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Abstract

The present study assessed the impact of sample size on the power and fit of structural equation 

modeling applied to functional brain connectivity hypotheses. The data consisted of time-

constrained minimum norm estimates of regional brain activity during performance of a reading 

task obtained with magnetoencephalography. Power analysis was first conducted for an 

autoregressive model with 5 latent variables (brain regions), each defined by 3 indicators 

(successive activity time bins). A series of simulations were then run by generating data from an 

existing pool of 51 typical readers (aged 7.5-12.5 years). Sample sizes ranged between 20 and 

1,000 participants and for each sample size 1,000 replications were run. Results were evaluated 

using chi-square Type I errors, model convergence, mean RMSEA (root mean square error of 

approximation) values, confidence intervals of the RMSEA, structural path stability, and D-Fit 

index values. Results suggested that 70 to 80 participants were adequate to model relationships 

reflecting close to not so close fit as per MacCallum et al.'s recommendations. Sample sizes of 50 

participants were associated with satisfactory fit. It is concluded that structural equation modeling 

is a viable methodology to model complex regional interdependencies in brain activation in 

pediatric populations.
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Undoubtedly, one of the most promising areas of research related to understanding human 

cognition and behavior involves unraveling the complex relations among 

neurophysiologically active brain regions. This may be particularly important for 

populations for which specific deficits have been observed such as individuals with dyslexia, 

who have significant reading difficulties that interfere with adaptive functioning in society.

The majority of existing studies assessing functional interdependencies between activation 

sites (i.e., functional connectivity) have relied on hemodynamic estimates of regional brain 

activity obtained with functional magnetic resonance imaging (fMRI). For instance, Koyama 

et al. (2013) demonstrated that the investigation of functional connectivity in the brain is 

particularly fruitful from the perspective of behavioral remediation. Using t tests they found 

significantly weaker intrinsic functional connectivity between the left intraparietal sulcus 

and left middle frontal gyrus across all dyslexia groups but specific deficits for the no-

remediation group compared with the partially or fully remediated groups. As Chen et al. 

(2011) suggested, however, the use of univariate modeling is limited by the amount of 

information provided in relation to the communication among brain regions of interest and 

neural activity in general.

Our understanding of functional connectivity involves several challenges. First, one obtains 

multiple time-series data from each participant and from multiple regions of interest (ROIs), 

with the likelihood of looped relationships and with the involvement of multiple covariates. 

Second, despite the large number of variables to be modeled, sample sizes are typically 

small because of the cost of obtaining neuroimaging data. Thus, issues of proper modeling 

and power are of paramount importance. Recently, J. Kim, Zju, Chang, Bentler, and Ernst 

(2007) suggested the use of structural equation modeling (SEM) to analyze functional MRI 

data. They implemented their modeling approach on data from 28 participants and 

concluded that their method had promise. However, there was no mention of the stability of 

parameters, the power of the model, or sample size considerations with the former being 

even more important than the latter (Wolf, Harrington, Clark, & Miller, 2013). Similarly, 

Price, Laird, Fox, and Ingham (2009) presented the use of path analysis within SEM to 

model functional neuroimaging data using a restricted model with manifest rather than latent 

variables. Power analysis simulations indicated that sample sizes of fewer than 15 

participants were associated with low power and large parameter bias. More recent 

recommendations involved two-stage ridge least squares estimation (Bollen, 1996) with the 

overall conclusion that a sample size of 50 would suffice in most cases in order to obtain 

proper parameter recovery (Jung, 2013). Thus, although variations of SEM have been 

presented in the literature, what is less known is sample size considerations in relation to the 

size of the model as it relates to the complexity of brain activation patterns. The objective of 

the present study was to evaluate sample size requirements for modeling functional 

neuroimaging data using SEM.

Why Have These Models Been Inaccessible to Neuroscientists?

There are several reasons why SEMs have been inaccessible to researchers exploring 

regional interdependencies in the human brain. First, developers have recommended sample 

sizes that are prohibitive for the method. For example, MacCallum, Lee, and Browne (2010) 
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suggested that for large models (involving more than 100 degrees of freedom [df]) 500 

participants are not adequate to model close fit. Hancock and Freeman (2001) suggested 

including 300 to 500 participants for models having 30 to 60 dfs. Other researchers have 

suggested between 132 and 3488 participants for a test of close fit (MacCallum, Browne, & 

Sugawara, 1996), with as many as 180 participants proposed even for small models 

(McQuitty, 2004). Most researchers would agree that fewer than 200 participants would lead 

to an unacceptably high rate of Type I error, with regard to the omnibus likelihood ratio test 

(estimating absolute discrepancies between the observed and implied variance–covariance 

matrices; Curran, Bollen, Chen, Paxton, & Kirby, 2003; Curran, Bollen, Paxton, Kirby, & 

Chen, 2002; Hu & Bentler, 1999). Second, the enormous amount of data for the limited 

number of participants is associated with participant to variable ratios that again are 

prohibitive of the method (MacCallum et al., 1996). Third, the properties of the 

physiological data may violate some of the assumptions required by the model (e.g., 

multivariate normality) and there may be a need to apply least known distributions (e.g., ex 

Gaussian; Rottelo & Zeng, 2008). Fourth, issues of power may be of concern as the 

inappropriate acceptance of a test of close fit due to a small number of parameters and 

sample size is prohibitive. Fifth, sample size estimation may become increasingly complex 

as one needs to take into account construct reliabilities, variable intercorrelations, number of 

indicators per construct or number of constructs, model complexity, population 

heterogeneity, etc. (Iacobucci, 2010). Last, the fact that physiological data involve complex 

relationships that vary over time, makes an already complex analytical approach difficult or 

even impossible to implement in the majority of available statistical programs (e.g., when 

needed to model various autocorrelation processes, J. Kim et al., 2007).

Covariance Structure Modeling: Description

Covariance structure models use a simultaneous equation approach to define unobservable 

latent factors using observable indicators (Marcoulides, 1989; Raykov & Marcoulides, 

2010). The goal of the model is to minimize the discrepancy between a population 

covariance matrix [model implied variance covariance matrix Σ(θ)] and the model's 

covariance matrix [Σ]. Generally, model fit is evaluated by means of an omnibus asymptotic 

chi-square test (likelihood ratio test [LRT]), which tests the hypothesis that [Σ(θ) = Σ]. Thus 

support of the null hypothesis that the model fits exactly in the population is desired 

(MacCallum & Hong, 1997).

One of the biggest concerns in SEM models is the ability of the researcher to validly test the 

hypotheses of interest. In SEM, several means have been used to evaluate empirical model 

fit.1 Some of those means involve the acceptance of the null hypothesis in the LRT, the use 

of descriptive fit indices (Marcoulides, 1990), and/or evaluation of the residuals. Thus, with 

regard to the validity of the above tests, an important prerequisite pertains to the minimum 

requirements of sample size and the respective estimates of power. Below, there is 

description of procedures to evaluate power using analysis of the residuals (MacCallum et 

al., 1996).

1Defined as the discrepancy between the observed variance covariance matrix S compared with the one implied by the model [i.e., 
Σ(θ)]. For the distinction between theoretical and empirical fit, see Olsson, Foss, Troye, and Howell (2000).
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Power Considerations in Structural Equation Modeling

One important issue related to the validity of the estimates derived from an SEM model 

(Cirillo & Barroso, 2012) pertains to the capacity of the model to identify discrepancies 

between observed relations and hypothesized relations specified in the model. Thus, the 

issue of sample size is particularly important as one evaluates the fit of a confirmatory factor 

analysis model. Early recommendations involved having 10 observations per estimated 

parameter (Bentler & Chou, 1987) or per variable (Nunnally, 1967) and sample sizes 

between 100 and 200 participants (Boomsma, 1982). Others have proposed estimating 

power using change in fit indices rather than the LRT (Marsh, Balla, & McDonald, 1988). 

Fit indices come in the form of standardized statistics, namely the comparative fit index 

(CFI), normed fit index (NFI), adjusted goodness-of-fit index (AGFI) with acceptable values 

ranging greater than .95 (Hu & Bentler, 1999). With regard to residuals, Meade, Johnson, 

and Braddy (2006) suggested that they represent the most unbiased estimates of model fit. 

One such statistic is the root mean square error of approximation (RMSEA; Steiger & Lind, 

1980), which is described in the next section. In the remainder of the introduction we 

describe power analysis using the noncentral chi-square test and RMSEA using examples. 

Then the problem and its practical implications are discussed. Subsequently, a simulation is 

performed using real brain imaging data in order to evaluate the minimum sample 

requirements that are associated with proper model identification.

Power Analysis and Evaluation of Close Versus Exact Fit in Covariance 

Structure Modeling

The fit of a SEM model is evaluated by means of estimating the discrepancy function 

between the observed and model variance covariance matrix. Alternative methods provide 

different weighting criteria in estimating the discrepancies of the two matrices, S and Σ. 

Several such estimations exist, such as the less cumbersome ordinary least squares method 

or the most cumbersome maximum likelihood estimation. When evaluating model fit, 

researchers have suggested moving away from the test of exact fit and attempting to 

estimate close fit as accurately as possible (Hancock & Freeman, 2001; MacCallum et al., 

1996). To this end several fit indices have been proposed with the one gaining more 

acceptance as an index of global fit being the RMSEA (Steiger & Lind, 1980). This index is 

estimated as a function of the discrepancy function F0 and the degrees of freedom (Curran et 

al., 2003).

(1)

The RMSEA has been recommended because it is relatively unaffected by sample size, it 

has a recommended range of acceptable values, it does not require a reference model, it 

makes reasonable adjustments for model length and it provides easy to use confidence 

intervals (Loehlin, 2004; Steiger, 1990). For example, when the RMSEA value of acceptable 

model fit is below the lower level of the confidence interval then one concludes that there is 

a poorly fitted model. On the contrary, limitations of the index have been related to a biased 
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estimation of the noncentrality parameter (Raykov, 2000), model size (Breivik & Olsson, 

2001), and model misspecification and complexity (Curran et al., 2003). The RMSEA is 

estimated using the ratio of the rescaled noncentrality parameter to the estimated model's 

dfs. Recommended conventions suggest that values of .05 and lower are indicative of 

acceptable fit and values between .05 and .08 of mediocre fit. Values greater than .10 have 

been considered unacceptable (Browne & Cudeck, 1993).

MacCallum et al. (1996) proposed that the power to evaluate model fit in SEM should be 

based on discrepancies between null and alternative RMSEA values. Their case was 

grounded on the fact that the chi-square test (and its significance) is a test of exact fit, which 

is of little interest (and may be considered too strict or impractical for real life situations) as 

all models estimated with real data are, to some extent, misspecified. Thus, they described 

three forms of fit, exact, close and not so close fit between a null and an alternative 

hypothesis model based on RMSEA by making use of the confidence intervals around the 

estimated RMSEA value. As mentioned above, a test of exact fit (i.e., RMSEA = 0) is 

considered unrealistic and impractical as it would not be met with even moderate sample 

sizes, although it would likely reflect trivial misspecifications. A test of close fit is 

associated with RMSEA values less than or equal to .05 (Browne & Cudeck, 1993). Not so 

close fit has been defined as reflecting RMSEA values equal to .08. Most researchers would 

also agree that RMSEA values greater than 0.10 are indicative of poor fit. Let's take a look 

at a practical example: In fitting a two factor model the RMSEA confidence interval is .025 

to .05. The model of exact fit is rejected because the value of zero is not included in the 

interval. The model of close fit is plausible because the entire interval is smaller than the 

value of close fit (i.e., .05). Furthermore, the model of not so close fit is rejected because the 

value of .08 is not within the obtained confidence interval and far above the upper limit of 

the confidence interval. Thus, the test of not so close fit is highly implausible.

Power Analysis Using the MacCallum et al. (1996) Approach: An Example

An example of power estimation for a null RMSEA0 = .05 versus an alternative value 

RMSEAa = .08 is shown in Figure 1. This example involves the structural model of Figure 2 

with 5 latent variables and 15 indicators (3 per latent variable). Power involves estimation of 

the non-centrality parameter2 using the formula:

(2)

with N being the sample size, d the number of degrees of freedom, and ε2 the null RMSEA0 

(the value of RMSEA that the model becomes acceptable). In the example of Figure 2, 

drawing a sample from Simos, Rezaie, Fletcher, and Papanicolaou (2013), the noncentrality 

parameter was estimated to be λ0 = (ö− 1)dε2 = (51 − 1) * 76 * (.05)2 = 9.5 under the null 

hypothesis. The respective estimate for the alternative hypothesis λ1 was (51 − 1) * 76 * (.

08)2 = 24.32. So, for approximate power of 80%, α = 5%, null RMSEA = .05, and a 

noncentrality parameter of 9.5, 159 participants would suffice. In this context, the present 

2Assuming that the discrepancy function is properly identified (MacCallum & Hong, 1997).
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study examines how different sample sizes affect the behavior of the parameters in the 

model, namely, the omnibus chi-square test, Type I errors, and biased fit indices.

The Problem Under Study

Modeling neuroimaging data using SEM methods is challenging because it involves 

estimating a large number of parameters using relatively small sample sizes. This apparent 

contradiction is unfortunately built on our estimate of power estimation using the RMSEA: 

When the number of parameters is large (as in extended models that assess functional brain 

connectivity) the sample size required to evaluate close model fit, becomes increasingly 

small (Herzog, Boomsma, & Reinecke, 2007). For example, for a latent variable model with 

80 indicators V defining 8 latent variables ξ, the required number of participants is 29! (for 

power equal to 80%, null RMSEA = .05 and alternative RMSEA = .02). It is rather utopic to 

expect that a sample size of 29 participants would suffice to measure population parameters 

(e.g., factor loadings, standard errors, etc.), for at least two reasons. First, the small sample 

size would adversely affect the estimate of the noncentrality parameter and thus, 

compromising the validity of the sample size estimation.3 Second, LRT estimates would 

likely reflect Type I errors, thus incorrect acceptance of poorly fitted models (Herzog & 

Boomsma, 2009). It has been well documented that chi-square tests are seriously inflated as 

the number of parameters increases (Herzog et al., 2007; Kenny & McCoach, 2003). Third, 

asymptotic distribution theory requires large numbers to provide stable estimates. 

MacCallum et al. (1996) suggested that N should always be greater than p. This proposition 

suggests that for a 70- or 80-item model, sample sizes of 71 or 81 participants would suffice. 

This, however, is a tentative assumption without strong support from the empirical literature. 

On the contrary, power analysis simulations most often suggest sample sizes greater than 

200 participants (e.g., Cirillo & Barroso, 2012; Curran et al., 2003; Hu & Bentler, 1999) 

with 200 participants being particularly inadequate when model sizes increase (Herzog et 

al., 2007). Cases where smaller sample sizes have been recommended involve corrections of 

the maximum likelihood chi-square statistic for various factors (e.g., Bartlett, 1950; Swain, 

1975; Yuan, 2005), which are beyond the scope of the present article. Table 1 presents 

sample size estimates for various SEM designs based on the noncentral chi-square test. As 

shown in Table 1, sample sizes range between 31 and 286 participants. In fact, designs 

having more than 20 measured indicators and between 4 and 10 latent variables, all required 

fewer than 100 participants. So a focal question relates to the adequacy of various sample 

sizes in latent variable structural models in order to explore functional connectivity in the 

brain.

Importance of the Study and Hypotheses Tested

At present the use of multivariate methods that account for the complexity and interactions 

in the brain are of limited use in applied research. Several methodologies have been 

proposed in the literature but have largely been inaccessible to applied researchers. Methods 

related to SEM have been proposed by Price et al. (2009) making use of Bayesian methods 

or Chen et al. (2011) suggesting autoregressive methods within path modeling but with 

3Curran et al. (2003), and Herzog and Boomsma (2009) suggested that the value of λ will be likely overestimated.
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measured variables rather than latent (see also Roebroeck, Formisano, & Goebel, 2005). 

One of the most prominent approaches to correlated structures involves the simplex model 

(Rogosa & Willett, 1985), which is traced originally to the pioneering work of Guttman 

(1954) and posits that later measures of a construct are regressed onto earlier measures of 

the same construct. It is important that proper methods are tested and made accessible so 

that the wealth of available neurophysiological information will be properly modeled. SEM 

is potentially one such methodology, as it allows for modeling complexities in behavior 

(e.g., model loops, cross-lagged effects, autocorrelation structures, etc.), given adequate 

sample sizes. Given cost-related issues in this line of research it is important to select a 

properly estimated sample size to achieve representativeness, parameter stability, and 

correct decision making (regarding hypotheses of model fit). Unfortunately, however, 

information about sample size cannot be drawn from other research-related power analyses 

as the specificity of the complex brain relationships needs to be properly modeled (e.g., by 

modeling multivariate relationships and autocorrelation structures). The use of earlier 

suggested rules of thumb cannot be relied on as these rules have been largely atheoretical 

(not model based), have been outdated, and are unable to account for the complexity often 

encountered with various data types (e.g., continuous versus categorical, dimensional, count, 

etc.). They are also silent with regard to model complexity, magnitude of communalities, 

missing data, and other factors. The present study attempts to (a) model a complex structure 

in the brain of typical readers and (b) evaluate the minimum sample size requirements to 

validly support the hypotheses of interest. The following research questions were examined:

1. What are the requirements in sample size to model an autoregressive structure in a 

confirmatory path model based on the RMSEA?

2. How do different sample sizes affect Type I errors of the LRT test?

3. How does sample size affect the behavior of various fit indices, when null 

hypotheses are true?

Method

Description of Study and Theoretical Model

The data in the present study came from Simos et al. (2013). Participants were 58 right-

handed children (28 boys and 30 girls, with a mean age of 10.4 ± 1.6 years, range 7.5-12.5 

years) with the valid cases being 51. Participants had never experienced difficulties in 

reading and scored >90 on the Basic Reading Composite (average of Word Attack and 

Letter-Word Identification subtest scores of the Woodcock–Johnson Tests of Achievement-

III [W-J III]; Woodcock, McGrew, & Mather, 2001). Neuromagnetic activity was recorded 

from each student, while performing an oral reading task involving three-letter 

pronounceable nonwords (e.g., zan). Using a random schedule, four blocks of 25 stimuli 

were presented using a Sony LCD projector on a screen approximately 60 cm in front of 

each participant. Event-related magnetoencephalographic data segments were recorded with 

a whole-head neuromagnetometer array (4-D Neuroimaging, Magnes WH3600) time-locked 

to the onset of each stimulus. Following artifact rejection, low-pass filtering, baseline 

correction, and averaging across single epochs separately for each participant, a minimum 

norm algorithm was used to obtain estimates of the time-varying strength of intracranial 
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currents (MNE Software, v. 2.5 http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/

index.php; Hämäläinen & Ilmoniemi, 1994) in approximately 6000 anatomically constrained 

cortical sources (obtained through a MRI-derived surface model of each participant's brain; 

Dale, Fischl, & Sereno, 1999). Temporally constrained pairwise functional associations 

between three left hemisphere temporoparietal regions (superior temporal gyrus, STG/

BA22; supramarginal gyrus, SMG/BA40; angular gyrus, ANG/BA39), and the inferior 

frontal gyrus (IFG/BA44/45) were assessed. Functional contributions made by activity in the 

left fusiform gyrus (BA 37) to each of the temporoparietal regions and IFG were also 

explored (see Figure 2). The original study employed partial correlation analysis to evaluate 

pairwise interdependencies in the average current in successive 50-ms bins after controlling 

for autoregressive (or simplex model) effects. The latent variable model fitted to the same 

data is shown in Figure 2 as derived from the results of Simos et al. (2013) with two 

exceptions: paths from fusiform to the angular gyrus and from the angular gyrus to IFG were 

not associated with significant regression coefficients and were dropped from the model. 

The final structural model featured contributions by the left fusiform gyrus to the superior 

temporal gyrus, which in turn affected the degree of activity in the supramarginal, angular, 

and inferior frontal gyri. Activity in the inferior prefrontal cortex was determined by 

superior temporal and supramarginal activation (see Figure 2). Index variables defining each 

latent variable represented activity in early (150-200 ms after stimulus onset), middle 

(500-550 ms after stimulus onset), and late activation in each region (800-850 ms post–

stimulus onset). The sample's estimates were used to simulate the data in the present study.

Covariance Structure Modeling: Description of the Model and the Simulation

The present model poses several challenges. First, it is multivariate in nature with several 

latent variables each defined by several indicators. Second, the indicators represent time 

series observations. Thus, a typical SEM structure would not hold. For this reason we tested 

a correlated structure that theoretically is described by an autoregressive process (in that 

observations at time t are a function of lagged variables from the preceding period; Curran & 

Bollen, 2001; van Buuren, 1997). Implementation of an autoregressive process on measured 

variables, rather than errors, was conducted as suggested by Chen et al. (2011) and J. Kim et 

al. (2007).

Estimating Power

Power analysis was conducted to estimate the required number of participants to achieve 

levels of power equal to 80% for the SEM model described in Figure 3. The estimation 

requires null and alternative models with regard to the magnitude of the RMSEA, the 

degrees of freedom, and the level of significance. The degrees of freedom were estimated by 

subtracting the number of model parameters (elements in the covariance matrix) from the 

number of free parameters in the model (factor loadings, variances of errors, and 

covariances). In SEM, the model parameters are equal to p(p + 1)/2, where p equals the 

number of measured variables [i.e., for a model with 70 measured variables, 70(70 + 1)/2 = 

2485]. The number of free parameters equals the number of factor loadings, the errors and 

the factor covariances (in the above example they are equal to 161; 70 factor loadings, 70 

errors, 21 factor covariances). The degrees of freedom for the structural model were 

estimated using the formula by Rigdon (1994): df = m* (m + 1)/2 − 2 *m−ξ* (ξ− 1)/2 − ö 
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−Γ, with m being the number of measured variables, ξ the number of latent factors, and ö 

and Γ the number of coefficients that are estimated in the ö and Γ matrices. For the present 

study with a SEM model with 15 measured variables and 5 latent constructs, the number of 

degrees of freedom is 76 (i.e., 120 − 30 − 10 − 3 − 1). Power was estimated using the free 

package R (see Preacher & Coffman, 2006). For a sample syntax file, see the Appendix. The 

estimated sample size for a level of significance α = 5%, df = 76, null RMSEA0 = .05 

(which is a test of close fit) and an alternative RMSEAa = .08 (test of not so close fit) 

equaled 159 participants. Thus, power analysis answered the question how many 

participants were required in order to rule out the hypothesis that two models with a 

difference of .03 points in their RMSEA values are significantly different from each other 

(difference between .05 and .08). The focal question of the present study was to evaluate 

sample sizes in which the power analysis estimate no longer holds.

Description of the Simulation

A Monte Carlo reactive simulation4 (Marcoulides & Saunders, 2006) was run with 1,000 

samples being generated from the specified latent variable structural model of Figure 4). 

Sample sizes were increased by a unit of 10 for up to 100 participants and then following 

recommended conventions thus, there were samples of 20, 30, 40, 50, 60, 70, 80, 90, 100, 

150, 200, 500, and 1,000 participants (Wolf et al., 2013). The samples of all sizes were 

generated from the original data of 51 students, using sampling with replacement (Simos et 

al., 2013). All analyses were run using the maximum likelihood estimation method and the 

factor loadings were modeled from the original data (Simulation 1) as well as a set of 

simulated data that posited all measurement and structural coefficients to have a 

standardized effect of .5 in order to evaluate power estimation with a configuration of 

modest relationships and thus, provide a blueprint for a wider range of measured 

relationships (Simulation 2). Autocorrelation coefficients were set as previously to .30. For 

the simulation that was guided from the original data, the standardized factor loadings 

guided the simulation were the following: For indicators X1, X2, and X3, they were λ11 = .

652, λ21 = .765, and λ31 = .900; For items Y1 to Y12, they were λ11 = .577, λ21 = .769, λ31 

= .836, λ41 = .915, λ51 = .829, λ61 = .636, λ71 = .724, λ81 = .737, λ91 = .783, λ101 = .659, 

λ111 = .646, and λ121 = .840. The structural paths were defined as follows: γ31 = .874, β13 = .

977, β32 = .867, and β42 = .236. Lag-1 autocorrelation coefficients were fixed to .30 to 

provide for an identifiable effect given a medium effect size. Outcomes of interest were 

percentages of model solutions (out of 1,000) that converged, termed solution propriety 

(Gagne, & Hancock, 2006), mean significance estimate of chi-square tests, amount of Type I 

errors of the chi-square test, mean value of the RMSEA and minimum– maximum values, 

confidence intervals of the RMSEA, mean values of the measurement paths and minimum–

maximum values, mean values of the structural paths and minimum–maximum values, and 

mean values of the following descriptive fit indices: goodness-of-fit index (GFI), AGFI, 

incremental fit index (IFI), McDonald fit index (MFI), NFI, nonnormed fit index (NNFI), 

and CFI. Bias, then, was evaluated as the difference between the simulated parameters and 

those of the sample (considered to be population parameters; Kelley & Maxwell, 2003) with 

4Because reactive simulation is strictly speaking limited by the quality of the observed data, a second proactive-type simulation was 
run to investigate requirements on sample sizes based on a set of weaker relations that can also be encountered in the literature.
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values exceeding 5% of the population value being considered discrepant (Muthén & 

Muthén, 2002).

For all evaluations, reference model estimates were those obtained from simulation samples 

of 1,000 participants providing (through replacement) 1,000 replication samples. All 

subsequent comparisons were based on the above “population” model (e.g., difference in the 

estimates between the model having 50 participants versus the reference model with 1,000 

participants across 1,000 simulations). Evidence in favor of the stability of parameters 

within a specific sample size would be provided when the following conditions were met (a) 

the RMSEA mean value should be contained within the confidence interval defining close 

fit (i.e., RMSEA < .05), (b) factor loading difference should be within recommended 

conventions (λ1 − λ2 < .10; Wang, Whittaker, & Beretvas, 2012), (c) Δ-Fit index variability 

should be within ±.025 (Fan & Sivo, 2009), (d) more than 90% of the models should 

converge, and (e) Type I errors should be less than 25%.

Results

Power Analysis Based on the RMSEA and the Observed Sample Estimates (Simulation 1)

Table 2 summarizes the results for power levels equal to 80%. The second column refers to 

the average probability level observed on the chi-square test from 1,000 replications of size 

N. The third column refers to percentage of Type I errors again from 1,000 replications. The 

loading bias column (sixth column from the left) refers to the absolute discrepancy of the 

mean of the four structural paths (Figure 4) across the 1,000 replications. Last, for all 

estimates the reference model, characterized as the population model, was the model 

including sample sizes of 1,000 participants across 1,000 replications.

When looking at the mean RMSEA values, sample sizes of 50 participants were associated 

with mean RMSEA values less than .05, suggesting close fit. When considering the 

respective confidence intervals of RMSEA, sample sizes of approximately 70 participants 

were associated with models evaluating close and not so close fit 95% of the time. With 70 

participants, the percentage of Type I errors of the chi-square was 20.4%, which represents a 

small margin of error for a test of exact fit (which is rather unrealistic). With 70 participants, 

100% of the models converged, and the ΔCFI value suggested very small amounts of bias, 

equal to 0.012, less than the cutoff value of .02 suggested by Fan and Sivo (2009). 

Furthermore, the bias in the structural paths was negligible, that is, equal to 0.0057, and 

much less than the .10 criterion put forth by Wang et al. (2012). Thus, 70 participants would 

suffice to draw valid conclusions about a model having close to not so close fit across all 

standards and based on the actual sample's estimates.

A sample size of 50 participants was further associated with negligible path bias (equal to 

0.0081) and plausible close fit according to mean RMSEA values. The vast majority of 

models converged properly (99.9% of the time) and the mean chi-square value was 

nonsignificant (for the strict test of exact fit). Thus, for liberal versus conservative estimates 

5Fan and Sivo (2009) in their simulation study reported that ΔCFI values greater than .0160 (rounded to .020) should be considered 
indicative of significant model change or bias. Other researchers have proposed more stringent criteria (i.e., .01 in Δ-Fit values; 
Cheung & Rensvold, 2002).
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of sample size, 50 to 70 participants would be adequate in testing the hypothesized 

relationships of the model of Figure 3.

Sample sizes of 40 participants or less are not considered adequate as the upper level of the 

RMSEA confidence interval was above .10, which is indicative of a poorly fitted model. 

Interestingly, with 40 participants the structural paths bias was negligible thus stability of 

the parameters was not an issue. Furthermore, most models converged properly (99.6%).

For a test of close fit, one would need 150 participants in order for the RMSEA confidence 

interval to be less than .05 so that the value of close fit would be within the 95% confidence 

interval. This estimate is nevertheless, much lower than earlier recommendations regarding 

proper sample sizes. If, however, a researcher is targeting global fit measures, sizes of 150 

participants are imperative.

When looking at the behavior of the fit indices, three were associated with minimum biases, 

less than .02, with sample sizes equal to 50 participants (see Figure 5). These were the CFI, 

the IFI, and the NNFI. The remaining indices were heavily influenced by sample size, which 

was expected given their formulae. Thus, these three indices suggested that sample sizes of 

50 participants were associated with minimal bias and proper evaluation of model fit.

Power Analysis Based on the RMSEA and Parameter Estimates of Modest Magnitude 
(Simulation 2)

As a thoughtful reviewer stated the simulation based on the observed estimates from the 

Simos et al. (2013) study would underestimate sample sizes as model fit was excellent. 

Thus, the simulation was rerun with factor loading estimates equal to .5 in order to evaluate 

sample size needs with more realistic data sets. These findings are shown in Table 3 and 

Figure 6 for power levels equal to 80%. Results indicated that the findings from the second 

simulation closely replicated those from the observed data. Once again, sample sizes with 20 

to 50 participants were associated with non-acceptable rejection rates of the chi-square 

statistic and corresponding power levels below .80. Thus, with regard to the omnibus chi-

square test a sample size of 70 participants was associated 79.6% correct rejections. 

Similarly, if omnibus model fit is of interest, 150 participants would be required for the 

RMSEA value of 5% to be estimated within a 95% confidence interval. If, however, one is 

willing to accept a confidence interval window up to .08, which is still acceptable given 

conventional standards, a sample size of N = 60 would suffice. Of greater importance, 

however are parameter estimates and the ability to estimate them with minimal bias. Results, 

similar to the first simulation, indicated that again 50 participants suffice to accurately 

estimate measurement and structural paths or even smaller sample sizes; however, fewer 

than 50 participants were associated with worrisome effects on measures of global fit.

Fit indices became substantially worse compared with the original data simulation (see 

Figure 6). That is, previously sample sizes of 50 participants were associated with minimal 

bias when relying on the CFI, IFI, and NNFI. When simulating factor loadings to have 

modest contributions to the latent construct, the required sample sizes for bias less than .02 

shifted from 50 participants to 80 participants. Thus, with regard to those three descriptive 

fit indices, required sample sizes are greater than 80 participants or between 70 and 80 
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participants. With 150 participants, the MFI was also within a minimum margin of error; all 

other fit indices, however, required more than 500 participants, which is likely prohibitive 

for this line of research.

Discussion and Conclusions

The present study attempted to evaluate the minimum sample size requirements to validly 

support specific hypotheses regarding functional brain connectivity using real 

neuromagnetic data. The results showed that 50 to 70 participants seemed to suffice in order 

to maintain low Type-I error rates, ensure RMSEA values are between .05 and .08 and 

stable model parameters. Models converged properly (convergence ranged between 99.9% 

and 100% for sample sizes equal or greater than 50 participants). Estimates of change in 

descriptive fit statistics were also below the cutoff point of 0.02 with just 50 participants 

given the simulation that relied on actual data and between 70 and 80 participants using 

more modest parameter effects. These estimates are much lower compared to earlier 

recommendations of sample sizes in structural equation modeling (e.g., MacCallum et al., 

1996; MacCallum & Hong, 1997) and are much larger compared to estimates proposed with 

regard to path models (Chen et al., 2011; Price et al., 2009), or longitudinal latent variable 

models. These findings are encouraging for researchers modeling brain relationships as they 

recommend manageable numbers.

Modeling the above relations with 40 participants seemed to be unacceptable because the 

error rates of the chi-square test increase exponentially. The RMSEA was between close and 

not so close fit but with a larger confidence interval that moved beyond acceptance. The 

loading bias for both measurement and structural paths was also worrisome. Thus, as earlier 

researchers did before us we do not recommend the use of sample sizes with fewer than 40 

participants (e.g., Chin, & Newstead, 1999; Muthén & Muthén, 2002). Thus, this sample 

size is not sufficient. The marginal size of 50 participants was associated with a properly 

accepting chi-square test but with a Type I error of 25%. The point estimate of the RMSEA 

was acceptable but not its confidence interval that just went higher than .08. Thus 60 to 70 

participants are needed to ensure proper model fit and decision making. The above 

recommendation is based on simulating the actual data set; when using more modest 

parameter estimates the required sample size becomes N = 80.

One advantage of the present study relates to modeling and simulation of real functional 

connectivity data, thus, distributional issues and idiosyncrasies of such data were properly 

accounted for and this analysis was also supplemented with a simulation having more 

modest effects in order to provide suggestions based on a broader range of estimated models 

(i.e., having more modest relationships. This contrasts with previous simulation studies 

using fixed factor loadings that may not resemble real relationships and actual estimates of 

measurement error. Also, this study captures the essential limitation of observing a large 

amount of Type I errors of the chi-square test with data that misfit a model (E. S. Kim, 

Yoon, & Lee, 2012). Moreover, the correlated nature of brain connectivity was modeled 

using novel auto-regressive methods suggested by J. Kim et al. (2007) by first evaluating the 

observed lagged relationships. Thus, the findings of the present simulation likely reflect real 

rather than artificial scenarios of hypothesized regional brain interdependencies. Another 
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advantage of the present study was that a manageable number of indicators was selected 

(based on lagged relationships) so that conservative estimates of power were obtained (large 

numbers of indicators could result in excessive power estimates; Marsh, Hau, Balla, & 

Grayson, 1998; Wolf et al., 2013).

Interestingly, we did not find as great as an effect of the magnitude of factor loadings and 

their influence on sample size as previous researchers (Wolf et al., 2013). For example, we 

concluded that 70 participants would be adequate for both global model fit and stability of 

item parameters with the simulation of observed data (that had strong measurement and 

structural relations). When modeling modest relations, however, we found that only a 

marginal increase in sample size (from 70 to 80 participants) was required to observe both 

proper model fit and stable parameter estimates. Under various conditions Wolf et al. (2013) 

recommended between 60 and 190 observations.

Researchers should also target the largest sample size possible to improve proximity with 

population parameters (Kelley & Maxwell, 2003). Additionally, power should be estimated 

for the smallest-needed estimated effect. For example, if the interest is in deciphering a 

small-to-medium correlation between two activation areas, then large samples would be 

needed and one would need to estimate power for that specific configuration.

The present study is limited by a number of factors. First, the analysis was not performed for 

power levels equal to .90 or .95 (see Wang et al., 2012). Such power levels would be 

associated with findings that would require much larger samples. Instead, the present 

findings reflect the absolute minimum in terms of sample size requirements and should be 

viewed as conservative, and in light of contributing absolutely minimum recommendations 

to the applied researcher. Second, the model tested was of medium size involving only five 

brain regions and three time indicators per region so inferences about larger models cannot 

be made. However, such a restricted model is much more appropriate to estimate 

measurement error in assessing activity in brain areas through latent variables, compared to 

aggregated terms. Third, the present power estimates are based on real data and thus, the 

first simulation's findings are bound to the specificities and idiosyncrasies of the present 

sample and magnetoence-phalography data set. It is important to state here, however, that 

even larger effects with regard to reading behavior in dyslexia have been previously reported 

(Koyama et al., 2013). To account for that limitation we conducted an ancillary proactive 

simulation in order to evaluate the requirements of minimum sample size with more modest 

effects (i.e., factor loadings and structural paths equal to .50 in standardized values). Fourth, 

a number of factors that influence the present estimates have not been accounted for. For 

example, nonnormality in the data or various missing patterns can seriously moderate the 

present findings (Davey & Salva, 2009). Fifth, there must be a mention of the positive bias 

of RMSEA in conditions when it is estimated to be below zero (Curran et al., 2003; Fan, 

Thompson, & Wang, 1999). Last, the present simulation presents sample size estimation 

using a specific approach, which has its own limitations (Herzog & Boomsma, 2009), and 

assumptions (Curran et al., 2002) although other alternatives to sample size estimation exist 

(e.g., Muthén & Muthén, 2002; Satorra & Saris, 1985).
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In the future, it will be interesting to estimate factors related to the reliability of the 

measured constructs and ways to account for low reliability when modeling the 

hypothesized relationships. For example, if constructs are defined by lagged effects one may 

consider including a large number of lagged relationships (Bollen & Curran, 2004) in order 

to improve construct reliability (Wolf et al., 2013). Also, it will be interesting to see where 

the power analysis model breaks down as the number of parameters increases for a given 

sample size or when the data misfit the model. The issue of sample size estimation for 

multigroup models may become particularly important as one would want to test various 

configurations in the brain across groups (Raykov, Marcoulides, Lee, & Chang, 2013). 

Regardless, the present study suggests that a modest and realistic number of participants 

suffices to model complex, time-dependent interrelationships in regional brain activity.
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Appendix

R routine for the estimation of power as a function of a difference between .05 and .08 in the 

RMSEA, for a 50-item, 5-factor scale (the syntax came from Preacher & Coffman, 2006). 

Power for the estimated model below was equal to 80%.

alpha <- 0.05 ! Define alpha level relevant to the study; it is for a two-tailed test

d <- 1165 ! Provide the estimated degrees of freedom of the model for which power is 

estimated

n <- 31 ! Provide the number of participants for which power is estimated

rmsea0 <- 0.05 ! Provide null RMSEA value

rmseaa <- 0.08 ! Provide alternative RMSEA value

ncp0 <- (n-1)*d*rmsea0ˆ2

ncpa <- (n-1)*d*rmseaaˆ2

if(rmsea0<rmseaa) {

cval <- qchisq(alpha,d,ncp=ncp0,lower.tail=F)

pow <- pchisq(cval,d,ncp=ncpa,lower.tail=F)

}

if(rmsea0>rmseaa) {

cval <- qchisq(1-alpha,d,ncp=ncp0,lower.tail=F)
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pow <- 1-pchisq(cval,d,ncp=ncpa,lower.tail=F)

}

print(pow)! Printing of results on screen
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Figure 1. 
Estimation of the power using the noncentrality parameters of the χ2 distribution for null and 

alternative hypothesis based on the RMSEA (root mean square error of approximation) 

values.
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Figure 2. 
Hypothetical measurement model that formed the basis for the simulation using LISREL 

notation.
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Figure 3. 
Schematic illustration of regional interdependencies included in the hypothetical 

measurement model assessed in the present study. According to this model the main source 

of input to the superior temporal gyrus (ST) originates in the fusiform gyrus (FU). Activity 

in the former region contributes directly to the activation observed in the supramarginal 

(SM), angular (AN; inferior parietal region in Figure 1), and inferior frontal gyri (IF; pars 

opercularis in Figure 1). A direct contribution from the supramarginal to the inferior frontal 

region is also included in the model.
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Figure 4. 
Measurement model with sample's parameter estimates that formed the basis for the first 

simulation study.
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Figure 5. 
Δ-Index values as a function of sample size. The dashed line indicates a cutoff value of .02 

as suggested by Fan and Sivo (2009). Estimates are based on simulating the responses from 

the Simos et al. (2013) functional magnetic resonance imaging study.
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Figure 6. 
Δ-Index values as a function of sample size. The dashed line indicates a cutoff value of .02 

as suggested by Fan and Sivo (2009). Data are based on the simulated data with 

measurement and structural paths equal to .500.
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Table 1

Sample Sizes Required for Various Covariance Structure Models as a Function of RMSEAdiff Equal to .05 

(i.e., RMSEA0 = .05, RMSEAa = .08).

Number of measured variables: Latent factors (ratio) Sample size, N Degrees of freedom, df

10:2 286 34

15:3 147 87

20:4 97 164

25:5 70 265

30:6 56 390

35:7 47 539

40:8 41 712

45:8 35 917

50:10 31 1130

Note. The degrees of freedom were estimated using the formula by Rigdon (1994), where df = m* (m+ 1)/2 − 2 *m−ξ* (ξ− 1)/2 − B −Γ. RMSEA = 
root mean square error of approximation.
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