switch level models are suggested. For sim-
plicity, it is assumed that all the inputs and outputs are accessible
and only a single bridging fault exists.

Some terms used in this paper are defined below and illustrated
in Fig. 1.

Conductance State of an n-Network (p-Network): An n-network
(p-network) is on when it presents very low resistance between the
output and the ground (Vdd) nodes. It is in the o f state when it
presents a very high resistance between the two nodes.

Internal Node of a Gate: A node in a gate which is neither a
transistor input (gate connection) nor the power supply is an inter-
nal node. In Fig. I , internal nodes are marked with lower case
letters (a to I).

Column: A column consists of a set of serially connected MOS-
FET’s. In a column there are no transistors (or sets of transistors)
in parallel. In Fig. 1, nine columns are shown, marked 1 to 9.

Parallel Connected Columns (PCC): A structure with more than
one column in parallel. Fig. 1 has four PCC’s, marked I to IV.

Internal Node o f a PCC: Any node in a PCC which is not com-
mon to another PCC is defined as an internal node of the PCC. In
Fig. 1, nodes a , b, and d are internal nodes of PCC I, f is an in-
ternal node of PCC 11, g and h are internal nodes of PCC 111, and
i , j , and k are internal nodes of PCC IV.

Conduction Path: Any path which connects the ground and the
output node will be called a conduction path. Fig. 1 has the fol-
lowing conduction paths-ABCFGH, ABCFI, DEFI, DEFGH,
JKNOP, JKQ, LMNOP, and LMQ.

Logical Node: A logical node is a logical input or an output
node of a gate. In general all logical nodes are outputs of gates or
complex gates.

Deterministically Testable Fault: A fault is deterministically
testable if there is at least one vector which will definitely (under
the switch level modeling assumptions) cause the logical output to
be the complement of the output of fault free circuit.

Equivalence of Switch Level and Circuit Level Analyses: In a
MOS network, if SLA generates the same conductance state as that
provided by the circuit level analysis, or if the result of the SLA is
indeterminate, the results are said to be equivalent. When SLA pre-
dicts an indeterminate result, the circuit level analysis often pro-
duces a definite result. In this case, SLA cannot be faulted because
it does not use specific information about the parameter values. In
fact circuit level analysis could sometimes be misleading because

0278-0070/89/0700-0807$01 .OO 0 1989 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:30 from IEEE Xplore. Restrictions apply.

