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ABSTRACT

We present a static control-flow analysis for JavaScript pro-
grams running in a web browser. Our analysis tackles nu-
merous challenges posed by modern web applications includ-
ing asynchronous communication, frameworks, and dynamic
code generation. We use our analysis to extract a model of
expected client behavior as seen from the server, and build
an intrusion-prevention proxy for the server: the proxy inter-
cepts client requests and disables those that do not meet the
expected behavior. We insert random asynchronous requests
to foil mimicry attacks. Finally, we evaluate our technique
against several real applications and show that it protects
against an attack in a widely-used web application.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]: Reliability

General Terms

Languages Security

Keywords

JavaScript, Ajax, Control-Flow Analysis, Intrusion Detec-
tion

1. INTRODUCTION
Web applications that use client-side scripting are nearly

ubiquitous: today, 98 of the 100 most-viewed web sites in
the US use client-side JavaScript, and half of these use XML-

HttpRequest (xhr), the asynchronous callback mechanism
that characterizes Ajax web applications. The attraction of
Ajax applications is that they can have a richer user inter-
face and lower latency. However, they are also vulnerable to
new kinds of attacks.

In an Ajax web application, the web server exposes a com-
plex API to the client via a set of urls. The client-side
JavaScript and the server-side program are written together,
and the server may expect the client to invoke the urls in a
particular sequence, with particular arguments. A malicious
client, however, can invoke the urls in any order and with
any arguments. This paper presents a technique to mitigate
such attacks.
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We have built a static control-flow analyzer for the client
portion of Ajax web applications. The analyzer operates
on the html and JavaScript code that constitute the pro-
gram executed by the web browser, and it produces a flow
graph of urls that the client-side program can invoke on the
server. We install this request graph in a reverse proxy that
monitors all requests; any request that does not conform to
this graph constitutes a potential attack. Our tool can pre-
vent many common cross-site scripting (xss) and cross-site
request forgery (csrf) attacks.

Our work is inspired by that of Wagner and Dean [33] and
others (see §9), who used program analysis to build system
call monitors and intrusion detectors. We share the following
strengths and weaknesses with that line of research: we ob-
tain a monitor automatically, without training against test
data; we use conservative analyses to avoid false positives;
we obtain significant coverage, but do not achieve complete
coverage, e.g., we cannot stop a client from leaking data to
third parties, and mimicry attacks [33] in particular require
careful countermeasures (see §6 and §8).

Browser-based JavaScript poses many novel challenges for
our analysis. For example, JavaScript programs interact
with the browser via the Document Object Model (dom), a
representation of the web page shown to the user; the dom is
event-driven and accepts asynchronous inputs from the user.
Different browsers can implement the dom in very different
ways, so developers use large JavaScript frameworks to mask
these differences. Programs interact with the server via an
asynchronous callback mechanism, xhr; sequential requests
from the client can arrive out-of-order at the server. To re-
duce latency, clients often load or create scripts dynamically.

To the best of our knowledge, ours is the first effective
program analysis for non-trivial JavaScript programs. Our
analysis does not rely on knowledge of the server-side pro-
gram, so it can be used with a variety of server technologies.
The results of this program analysis are, of course, useful in
other contexts such as optimization, debugging and docu-
mentation, which we do not discuss here.

To summarize our contributions: We analyze real-world,
browser-based, event-driven JavaScript programs. We con-
struct a graph that captures a well-behaved client’s interac-
tions. We construct a proxy to monitor the client. To defend
against mimicry attacks, we insert random asynchronous re-
quests while preserving behavior; we perform this obfusca-
tion efficiently, and discuss how it also improves the mon-
itor’s performance. Finally, we show that these techniques
scale to working applications and detect attacks on them.
After describing our work, we discuss its limitations in §8.



Figure 1: Request graph for a blog

2. MOTIVATING EXAMPLE
We use part of a blogging system written for a student

homework assignment as a running example. The applica-
tion supports multiple blogs and authentication: anyone can
read posts, but only authors can create, edit, or delete posts.
The application asynchronously saves drafts of posts.

Most of the data sent to the server is unstructured, user-
generated content (the posts). However, the requests (in this
paper, always from client to server) and responses (server-
to-client) are themselves structured, and there is structure
to the sequence of messages. This structure is modelled by
the request graph, whose nodes specify the expected message
structure and edges specify the sequence of messages.

Figure 1 shows the request graph that our tool generates
for the application (with a few uninteresting nodes elided
for simplicity). From the server’s perspective, the client-side
code executes according to the graph, starting at the root
node 1, where it sends a login request to the server. When
the login succeeds, the client receives a session id response
from the server (node 2), and then enters a loop (indicated
by the Repeatable node 3) where it obtains a listing of the
blog posts from the server, and then lets the user nondeter-
ministically select from various activities (creating, deleting,
editing posts). The nondeterministic choice is indicated by
the Or node 6.

This simple graph illustrates several challenges that our
analysis must overcome:

• When an author creates a new post, the client-side
code first makes a request to publish the content, then
makes a second request to clear the auto-save backup.
However, the two requests can arrive at the server in
either order, so we use the And node 12 to compose
them. Requests may interleave in general; only domi-
nating responses order them (§3.1).

• The server’s request api is defined by a collection of
urls (/login, /post, /remove, etc.) and associated ar-
guments. Our analysis must statically determine the

structure of urls and their arguments to correctly dis-
tinguish requests (§3.2).

• When an author successfully logs in, the blog returns a
capability string that is checked by subsequent actions.
This is the sessionId field found in several nodes. Our
analysis tries to identify such capabilities (§3.5) so the
monitor can track them (§5).

The remainder of the paper shows how we handle these chal-
lenges, as well as many others that we have encountered in
real-world applications.

3. THE CONTROL-FLOW GRAPH
Our first step is to extract a control-flow graph from the

HTML and JavaScript that make up the client side of the
web application. (§4 shows how we generate request graphs
from control-flow graphs.)

A control flow analysis for JavaScript must account for
higher-order functions and, similarly, method dispatch. We
use the uniform k-CFA algorithm [23], which is an estab-
lished technique for higher-order control flow analyses.

CFA models a program’s functions as abstract values. Ex-
pressions in a program are mapped to sets of abstract values.
Collectively, these sets form an abstract heap. By explicitly
modelling the heap, CFA sidesteps aliasing issues.

Statements in a program are interpreted as constraints
that flow values between value sets in the abstract heap. By
repeated application of these constraints, an abstract func-
tion can flow from its definition to its use, through arbitrary
sequences of higher-order functions. Constraints are applied
until the heap reaches a fixed-point.

3.1 DOMEvents and Asynchronous Requests
Browsers execute JavaScript in an event-driven fashion.

Events include asynchronous xhr callbacks and dom events
that are triggered by user interactions. As events occur
the browser chooses one and executes a corresponding event
handler; after the handler finishes, the browser chooses an-
other available event, and so on.

Every handler is an entry point of the program, and han-
dlers execute in some sequence. Our analysis cannot predict
the exact sequence, because it depends on user interactions.
However, partial information is available. For instance, fig-
ure 1 indicates that users must log in before they can post.
We incorporate this by assuming that handlers enter the
control-flow graph only when the handler is installed in the
dom. (Currently we do not model removing or disabling
handlers, which introduces some imprecision.)

Figure 2 shows a typical Ajax event handler. It asyn-
chronously sends a blog post to the server and tells the server
to clear the current draft. It motivates several subtleties in
our analysis:

• Every server request goes through xhr; a context-
insensitive analysis would merge all of these flows. It
would not be sufficient to use a special case for xhr,
because xhr is often called indirectly by helper func-
tions. Therefore, we use a context-sensitive analysis,
k-CFA.

• The url and the request data are specified at distinct
method calls, open and send. Our analysis treats these
specially, recording the url and request data in the
abstract request object, so they can be correlated.



var postHandler = function(event) {
var postReq = new XMLHttpRequest();
postReq.open(’/post’);
postReq.onreadystatechange =
function(responseText) {

if (postReq.readyState == 4) {
alert(’Post successful.’); }};

postReq.send(... post data ...);
var clearReq = new XMLHttpRequest();
clearReq.open(’/draft’);
clearReq.onreadystatechange = function(_) {
return; }; // nothing to do

clearReq.send(’’); } // save an empty draft

var postButton = document.getElementById(’post’);
postButton.addEventListener(’click’,postHandler);

Figure 2: Event handler for Post operations

• If we treat the server’s response (responseText) as
entirely indeterminate, the results of our analysis will
be extremely imprecise. §3.2 describes how, instead,
we can infer the structure of values sent by the server.

3.2 Structured Data
An xhr object sends and receives data as strings, which

are usually serialized forms of structured data. In princi-
ple, a sophisticated analysis can recover some of this struc-
ture [30]. In practice, developers know what marshalling
techniques their applications use. Therefore, we ask the
users of our analysis to tell us how data is marshalled, and we
specialize the analysis to obtain better precision. We have
implemented specializations for url encoding and, more in-
terestingly, JavaScript Object Notation (json) [5].

For the json case, it is relatively easy to determine the
structure of the strings sent to servers. The key observation
is that the strings are obtained by a simple serialization of
JavaScript objects. Therefore, we can obtain their structure
by looking at the (abstract) object being serialized and ig-
noring serialization itself (by providing a stub §3.4). Though
the values of the fields of these objects may contain indeter-
minate values (because they contain, for instance, user form
inputs), the structure of the object itself is usually statically
determinate. We thus increase the precision of our security
monitor by matching actual requests seen at runtime against
abstract requests determined during static analysis. Ignor-
ing serialization libraries has an additional benefit: these
libraries tend to be complex and employ reflection heavily,
introducing considerable imprecision into the results of the
analysis.

Responses are more difficult. A client typically unmar-
shalls a json string using eval or a complicated json parser:

req.onreadystatechange = function () {

if (req.readyState == 4) {

result = eval(req.responseBody); ...

Here, req.responseBody is the server’s (indeterminate) re-
sponse string, and so to our analysis, result is an inde-
terminate object. However, the desired shape of result

is indirectly expressed by the application’s field lookups.
For example, if the application sends a login request, the
response-processing code might contain this fragment:

if (result.success == true) {

sessionId = result.sessionId; ...

This code expects an object bound to result that, if defined,
contains a success field, whose truth implies the existence of
a sessionId field, and so on. The constraints generated by
our static analysis formally express this intuition: when an
indeterminate object flows into an expression that accesses
a field (here result.success and result.sessionId), the
analysis adds the field to the indeterminate object, and pop-
ulates it with a fresh indeterminate value.

This is effectively a very lightweight shape analysis [28].
json strings represent syntactic values containing only fields,
not methods; the resulting objects can be treated like any
other object. The soundness of this technique depends on
assuming that the server is well-behaved and returns pure
json only, as we discuss further in §8.

3.3 Dynamically-Generated JavaScript
A web page can modify itself using JavaScript, and the

script can even add new code to the page, which the browser
will load and execute on the fly. This has many uses: for
example, it is used to decrease initial load times and to load
browser-specific code.

Our analysis must handle dynamically-generated scripts,
because they can make requests to the server; ignoring them
would cause false positives—legitimate requests that our
proxy will reject. We use three techniques that work well
in practice.

First, we track string constants and precisely model basic
string operations such as string concatenation. We apply
a permissive html parser to identify dynamically loaded
scripts in these strings. In our experience, simply track-
ing constants and concatenation is sufficient to detect most
scripts. We don’t precisely model the semantics of more
complex string operations.

Second, we handle a common special case where the code
is generated from some external script, e.g.,

"<script src=’" + file + "’></script>"

Usually file is some script known to the developer residing
on the server, but not known to our analysis. In this case,
our analysis asks the developer for the file.

Third, there are some cases where our analysis is not able
to completely determine the structure of the generated code,
but the content of the “holes” cannot affect the soundness
of the analysis. For example, here is a common case used in
AjaxIM [14]:

"<span id=" + id

+ "onclick=’handleClick(" + id + "’)>"

The code constructs a new dom node with an unknown,
unique id, and installs a known handler (handleClick) for
it. In this case, the actual value of the id cannot change the
results of the analysis, so we can proceed without it.

These techniques do not completely solve the problem of
dynamically-generated code, which is undecidable in gen-
eral. We discuss this further in §8.

3.4 Frameworks
In practice, there is no such thing as the dom; different

browsers implement it differently, and web applications and
our analysis must take this into account. Applications use
JavaScript frameworks to cope with these differences. These
frameworks check which browser they are running on, and



GraphNode ::= Begin
| Request(Url∗,Value∗)
| Response(Value∗)
| And
| Or
| Jump(Url∗)
| Repeatable

Figure 3: The grammar of request graph nodes

present a uniform API that hides browser differences. Con-
sequently, frameworks use unusual coding tricks which make
analysis results imprecise, justifying special treatment.

We model the dom as implemented by Firefox, so when a
framework checks for the browser version, our tool picks the
Firefox branch. This means our analysis does not explore all
branches, which would cause imprecision. Supporting more
browsers is simply a matter of elbow grease.

Our analysis sometimes uses a “stub” framework in place
of a real framework. The stub framework replaces some real
framework functions with skeletal JavaScript that captures
essential control flows. In some cases, we have hard-coded
the analysis for some portions of frameworks. This is similar
to the use of stubs in model checkers, where it helps control
the state explosion problem.

We discuss our experience with specific frameworks in §7.

3.5 Capabilities
Upon authentication, many services return session identi-

fiers and similar “capabilities.” Capabilities are created by
the server and are passed back to the server by the client.
For instance, in §2, the blog provides and expects a session
id. Enriching the monitor to track capabilities improves
protection against malicious requests.

In general it is difficult to know what is a capability and
what isn’t. This might require programmer annotation,
which we try to avoid, or knowledge of server-side technol-
ogy, to which we are agnostic.

Fortunately, there is a cheap and practical alternative.
We adopt the heuristic that “capabilities” are just values
that are received in a response and sent, unmodified, in sub-
sequent requests. Given the analysis of requests and re-
sponses (§3.2), identifying these value-flows is simple and
can be done automatically by looking for the above flow
pattern. In figure 1, for instance, the id returned at node 2
is sent with subsequent requests (nodes 8, 11, 13, and 14).
We describe how to monitor capabilities in §5.

4. THE REQUEST GRAPH
The analysis of §3 produces a control-flow graph of the

client program’s behavior. This control-flow graph must be
transformed into a request graph like the one in figure 1.

Figure 3 gives a grammar for the nodes of the request
graph. Begin represents the beginning of the program. Re-
quest nodes describe requests made to the server, while Re-
sponse nodes describe expected server responses. The mon-
itor expects to see all the children of an And node, but in
indeterminate order. In contrast, an Or node corresponds to
program conditionals, so the monitor expects to see only one
branch taken (where no two branches are identical). Jump
nodes represent transitions to other pages.

1. Insert Request nodes immediately after calls to
XMLHttpRequest.send.

2. While there exists a vertex v that represents a JavaScript
statement or expression,

∀vp, vs s.t. the control-flow graph has edges (vp, v) and
(v, vs), insert the edge (vp, vs) and delete the vertex v.

3. For each Request node r:

(a) Create a new And node, a.

(b) Substitute r with a. a therefore assumes the succes-
sors and predecessors of r, which is now disconnected
from the rest of the graph.

(c) Create the edge (a, r).

4. Add an edge from each Request node to its associated
Response node.

5. Replace all nodes that represent dom events with Repeat-
able nodes.

Figure 4: Transforming control-flow graphs into re-
quest graphs

Repeatable indicates that its descendant may repeat in-
definitely; it is used to model the request handlers of dom

nodes. In principle, this cycle can be handled by the graph
itself. We retain Repeatable nodes for two reasons. One
is its use in monitoring, as we discuss in §5. The other is
that Repeatable also handles loops that arise from user
interaction with the dom. Any remaining cycles in the
request graph suggest that a (possibly mutually-)recursive
function is making server requests. These seem to be rare in
JavaScript programs—we have not encountered any in the
applications in §7—and therefore serve as a diagnostic to
the developer.

Generating the Request Graph. Figure 4 presents our al-
gorithm to construct request graphs from control-flow graphs.
The main idea is to focus on the sub-graph obtained by elid-
ing all the operations that execute entirely on the client.
This is Step 2 of our algorithm: we filter out all nodes that
represent statements and expressions, which cannot be ob-
served by the server. However, we must also apply several
other transformations to the control-flow graph.

First, applications construct server requests in steps, by
creating an xhr object, and then invoking its open and send

methods. For each request we therefore create a Request
node, which contains the url and the request data, and
insert it immediately after the send method is applied. This
is Step 1 of our algorithm.

Second, the order in which the server sees requests can
differ from the order in which the client sends them. When
an application makes multiple asynchronous requests, our
control-flow graph sequences them in the order in which they
are sent. The server may, however, receive them out of order,
and this must be reflected in our request graph. Step 3 of our
algorithm inserts And nodes allow reordering of requests.
We have to ensure that this transformation is done correctly
in the presence of branching in an event handler.

Third, each Response handler may be invoked immedi-
ately after its associated Request handler. In Step 4, we
make this dependency explicit by adding an edge from each
Request node to its associated Response handler.



Finally, every dom event handler is an entry point into
the program that may be reentered arbitrarily based on user-
interactions. In Step 5, we make this explicit by replacing all
nodes that represent dom events with Repeatable nodes.

5. THE SECURITY MONITOR
The monitor—which we implement as a reverse proxy—

ensures that the sequence of requests that the server receives
at runtime matches a sequence of abstract requests in the
request graph. We first discuss handling the lack of deter-
minism, then address the treatment of capabilities.

Nondeterministic Request Graphs. Or nodes in the re-
quest graph represent nondeterministic choice, while And
nodes represent nondeterministic order. In addition, a given
concrete request can match several Request nodes (due to
over-approximation). Matching real requests to nodes in
the request graph is thus similar to evaluating against an
and-or tree, à la Prolog. There are, however, two impor-
tant differences: because the input is a potentially infinite
stream of requests, our matching is on-line (in the algorith-
mic sense), not against a fixed and known set of facts; and
we are matching against a graph, not a tree. We omit the
formal algorithm due to lack of space.

One salient detail is the treatment of Repeatable. Say
a Repeatable dominates an And node with child nodes A

and B. Suppose the first request matches B and not A, and
the second matches both A and B. The monitor could then
be in any of three states: it has seen both an A and a B in
the first iteration and is now beginning its second iteration;
it has seen a B in the first iteration and an A in the second
iteration; or, it has seen a B in the first iteration and a B

in the second iteration.
The monitor could allow all three interpretations, but the

number of choices grows rapidly. We therefore assume, in
the above example, that the second request matched the
first iteration’s A, and that the monitor is now beginning
its second iteration. This interpretation is expedient but, in
general, not equivalent to the fully-nondeterministic inter-
pretation. We therefore make this an option that the devel-
oper can choose. In cases where this properly reflects the
program’s behavior—e.g., when the analysis was not able to
detect that a response dominated the next set of requests—
this interpretation loses no generality.

Monitoring Capabilities. The analysis identifies capabil-
ities (§3.5) and marks them in the request graph (e.g., in
figure 1). The monitor can then look for capabilities in
server responses, record them, and verify that subsequent
client requests supply matching capabilities. The monitor
also needs to know when to discard a capability. In practice
the only capabilities we have tracked are session ids, which
can be discarded when the session expires.

6. MIMICRY ATTACKS
The monitor enforces a client’s normal pattern of requests,

but cannot prevent attacks that work within this normal
pattern—mimicry attacks. Many web applications have“con-
sole nodes” or “event loops” that constitute a good basis for
a mimicry attack. Consider, for example, our blogging ap-
plication (figure 1). We wish to prevent, say, a cross-site
request forgery attack, where an attacker causes the client

to /post or /remove by means of an injected script. A clever
attacker could get this past our monitor by first requesting
a listing of all posts, placing our monitor at node 5, from
which all requests are possible.

We can make this more difficult for the attacker by send-
ing clients slightly different applications at different times.
In particular, we want each session to have a different re-
quest graph and the additional requests to contain distinc-
tive data; in turn, each modified request graph can result
from several different client programs (with correspondingly
different control-flow graphs). Overcoming this defense would
require the attacker to embed a sophisticated program anal-
ysis within the attack itself.

In addition, this has the fortunate side-effect of improving
the monitor’s performance. The inserted random requests
serve to distinguish between different request graph paths.
Their receipt therefore prunes the space of nondeterminism.

Our tool inserts guard requests to accompany existing
application requests. Issuing guard requests synchronously
with their associated application requests could double the
roundtrip time to the security proxy, so we issue guard re-
quests asynchronously; the monitor uses a short queue to
wait for both guard and application requests.

Note that this technique critically depends on asynchrony.
Had a cgi-style application tried to use such a technique,
users would have found it unreasonable to repeatedly click
through “guard pages”. Our technique is thus well-matched
with the Ajax architecture. (We discuss a related technique,
the insertion of null system calls [11], in §9.)

Client ProgramMutation. We decide where to insert ran-
dom requests by examining the request graph produced by
our analysis. The analysis maintains a mapping between
the request graph and the client source code, so that we can
efficiently generate the modified client code as necessary.

To guard a chosen Request node in the request graph, we
insert an additional request at a program point that dom-
inates the corresponding actual request, and is dominated
by any preceding request. If there are multiple such points,
we choose one at random.

As mentioned in §3.4, during our analysis we replace some
portions of frameworks with stubs that give us more pre-
cise control-flow for non-framework (application) code. The
stubs exist only during analysis and their Request nodes
should not be guarded. The source mapping identifies nodes
that come from stubs, so we can avoid this.

Prototype Hijacking. Prototype hijacking [24] is a way to
modify the behavior of any JavaScript method, including
xhr. An attacker could use it to alter xhr to record all
requests, and thereby discover how we have inserted random
asynchronous guard requests.

We do not know of a foolproof method to prevent hijack-
ing; it may require changes to the JavaScript language. We
have experimented with a defense in Firefox and Safari and
have found it to be effective against simple attacks. It is
based on the observation that major browsers parse and ex-
ecute scripts in the <head> in order [18]. This means that the
first execution of the first <head> script cannot be corrupted
by other scripts, and can access the uncorrupted xhr pro-
totype. Our defense modifies the first script to store away
the xhr prototype, and install a timed handler that periodi-
cally verifies that xhr has not been altered. It also modifies



the clearInterval method that removes timers by adding a
wrapper that ensures that our timer is not being removed.

Relating the Two Techniques. We have now described
two intrusion detection techniques: monitoring the request
graph (which tracks the order of messages) and inserting
random asynchronous guard requests (which makes it more
difficult for clients to masquerade). Though we have pre-
sented the latter as a means to strengthen the former, the
two are actually distinct methods that can be used indepen-
dently or combined. In particular, sometimes a program’s
request graph has insufficient structure to serve as an effec-
tive deterrent. In this case we can still use the randomization
technique to obtain some protection against malice.

Since these techniques are independent, it’s worth ask-
ing whether a context-sensitive analysis is necessary if we
are only interested in inserting guard requests. It is. We
want to insert guard requests selectively, with potentially
different guards for different requests. Without context sen-
sitivity, potentially all invocations of the send method of an
xhr object will be conflated. We cannot insert the guard re-
quest at that one point, because it would affect all requests.
Instead, for each request, we have start from that send and
follow the control-flow graph backwards to a point in code
that is not reachable from such a reverse flow from any other
request. Without context-sensitivity, the reverse flows from
send will point to all its callers, making it impossible to find
a program point unique to a particular request.

7. EVALUATION
To evaluate the effectiveness of our tools and techniques,

we have applied them in several contexts beyond unit tests.
Each stresses a different aspect of our work:

• Small, student-written blog applications whose request
graphs are fairly straightforward to verify by hand
(§7.2.1).

• Continue and Resume, real applications for which we
have access to the developers, so we can evaluate the
quality of the request graph against the opinion of an
authoritative source (§7.2.2).

• AjaxIM, a widely-used application written by a third-
party, in which our application is able to protect against
a discovered attack (§7.2.4).

• Machine-generated code produced by the Google Web
Toolkit, to determine whether the analysis can cope
with the vagaries of generated code (§7.2.5).

• Two kinds of libraries: Prototype is representative of
many common Ajax frameworks (§7.2.3), while Flap-
jax is unusually control-centric and hence demands
more special treatment (§7.2.6).

7.1 Summary

Graph Quality. Our analysis is able to successfully con-
struct non-trivial request graphs. For the portion of AjaxIM
we analyzed, the request graph has 35 nodes; for Continue,
it has 106 nodes; for Resume, 81 nodes. All have non-trivial
sequences of requests before getting to potentially malicious
nodes (such as those that write data). We discuss AjaxIM

below; in Resume and Continue, even after login, there are
at least two intervening requests between each write. A non-
trivial request graph is, of course, necessary for the server to
be able to detect request ordering violations. (§3.1 argued
the need for context-sensitivity in the abstract. Our evalu-
ation justifies this: without it, these graphs would have had
roughly two nodes with no useful structure.)

Protecting Against Vulnerabilities. These graphs are ac-
tually effective. They successfully detected our injected at-
tacks in the student blogs, Continue, and Resume.

Besides injected attacks, in the process of conducting these
experiments we discovered a true vulnerability in AjaxIM
that allows an arbitrary user to acquire administrative priv-
ileges. This is because neither server nor client sanitizes
messages, so a malicious client can send a message that con-
tains JavaScript to an administrator; this code is executed
on display (i.e., a persistent xss attack). In our experiments,
we revoked the administrator’s privileges and gave the at-
tacker administrative privileges.

Without the security monitor, an attacker simply has to
issue a request to toggle administrative privileges. The ap-
plication structure, however, requires the administrator to
first issue a search request to retrieve a list of users before
administrative actions can be invoked. This dependency is
captured in our request graph. Therefore, our monitor suc-
cessfully protects against a basic xss or csrf attack.

In principle, a clever attacker could mimic the applica-
tion’s workflow. Even such an attacker, however, would
face a significantly greater barrier due to our use of random
requests (§6): this requires the attacker to determine the
guard requests corresponding to both searching and setting
permissions. We conjecture this requires the attack to con-
tain program differencing [16], a technique that is difficult
to implement effectively for modern languages.

Run-Time Overhead. The run-time overhead—introduced
by the proxy—is minimal; even our prototype, unoptimized
proxy induces a lag of less than half a second, and this can
easily be reduced.

Analysis Time. The running-time of the analysis is much
greater. The analysis of the gwt applications took between
28 seconds and 4 minutes (cpu time) on an Intel Core 2
Duo at 2 GHz. The administrator portion of AjaxIM took
45 minutes. The analysis of Continue and Resume took
2 minutes each. It helps that Continue and Resume are
multi-page applications, so the analyzer effectively re-starts
on each page and “pastes” together the results. This greatly
improves tractability. We note that we have focused on han-
dling a large set of features (§3) instead of engineering for
performance. In addition, the use of a context-sensitive anal-
ysis is bound to be expensive, but we chose it (a) out of
necessity (§3.1), and (b) because the analysis needs to run
only once per code-release, not on every connection.

7.2 Details

7.2.1 Student-Written Blogs

The blog introduced in §2 is one of many written by stu-
dents for an assignment in programming languages course.
Although they are relatively simple, they exercise various
JavaScript techniques, and reflect the diversity of being writ-



ten independently by a group of students with different back-
grounds in Web programming.

We attacked the blogs’ servers using both xss and csrf

attacks. Since these are not production applications, this
was easily done. However, once we applied our request graph
tracing, this became substantially harder to do. Notably,
randomization made a normal csrf attack impossible, as a
single csrf cannot send both the application’s request and
the guard request.

7.2.2 Continue and Resume

We applied this work to two applications: Continue, a
computer-science conference paper manager (continue2.cs.
brown.edu), and Resume, a faculty-hiring job-search man-
ager. Both run mostly on the client and provide features
such as auto-saving of reviews. They are both in active use
by actual, third-party users. Both were developed by a stu-
dent at Brown University. The client portions of Continue
and Resume are, respectively, 4.3 kloc and 2.9 kloc, of which
900 lines are in common libraries.

Both applications make extensive use of the Flapjax frame-
work, which we discuss separately in §7.2.6. Though de-
veloped locally, they predate this project, so it is unlikely
that we significantly biased their construction. They also
have several real-world users who constantly demand new
features, further reducing bias.

Because these are both applications for which we have
extensive contact with the lead developer, we were able to
perform a significant qualitative evaluation. We asked the
lead developer to generate the request graphs for Continue
and Resume. This confirmed our conjecture that develop-
ers grossly underestimate the degree of nondeterminism in
the graph. We then discussed the generated graph and con-
firmed its accuracy in the opinion of the developer. Further-
more, we extensively tested the actual programs against a
monitor using these graphs; normal operation triggered no
violations, while attacks did.

7.2.3 The Prototype Framework

Prototype [25] is one of the most popular JavaScript li-
braries in use: in a 2007 Ajaxian survey, 34% of respondents
indicated that they used Prototype. It is therefore impera-
tive that our analysis handle it. It is also interesting because
it does the bulk of its work by extending standard prototypes
with useful functions, so it truly exercises our analysis (and,
indeed, inspired the need for much of the rest of §3 as well).

To obtain a meaningful control-flow graph, we had to cus-
tomize our analysis slightly. Prototype has two functions
that are difficult to analyze: $A and $w. $A flattens arbitrary
collections into arrays, using reflection and loops. $w uses
regular expressions to break a string of words into an array
of words. We would normally tolerate the default loose ap-
proximation of this function, but Prototype frequently uses
it to transform a string into an array of property names to
which it assigns values (!):

$w(’fade appear grow ...’).

each(function(effect) {

Effect.Methods[effect] =

function(element, options){...}});

(By default effect would be indeterminate, thus adding a
function to all properties of Effect.Methods.) Our analysis-
specific versions of $A and $w total 31 loc.

We had to change a total of 200 loc out of 4 kloc. This
included commenting out the definitions of $A and $w; trans-
forming two general for loops into for each loops that the
analysis can unroll; and hard-coding some browser depen-
dency checks. Other than the changes to the two func-
tions, the remainder could have been automated. After
these changes our analysis handles Prototype effectively, as
demonstrated by our analysis of AjaxIM (§7.2.4).

Having modified the library, we must address soundness.
Testing for the browser is just partial evaluation. The two re-
placed functions, $A and $w, are simple, self-contained func-
tions that are easy to rewrite as primitives. Therefore, we
are confident that these changes do not hurt soundness.

7.2.4 AjaxIM

AjaxIM [14] is a browser-based instant-messaging service.
The client communicates with its server using json and url-
encoded messages. AjaxIM challenges our analysis tools in
two principal ways:

• The client uses many general-purpose frameworks that
tend to be harder to analyze than application code.
The frameworks are Prototype, script.aculo.ous, Pro-
totype Window Class, SoundManager 2, and a JavaScript
MD5 Library. These therefore significantly tested our
handling of large libraries.

• The code makes extensive use of meta-programming.
The only parts of its interface that are statically spec-
ified are dialog boxes such as login and registration
screens. The interesting portions of the interface—
chat windows and administration windows—are con-
structed in JavaScript by string concatenation and dis-
played on-demand. This forced our analysis to support
dynamic loading, mutable environments, and other tech-
niques that are commonly used in real applications.

To enable AjaxIM to pass our analysis, we had to perform
one small modification to the MD5 library. We re-defined
the MD5 function to immediately return an indeterminate
string. Without this re-definition, the analysis would at-
tempt an intractable exploration of call sequences in that li-
brary. All frameworks other than MD5 and Prototype where
handled as-is.

In all, AjaxIM is one of the larger JavaScript applications.
Besides Prototype, the other libraries are about 3 kloc. The
core AjaxIM application is itself another 3 kloc of mostly
JavaScript and html, resulting in an application of about
10k lines. Our analysis currently handles the administrative
portion and can tackle related modules, but does not yet
scale to the entire suite as a whole program.

7.2.5 Google Web Toolkit

Programming directly against the dom is difficult and
non-portable, so developers tend not to do so. We have ap-
plied our analysis to applications that use JavaScript frame-
works to alleviate this problem. An alternative is to treat
JavaScript as the target language for a compiler, such as the
Google Web Toolkit (gwt) [13].

Program analyses often have implicit assumptions about
the structure of programs that are biased by expectations of
what humans normally write. Thus, they tend to be brittle
in the face of machine-generated code. The situation is con-
siderably worse with the gwt, because the generated code



dynamically loads code dependent on the browser in use.
Since our analysis models dynamic loading (§3.3) and mas-
querades as a particular browser (§3.4), these issues don’t
adversely affect us. We were thus able to successfully apply
our tool to the code generated from the sample applications
included with gwt 1.4.61.

7.2.6 Flapjax

The Flapjax [31] library endows JavaScript with a reactive
programming feel. In the Flapjax programming model, pro-
grammers do not write event-handling callbacks. Instead,
they write functional expressions that refer to event sources
(such as fields and buttons); the library converts these de-
pendencies into a dataflow graph and automatically propa-
gates changes through it, akin to a spreadsheet.

The Flapjax library, and programs that use it, make heavy
use of the functional programming features of JavaScript.
Programmers extensively employ higher-order functions and
operators such as maps, reductions, and filters. Therefore,
our ability to successfully handle clients of the Flapjax li-
brary is an indication of the strength of our modeling of
higher-order control-flows.

The Flapjax library itself, however, taxes our analysis
heavily in a peculiar way. Whereas most other libraries are
concerned with data structures or dom manipulation, the
raison d’être of Flapjax is control-flow (namely, the creation
and maintenance of the dataflow graph). As a result, the
library results in a large number of control-flow nodes and
edges that ultimately have no impact on the request graph.

To accelerate the analysis, we manually simplified Flap-
jax. Our analysis cannot track the fine-grained flows of
computation through the priority queue that implements
dataflow evaluation, resulting in excessive imprecision in the
analysis output. It was relatively easy to remove this pri-
ority queue, turning a 5 kloc library into a 500-line stub.
This made the analysis of Continue and Resume (§7.2.2)
straightforward, while retaining sufficient precision.

Having modified the library, we must again address sound-
ness. We were fortunate to be authorities on the imple-
mentation and design of Flapjax; this does mean we might
not find it as easy to modify other libraries with complex
control-flow, but then relatively few of these exist. More im-
portantly, we carefully hand-constructed control-flow graphs
for small programs, computed the corresponding request
graphs, and confirmed that they match what the tool pro-
duces. Most significantly, the stubs resulted in monitors that
worked successfully (§7.2.1, §7.2.2).

8. LIMITATIONS

Soundness. We would like to formally prove that our anal-
ysis is sound. A sound analysis would guarantee that our
tool will never raise a false alarm, an important usability
concern. However, a proof of soundness would require a for-
mal semantics for JavaScript and the dom in browsers, and
this does not exist. It would be interesting to define this
semantics, but that is a work unto itself, one that would
have to take into account the many variations in browsers
currently in the field.

We nevertheless claim that our approach is principled.
First, we begin with well-known analyses that have been
proven sound in their original context. Second, in applying
these analyses we have listed the assumptions required for

soundness, and have presented (informal) arguments for why
the assumptions hold in our application. Third, whenever
our monitor raises a false alarm, we immediately know that
our analysis must be unsound, and can appropriately de-
bug it. (Indeed, we found some such surprises—often based
on nuances of the browser’s dom—in the process of testing
our tool.) We are thus applying the experimental method,
which is necessary when studying programs in the wild, as
opposed to constructing a semantics in a vacuum.

There remain two practical concerns. The first is the use
of dynamic loading and eval. Many uses of eval in ap-
plications are for parsing json strings, which we do model
(§3.2). Similarly, we detect and manage dynamic code load-
ing (§3.3). Like all other static analyses, however, we can-
not trace arbitrarily complex string expressions that result
in loading or evaluating code; our analysis bears this caveat,
and should be complemented by dynamic methods. The
second concern is the use of stubs. We present empirical ev-
idence that our stubs do not cause unsoundness (§7.2.3 and
§7.2.6). Since our stubs are written in JavaScript, relating
them to the original framework code reduces to reasoning
about program approximation, which is well studied.

Other Concerns. We have argued that attacking our tech-
niques would require embedding an extremely sophisticated
program analysis. There is one other avenue: to literally
mimic the user’s interactions (by simulating “pressing but-
tons”, etc.). In the simplest of such attacks, the user would
see the interface responding to actions they did not perform
and should realize that something is awry. A more sophisti-
cated attack could be carried out in a hidden frame.

Since our program analysis targets JavaScript exclusively,
our evaluation is limited to applications that serve static
html files and use Ajax for all dynamic content. However,
our analysis of client-side JavaScript could be combined with
analyses of various server-side scripting technologies.

Our monitor cannot distinguish between sessions auto-
matically; instead, the user must provide an application-
specific predicate that can distinguish sessions (which usu-
ally works by pattern-matching against the url or exam-
ining cookies). It might be possible to infer this predicate
from the request graph itself, and in special cases such as
when using the gwt.

Though we do handle multi-page applications (§7.1), our
request graph does not account for the use of browser op-
erations such as the Back button. Prior work on verify-
ing server-based applications that shows how to extend a
control-flow model to accommodate browser operations [21]
is compatible with the techniques in this paper.

As we discussed in §3.1, we do not model actions such as
disabling an event-handler by disabling the associated dom

element. Because programs do disable events, recognizing
this would lead to more precise monitors.

Our analysis currently handles JavaScript both in stand-
alone files and inside html files (both in <script> tags and
inlined in the html). It does not, however, handle other
sources of JavaScript such as cascading style-sheets.

We handle data formats based on url encoding and json,
but not xml. This is mostly due to expediency: it saved the
need for an analysis to handle xml data structures (which
are superficially similar to json, which is also semi-structured,
but introduce many more complexities such as namespaces).
We would like to add such an analysis in future work.



9. RELATED WORK
System call monitoring is an established technique for in-

trusion detection in operating systems; our technique is sim-
ilar, except it deals with remote requests instead. Some
system call monitors use training on dynamic examples to
obtain the model of calls to enforce [9]. Training has ad-
vantages but, as Gates and Taylor [10] indicate, also faces
several problems, such as false-positives and the need for
good test inputs (that reflect system changes over time).

Other systems use a model of calls constructed through
static analysis [33, 7, 12, 26]. These systems all address
operating system monitoring, where the operating system
(corresponding to our server), monitor, and application (cor-
responding to our browser client) all run on the same ma-
chine. Therefore, there is no problem with requests being re-
ordered during transmission. As a result, these approaches
do not handle indeterminacy in the order of reception, as
we must (§4). Also, these works do not discuss the use of
random requests to obfuscate client program call sequences.

Giffen et. al [11] remotely monitor untrusted, distributed
clusters. They do not need to address indeterminacy because
their clients are entirely synchronous, so a new message is
sent only after receipt of the previous one’s response. Multi-
threading on the client would cause problems, but this work
only monitors single-threaded applications; the paper says,
“thread swaps will most likely cause the run-time model to
fail.” To curb nondeterminism, their work employs two tech-
niques. The first is to insert null system calls. As we note,
our random requests have the same effect (§6). In addi-
tion, they apply binary rewriting to assign unique names
to call sites, to further curb nondeterminism in the mon-
itor (an analogous technique, call-signing, is presented by
Rajagopalan et. al [26]). Because invocations of xhr are,
however, often deep within frameworks, signatures cannot
be placed at invocations of that function; they must instead
be “pushed up” the call chain to where the requests are re-
ally made. This is likely to require considerable precision
from our control-flow analysis.

Giffin et. al [12] present Dyck models as an efficient tech-
nique for static analysis and suggest their use for remote
intrusion detection. Applied naively, the Dyck model intro-
duces sequencing, breaking asynchrony. A successful appli-
cation of the Dyck model to Ajax applications might involve
a cascade of asynchronous calls. However, such an attempt
would require sophisticated program transformations to pre-
serve semantics, and the authors do not discuss this.

Intrusion detection systems for web servers (e.g., [3]) work
with http and lower-level abstractions, sometimes incor-
porating models of server mechanics such as database and
filesystem accesses. Our work models application-level se-
mantics and is thus complementary.

Sharif et. al. [29] prove that intrusion detection systems
that monitor control flow are strictly more precise than sys-
tem call monitors. They discuss a technique for monitor-
ing control flow events with an external monitor. Our sys-
tem only monitors clients’ requests, not control flow events.
However, it may be possible to adapt their technique to mon-
itor control flow events in the browser.

AjaxScope [20], BrowserShield [27], and CoreScript [35]
secure browsers from known vulnerabilities by rewriting html

and JavaScript. The JavaScript rewriting we use for insert-
ing random requests (§6) is a simpler transformation and
sufficient for our purposes, but we believe our technique for

avoiding prototype hijacking attacks would be more robust
if implemented as BrowserShield rewriting rules.

Static analyses have been applied to detect vulnerabilities
in server-side web applications [1, 6, 19, 22, 34]. These com-
plement our client-centric approach. These efforts handle
only the procedural subset of php (Balzarotti et al. [1] man-
ually transform the objects they encounter). In contrast,
JavaScript is inherently object-oriented and higher-order,
which makes objects unavoidable and analysis significantly
harder. Jhala and Majumdar [17] provide a detailed model
of interprocedural analysis of asynchronous programs, but
for first-order programs. In contrast, Self [32] is another
dynamically-typed, prototype-based language, but its most
sophisticated analysis [2] relies heavily on dynamic feedback.

Swift/Jif [4] gives developers guarantees about informa-
tion flow security. It assumes applications are written in
Java augmented with information flow checks, and uses the
gwt to compile these to JavaScript. This work is essentially
incomparable to ours, since we do not place such a strong
burden on developers of the server application.

10. FUTURE WORK
A great deal of client-side JavaScript code is concerned

with presentation details, usually expressed through dom

manipulation. Because most dom updates do not affect the
request graph, we can model them as no-ops; but we still
pay the price of analysis. If we could safely determine, using
syntactic criteria, when code is uninteresting for control-flow
analysis, we could skip a large volume of it. This would
give us the scalability we will need as client-side JavaScript
programs grow in size and complexity.

Our proxy currently maintains per-session state. This has
two problems. First, we must be able to identify when a
session begins and ends; we currently do this manually, and
would prefer to obtain directives from the server application.
Second, this use of state potentially hurts scalability. We
would like to adopt techniques analogous to call-signing [11,
26] to reduce the use of state, but these techniques need to
be generalized to handle higher-order languages.

We employ the Prefuse Toolkit [15] to visualize the control-
flow and request graphs. While the visualization of the
control-flow graph is most useful to us, it is the request graph
that is most valuable to the developer. The current interface
does not, however, provide feedback on, for instance, regions
of the program where the degree of precision in the analysis
should be increased or decreased.

The request graph is useful as a specification of potential
client behavior. For instance, we can use it to create test
inputs for the server. In particular, given that developers
are known to be weak at reasoning about interleaving and
ordering in concurrent contexts, the And nodes show differ-
ent orderings that the server must be able to handle, some
of which the developer may have overlooked.

As our performance shows (§7.1), analyzing JavaScript
with contextual information can be quite expensive. Though
JavaScript has no formal notion of modules, even infor-
mal modularity boundaries (such as web pages) help enor-
mously. It should, therefore, be possible to employ modular
flow-analyses that have been effective for other dynamically-
typed languages [8] in this context.
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