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Abstract

We propose using stereo matching for 2-D face recogni-
tion across pose. We match one 2-D query image to one 2-D
gallery image without performing 3-D reconstruction. Then
the cost of this matching is used to evaluate the similarity
of the two images. We show that this cost is robust to pose
variations. To illustrate this idea we built a face recognition
system on top of a dynamic programming stereo matching
algorithm. The method works well even when the epipolar
lines we use do not exactly fit the viewpoints. We have tested
our approach on the PIE dataset. In all the experiments, our
method demonstrates effective performance compared with
other algorithms.

1. Introduction

Face recognition is a fundamental problem in computer
vision. There has been a lot of progress in the case of im-
ages taken under constant pose [15]. There are several ap-
proaches to handling pose variation [11, 7, 9]. However,
there is still a lot of room for improvement. Progress would
be important for applications in surveillance, security, the
analysis of personal photos and other domains in which we
cannot control the position of subjects relative to the cam-
era.

Correspondence seems quite important to produce mean-
ingful image comparisons. Existing systems often align the
eyes or a few other features, using translation, similarity
transformations, or perhaps affine transformations. How-
ever, when the pose varies these can still result in fairly sig-
nificant misalignments in other parts of the face, as we will
demonstrate.

In many real applications of face recognition, the epipo-
lar geometry of the cameras is approximately known even
when the distance between cameras is unknown. In par-
ticular, when we take upright pictures of people, as in per-
sonal photos, the epipolar lines are approximately horizon-
tal. Therefore,we propose using stereo matching to produce
a measure of the similarity of two faces (in unknown poses).
We show that the matching cost is robust to horizontal pose

variations. Note that we are not interested in performing
3-D reconstruction. We show that the method works well
even when the epipolar lines we use are not accurate due to
a significant difference in height in the two cameras.

The rest of the paper is organized as follows. Sec. 2
discusses related work. Sec. 3 analyzes the use of stereo
matching algorithms for recognition across pose. Sec. 4
presents the details of our face recognition method and Sec.
5 presents and analyzes all experiments. Sec. 6 concludes.

2. Related Work

Zhao et al. [15] review the vast literature on face recog-
nition. Although the bulk of this work assumes fixed pose,
there have been a number of approaches that do address
the problem of pose variations. Many of these methods use
some 3-D knowledge of faces to compensate for pose.

Blanz and Vetter [3] use laser scans of 200 subjects
to build a general morphable model of three dimensional
faces. Then, with the aid of manually selected features, they
fit this model to images. The parameters of the fit to two dif-
ferent images can be compared to perform recognition. In
their experiments they show strong results for a subset of
the poses in the PIE database.

In Romdhani et al. [11] shape and texture parameters of
a 3-D morphable model are recovered from a single image.
They present exhaustive results of experiments with pose
variations for the PIE dataset and show strong results (the
best results we’re aware of with pose variation).

Basri and Jacobs [1] use a 3D model to generate a low di-
mensional subspace containing all the images that an object
can produce under lighting variation. Pose is determined
using manually selected point features.

In Georghiades et al. [6] a 3-D head model is computed
for each person using a gallery containing a number of im-
ages per subject taken with controlled illumination. Pose
variation is handled by sampling the set of possible poses,
and building a 2-D model for each one. They evaluate their
method using the Yale Face Database B. However, it is not
clear how such a method might perform using arbitrary gal-
leries and probes.

In Gross et al. [7] two appearance-based algorithms for



face recognition across pose and illumination are presented.
One of them is called eigen light-fields. At the core of the
method is theplenoptic functionor light field. To use this
concept, all of the pixels of the various images are used to
estimate the (eigen) light-field of the object. They evaluate
their results using the CMU PIE dataset [12]. In its assump-
tions, (recognizing faces across general unknown poses),
this method is the most similar to ours. However our ap-
proach is simpler and our results are better.

The other method presented in Gross et al. [7] is called
Bayesian Face Subregions (BFS). The algorithm models the
appearance changes of the different face regions in a proba-
bilistic framework. Using probability distributions for simi-
larity values of face subregions, the method computes the
likelihood of probe and gallery images coming from the
same subject. The method is particularly useful when the
probe pose is known.

Beymer and Poggio [2] generate 2-D virtual views from
a single image per person using prior knowledge of the ob-
ject class (in particular symmetry and prototypical objects
of the same class) using optical flow. Once the virtual view
has been generated the images are compared. The method is
similar to ours in the sense that it is decidedly 2-D and that
it stresses the importance of having good correspondences
for face recognition across pose.

Many other approaches compensate for some 2-D de-
formations in matching, which may partially compensate
for the effects of pose. A notable example is the work of
Wiskott et al [14]. They developed a method called Elastic
Bunch Graph Matching (EBGM) that is a simplified imple-
mentation of dynamic link architecture methods based on a
neural network and a geometric measure.

3. Analysis of Stereo Matching for Face Recog-
nition

Most work in image-based recognition aligns regions to
be matched with a low-dimensional transformation, such as
translation, or a similarity or affine transformation. Instead,
we use stereo matching. When we enforce the ordering
constraint, this allows for arbitrary, one-to-one continuous
transformations between images, along with possible occlu-
sions, while maintaining an epipolar constraint. In this sec-
tion we show that the greater generality afforded by stereo
matching may be necessary for face recognition, and that
stereo matching will not be too sensitive to noise in deter-
mining the epipolar lines.

We illustrate this using a very simplified model of faces,
in which we calculate the disparity maps that will correctly
match two images.

1. We model the face as a cylinder. Perturbations to this
model, such as adding a nose, can be handled fairly
easily.

θθ

frfl
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Figure 1. Our very simplified model of faces.

2. We assume the face is viewed by two cameras with
image planes that are rectified to be perpendicular to
thez axis and that the cylinder axis is they axis. This
is roughly the situation when an upright person pho-
tographs another upright person. For simplicity, we
will assume that the cylinder lies on thez axis, that the
camera focal points lie on thex axis at points symmet-
ric about the z axis (see Figure 1). We call the left and
right focal pointsfl andfr respectively.

3. We assume that the distance from the camera to the
person is much bigger than the radius of the cylinder
that represents the person. Specifically, we assume that
vectors from the camera focal point to any location on
a horizontal cross section of the cylinder have the same
direction. If we imagine that the cylinder (face) has a
radius of three inches, and the distance from the cam-
era to the face is 8 feet, we can calculate that a vector
from the focal point to the center of a cross-section of
the cylinder will be within 5.5 degrees of a vector to
any point on the cylinder cross section, so this approx-
imation is not too bad.

These assumptions simplify our presentation, which could
be readily extended to other settings.

We will analyze disparities on they = 0 plane. Given
these assumptions, each camera will see half of a circu-
lar cross-section. They will not see exactly the same half-
circle, however, as there will be some occlusion. Without
loss of generality assume the radius of the circle is 1. We
will denote the angle between the z axis and a vector fromfl

to the cylinder byθ. The corresponding angle for the right
camera will then be−θ. Definel1 andl2 to be two points on
the circle, such that the tangent lines to the circle atl1 andl2
pass throughfl. That is,l1 andl2 are the first and last points
on the circle that are visible in the left image. DefineL to
be the line connectingl1 andl2. We can similarly definer1

andr2 for the right image. So, for example, the region of
the circle betweenr1 andl2 is visible in both images.
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Figure 2. The circle paramerized by the angleφ.

Note that every line connectingfl to L intersects the cir-
cle in a single point that will be visible in the left camera.
So one way to determine the image of the circle in the left
camera is to project the visible half-circle ontoL using these
lines, and then to consider howL is projected onto the left
camera. Because we assume the cylinder is small relative
to its distance to the camera, we can approximate the pro-
jection ofL into the left camera using scaled-orthographic
projection. Without loss of generality we can normalize the
left image so that the width of the circle’s projection is 1
(this is in image units, which may differ from 3D units), and
the x coordinate of the image ofl1 is 0. This is illustrated in
Figure 2.

We can parameterize points on the circle by the angleφ,
which we take relative tol2 (see Figure 2). Consider some
such pointp. We can determine the location ofp in the left
image, by considering the line throughp andfl. The point
where this line intersectsL, call it Pl, will appear in the
same image location asp. Define the distance fromPl to l1
to bed(l1, Pl). Then thex coordinate ofp in the left image
is d(l1, Pl)/2 = (1+cos φ)/2. Similarly, its position in the
right image will be(1 − cos(π − 2θ − φ))/2. If we define
the disparity,d, in a matched point to be itsx coordinate in
the left image minus thex coordinate in the right; we get:

d = (cos φ + cos(π − 2θ − φ))/2 (1)

It is straightforward to show that disparity is minimized by
φ = 0 or φ = π − 2θ, which are the furthest points visible
in both cameras, and maximized byφ = (π− 2θ)/2, which
corresponds to the point closest to the cameras.

We are interested in the variation between the minimum
and maximum disparity values,∆d. We have:

∆d = cos
(π

2
− θ

)

−
1

2
−

cos(π − 2θ)

2
(2)

Figure 3. Change in disparity relative to the size of the face as a
function ofθ.

This is maximized forθ = π/6, when∆d = 1/4. Figure 3
shows how the maximum change in disparity varies withθ.
In Figure 3, we can see that for a large range ofθ, disparity
changes quite a bit within the image.

From this analysis, we can see that for a cylinder, dis-
parity in an image can vary by as much as 1/4 of the ap-
parent width of the cylinder, and frequently varies substan-
tially. These variations in disparity cannot be accounted for
by aligning the images with a linear transformation, since
linear transformations can only create linear disparity maps.
In scenarios such as the one described here, because of the
symmetry of the viewing conditions, we can demonstrate
that the optimal linear transformation to align the two im-
ages will simply be the identity transformation, which does
not account for any of these variations in disparity. Note
that the amount of disparity is independent of the distance
from the cameras to the face, because we measure disparity
relative to the apparent size of the face.

Ideally, one should determine the epipolar geometry
prior to matching two faces. However, in many cases, im-
ages result from an upright photographer taking a picture
of an upright subject. This results in epipolar lines that are
approximately horizontal. If we align the eyes in two pho-
tographs, this will align corresponding horizontal epipolar
lines. However, error will result when epipolar lines are not
purely horizontal. To get a sense of the possible magnitude
of this error, we analyze a simple example.

Consider the case in which we take two pictures of a
face that is five feet high, at a distance of eight feet. But
suppose that the disparity is vertical instead of horizontal,
because one photograph is taken from a height of five feet,
and the second is taken from a height of six feet. Vertical
disparity will be zero at the eyes, which are aligned, and
will be maximized at the point that is closest to the cameras,



the tip of the nose. If we assume that the nose is about
one inch long, then using similar triangles we can determine
that it appears at the same image location as a point 1/8 of
an inch below the nose, in the second image. For a face
that is six inches long, the vertical disparity will therefore
be about 2% of the height of the face in the image. This
error is small compared to the variations of up to 25% in
horizontal disparity that can arise in the situation we analyze
above. Of course, this is just an illustrative example; the
error introduced by mis-estimation of the epipolar lines will
depend in practice on the viewing conditions typical in a
specific application. Our example simply makes the point
that in some common settings, this error will be quite small,
while stereo matching can compensate for correspondence
errors that will be large.

4. Stereo Matching and Face Recognition

We require an efficient stereo algorithm appropriate for
wide baseline matching of faces. A number of methods
might be suitable. We have used Criminisi et al. [5]1 which
has been developed for video conferencing applications and
so seems to fit our needs. It is not obvious that it will work
for the large changes in viewpoint that can occur in face
recognition, but we will show that it does.

It is important to stress that we are relatively unaffected
by some of the difficulties that make it hard to avoid artifacts
in stereo reconstruction. For example, when many matches
have similar costs, matching is ambiguous. Selecting the
right match is difficult, but important for good reconstruc-
tions. However, since we only use the cost of a matching,
selecting the right matching is unimportant to us in this case.
Also, errors in small regions, such as at occluding bound-
aries, can produce bad artifacts in reconstructions, but that
is not a problem for our method as long as they don’t affect
the cost too much.

The core of the stereo method calculates a matching be-
tween two scanlines (rows of each face). We use the 4
planes, 4 transitions stereo matching algorithm describedin
[5]. This is a dynamic programming stereo matching algo-
rithm that is fast and performs well when compared to other
methods. The benefit of this formulation is having more
control than traditional one plane models [4].

The method defines 4 planes (or matrices) calledCLo,
CLm, CRo andCRm, which capture matching and occlu-
sions in the left and right images. The planes naturally de-
fine the persistence of states. By setting the state transition
costs adequately many state transitions can be favored or
biased against, for example long runs of occlusions can be
favored over many short runs by setting a high cost for en-
tering or leaving an occluded state.

1We also tried the method described in Cox et al. [4] and found the
method to be a bit faster but less accurate than the method described in
Criminisi et al. [5].

The elements of the cost matrix are initialized to+∞
everywhere except in the right occluded plane where:

CRo[i, 0] = iα ∀i = 0 . . . W − 1 (3)

The forward step of the 4-state DP computes the four cu-
mulative cost matrices according to the following recursion:

CLo[l, r] = min











CLo[l, r − 1] + α

CLm[l, r − 1] + β

CRm[l, r − 1] + β

(4)

CLm[l, r] = M(l, r) + min



















CLo[l, r − 1] + β′

CLm]l, r − 1] + γ

CRm[l, r − 1]

CRo[l, r − 1] + β′

(5)

whereM(l, r) is the cost of matching thelth pixel in the
left scanline with therth pixel in the right scanline.α, β,
β′ andγ are parameters that can be set experimentally.CRo

andCRm are symmetric. Our experiments show that the
method is rather insensitive to these parameters and all ex-
periments shown here are run withα = 0.5, β = β′ = 1.0
andγ = 0.25 as recommended in [5].M(l, r) is a fast ap-
proximation to the normalized cross correlation of a3 × 7
window around the points(l, s) and (r, s) of the images,
wheres is the current scanline.

The cost of matching the two scan linesl1 and l2, de-
notedcost(l1, l2), is: CRo[l−1, r−1]. The optimal match-
ing solution will be a sequence of symbols in the alphabet:
{CLo, CLm, CRo, CRm} which can be obtained by follow-
ing a backward step. But we have no use for the optimal
matching, we only use its cost.

Let cost(I1, I2) define the cost of matching the rows of
I1 with the rows ofI2, as defined above:

cost(I1, I2) =

n
∑

i=1

cost(I1,i, I2,i) (6)

whereI1,i is the i-th scan line (row) of image 1. Given
two images with unknown pose,I1 andI2, we define the
similarity of the two images as:

similarity(I1, I2) = min



















cost(I1, I2)

cost(I2, I1)

cost(flip(I1), I2)

cost(I2,flip(I1))

(7)

since we do not know which image is left and which image
is right we have to try both options, one of them will be the
true cost, the other cost will be noise and should be ignored.
Additionally, flip produces a left-right reflection of the im-
age. flip is helpful when two views see mainly different



sides of the face. In this case, a truly correct correspon-
dence would mark most of the face as occluded. However,
since faces are approximately vertically symmetric,flip ap-
proximates a rotation about they axis that creates a virtual
view so that the same side of the face is visible in both im-
ages. For example, if we viewed a face in left and right
profile, there would be no points on the face visible in both
images, but flipping one image would still allow us to pro-
duce a good match.

Finally, we perform recognition simply by matching a
probe image to the most similar image in the gallery. For
the method to work well all the images in the gallery have
to be in the same pose.

5. Experiments

The experimental evaluation is separated into four parts.
All the experiments were run with the CMU PIE database
[12]. The CMU PIE database consists of 13 poses of which
9 have approximately the same camera altitude (poses:
c34, c14, c11, c29, c27, c05, c37, c25 and c22). Three
other poses that have a significantly higher camera altitude
(poses: c31, c09 and c02) and there is one last pose that has
a significantly lower camera altitude (pose c07). We say
that two poses have aligned epipolar lines if they are both
from the set:{c34, c14, c11, c29, c27, c05, c37, c25, c22}.
And we say that two poses have misaligned epipolar lines if
one comes from the set{c34, c14, c11, c29, c27, c05, c37,
c25, c22} and the other comes from the set{c31, c09, c07,
c02}.

The faces were cropped to a size of 40x48 pixels show-
ing only the face. The images were aligned using manually
selected feature points with a similarity transformation.

To be able to compare results with [7, 9] we needed to
use a subset of 34 people because they use 34 people for
training and the remaining 34 for testing. We don’t require
training, but we’re interested in comparing the methods in
equal conditions so we tested on individuals 35-68 from the
PIE database. To compare with [11] we used the whole set
of 68 people.

First, we evaluate our method with pose variation but
fixed lighting. This is done in two separate experiments,
one to compare with [7, 9] and the other to compare with
[11]. Then to illustrate that our method works in more real-
istic situations we evaluated simultaneous variation in pose
and illumination. This too is done in two separate experi-
ments, one to compare with [7, 9] and one to compare with
[11].

5.1. Pose Variation: Comparison with Gross et al.

We conducted an experiment to compare our method
with four others. We compared with two variants of eigen
light-fields[7], eigenfaces[13] and FaceIt as described in

Table 1. A comparison of our stereo matching distance with other
methods across pose.

34 Faces
Method Accuracy

Eigenfaces [7, 9] 16.6%
FaceIt [7, 9] 24.3%
Eigen light-fields (3-point norm.) [7, 9] 52.5%
Eigen light-fields (Multi-point norm.) [7, 9] 66.3%
Stereo Matching Distance 82.0%

68 Faces
Method Accuracy

Stereo Matching Distance 73.5%
LiST (Romdhani et al. [11]) 74.3%

[7, 9]. FaceIt2 is a commercial face recognition system from
Identix which finished top overall in the Face Recognition
Vendor Test 2000. Eigenfaces is a common benchmark al-
gorithm for face recognition. Finally, eigen light-fields is
a state of the art method for face recognition across pose
variation.

In this experiment we selected each gallery pose as one
of the 13 PIE poses and the probe pose as one of the remain-
ing 12 poses, for a total of 156 gallery-probe pairs. We eval-
uated the accuracy of our method in this setting and com-
pared to the results in [7, 9]. Table 1 summarizes the aver-
age recognition rates. Figure 4 shows several cross-sections
of the results with different fixed gallery poses.

The fact that the method performs solidly both when the
epipolar lines fit (with an average of 87.4%) and when they
don’t (with an average of 79.0% ) and overall (with an av-
erage of 82.0% as reported in Table 1) shows the generality
of our method.

In this experiment we observe that in all gallery poses
our method especially outperforms all the other methods for
the extreme probe poses (c34, c31, c14, c02, c25 and c22).

5.2. Pose Variation: Comparison with Romdhani et
al.

We also compared our results with the ones presented in
Romdhani et al[11]. These results are, to our knowledge,
the best reported on the whole PIE database for pose varia-
tion. In this work all 68 images were used, so for this part
we report our results using all 68 faces. Table 1 summarizes
the results of this experiment.

The global average for their method is 74.3%, the global
average for our method is 73.5%. For the subset of poses
in which the epipolar lines fit perfectly our average perfor-
mance is 80.3%, while theirs is 71.6%. We consider the case
where all epipolar lines fit to be our best possible scenario.

2Version 2.5.0.17 of the FaceIt recognition engine was used.



(a) Gallery Pose c27 (b) Gallery Pose c22

(c) Gallery Pose c37 (d) Gallery Pose c31

Figure 4. Cross-sections with fixed gallery pose for the results presented in Table 1. Probe poses marked with * have a vertical misalignment
of about 10 degrees with the corresponding gallery pose.

Our method runs about 40 times faster than the method pre-
sented in [11], and is much simpler. Detailed results are
presented in Table 2.

5.3. Variation in Pose and Illumination: Compari-
son with Gross et al.

We then evaluated the performance of the method across
pose and illumination. One of the objectives of this experi-
ment is to verify that the good performance obtained when
there is variation in pose (the previous experiments) are not
an artifact of the (constant) illumination condition.

In this section we compare our method to Bayesian Face
Subregions (BFS) [7] in the case of simultaneous variation
of pose and illumination. For this experiment, the gallery
is frontal pose and illumination. For each probe pose, the
accuracy is determined by averaging the results for all 21
different illumination conditions. The results of this com-

parison are presented in Figure 5. We observe that our al-
gorithm strictly dominates BFS over all probe poses.

For lighting invariance they use [8] which computes the
reflectance and illumination fields from real images using
some simplifications, while we simply use an approxima-
tion to normalized correlation.

5.4. Variation in Pose and Illumination: Compari-
son with Romdhani et al.

We performed our experiments in such a way that we can
compare with [3] and [11]. For this experiment we used
images of the faces of 68 individuals viewed from 3 poses
(front: c27, side: c5 and profile: c22) and illuminated from
21 different directions. We used light number 12 for the
gallery illumination to be able to compare our results with
[11]. They select that lighting because “...the fitting is gen-
erally fair at that condition”. Our results are presented in



Table 2. Confusion matrix for pose variation. The diagonals are not included in any average. The table layout is the same as [11] and [10].

azimuth -66 -47 -46 -32 -17 0 0 0 16 31 44 44 62
altitude 3 13 2 2 2 15 2 1.9 2 2 2 13 3

Probe Pose c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22 avg
Gallery Pose

c34 - 91 88 66 59 62 47 16 47 57 65 60 90 62
c31 96 - 94 78 62 82 46 19 56 65 90 66 76 69
c14 85 85 - 100 99 66 90 60 85 82 57 81 47 78
c11 71 75 100 - 100 72 96 81 82 88 47 84 49 79
c29 60 68 100 100 - 94 100 84 97 93 46 84 43 81
c09 66 91 71 85 94 - 99 54 97 90 90 82 68 82
c27 57 56 97 100 100 100 - 90 100 99 50 93 49 83
c07 10 18 60 74 82 56 81 - 79 62 16 47 13 50
c05 43 47 91 93 97 93 100 85 - 100 69 100 62 82
c37 71 63 87 90 90 88 97 65 100 - 87 100 76 85
c25 75 91 57 44 49 91 51 19 72 82 - 93 94 68
c02 68 60 87 85 87 71 96 53 99 100 82 - 85 81
c22 85 65 50 38 40 57 38 16 53 69 88 85 - 57

Figure 5. A comparison of out method with BFS. Gallery pose is
frontal (c27) probe poses are as indicated in the x axis, we report
the average over the 21 illuminations.

Table 3. We do not expect our results to be as good as those
of [11], because our algorithm only accounts for lighting
variation by using a fast approximation to normalized cross
correlation as described in Criminisi et al. [5], while [11]
has a 3-D model and performs an optimization to solve for
the lighting that best matches the model to the image.

Our stereo matching method degenerates into an approx-
imation to normalized correlation over small windows when
there is no change in pose. Our method performs better
than Romdhani et al. [11] when there is no pose change
(gallery probe combinations: F-F, S-S and P-P). It is sur-
prising that our method works better than theirs in this case
because we’re using a simple illumination insensitive image
comparison technique and they perform an optimization to

Table 3. Accuracy percentage with pose and illumination variation.
Three galleries and three probes were used. F: Frontal, S: Side, P:
Profile. Light 0 is ambient lighting. The table layout is the same
as [11].

F Gallery S Gallery P Gallery
light F S P F S P F S P

0 100 100 54 99 100 65 38 41 100
1 67 69 38 61 88 15 28 25 75
2 79 76 34 76 87 25 29 19 76
3 84 82 32 85 94 16 34 28 66
4 93 96 34 93 97 26 34 24 75
5 100 97 35 96 100 46 35 19 99
6 99 92 36 83 99 41 22 19 99
7 100 100 39 100 100 71 29 31 100
8 100 100 41 100 100 71 35 46 100
9 91 91 42 99 90 31 32 16 75
10 100 100 43 100 100 65 38 41 100
11 100 100 43 100 100 65 40 50 100
12 - 100 43 100 - 57 38 44 -
13 100 99 43 100 100 50 43 56 100
14 100 94 42 100 100 38 46 54 100
15 100 78 40 97 99 32 32 35 100
16 99 66 39 91 96 24 37 37 99
17 90 88 38 91 96 16 35 22 60
18 96 97 38 96 99 31 35 21 91
19 100 100 38 97 100 59 35 38 100
20 100 100 39 100 100 57 35 51 100
21 100 97 39 100 100 44 36 54 100
avg 95 92 38 94 98 43 35 35 92

solve for lighting.

For this experiment our global average is 74% while the
global average of Romdhani et al. [11] is 81%, which
is considerably better. When there is pose change but no
epipolar misalignment and no light change, we perform bet-



ter. When there is light change and no pose change we per-
form better. This leads us to think that the difference is
in the interaction between pose variation and illumination
variation.

6. Conclusion

We proposed a method to recognize faces across pose.
Compared to existing methods ours is very simple and per-
forms very well. There still is room for improvement in our
method, in the sense that a rich variety of more sophisti-
cated strategies can be pursued at each step. As it is, our
method illustrates a general, simple, viable alternative to 3-
D methods for face recognition across pose [11, 3].

Our method has several interesting properties: (1) it is
robust to vertical disparities even when we don’t account for
them, (2) it degrades gracefully with changes of light and
(3) provided that good correspondences are obtained, the
method degenerates into normalized correlation over small
windows when there is no variation in pose.

While evaluation with the PIE dataset shows that our
method performs very well, evaluation of the method in a
larger, less controlled database remains to be done.

For the case of only pose variation our results are better
than the results of Gross et al. [7, 9]. In the case of only
pose variation, our results are comparable to the results of
Romdhani et al. [11] but our method has the benefit of being
simpler and faster.

For the case of simultaneous pose and illumination vari-
ation, our results are better than the results of [7] but worse
than the results of [11]. This is not surprising since we don’t
do anything special to account for variation in illumination.

Finally, we have presented a general method that has a
simple, well studied way to account for pose variation and a
simple, well studied way to account for light variation and
our experiments show that the method works well.
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