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Abstract We propose a three step procedure to investigate measurement bias and
response shift, a special case of measurement bias in longitudinal data. Structural
equation modelling is used in each of the three steps, which can be described as
(1) establishing a measurement model using confirmatory factor analysis, (2) detect-
ing measurement bias by testing the equivalence of model parameters across mea-
surement occasions, (3) detecting measurement bias with respect to additional exoge-
nous variables by testing their direct effects on the indicator variables. The resulting
model can be used to investigate true change in the attributes of interest, by testing
changes in common factor means. Solutions for the issue of constraint interaction and
for chance capitalisation in model specification searches are discussed as part of the
procedure. The procedure is illustrated by applying it to longitudinal health-related
quality-of-life data of HIV/AIDS patients, collected at four semi-annual measurement
occasions.
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1 Introduction

In longitudinal research, the aim generally is to assess and explain change in the re-
search subjects’ attributes. In behavioural research, the attributes of interest are often
measured subjectively, through self-report questionnaires. When analysing change as
the result of some event, for example an intervention, measurement invariance is as-
sumed. However, if the assumption of measurement invariance is not tested, we can-
not be sure whether the change in observed test scores fully represents true change
in the attribute of interest, or also change in the response behaviour of the respon-
dent. If this assumption is violated and measurement bias is present, the assessment
of change is compromised. If researchers overlook this assumption then they risk the
validity of their substantive interpretations.

Measurement invariance is defined as

f1(X|T = t, V = v) = f2(X|T = t),

where X is a set of observed variables (e.g. items or scales of a questionnaire), T

represents the attributes of interest (the theoretical constructs the questionnaire is de-
signed to measure) that are measured by X, and V represents variables that could
potentially violate measurement invariance (e.g. any other attribute than those repre-
sented by T , or experimental condition, or time, etc.). Function f1 is the conditional
distribution function of X given values t and v, and f2 is the conditional distribution
function of X given t . In other words, measurement invariance implies that respon-
dents with equal standings on the attributes of interest T have equal expected values
of the response variables X and no other variables V systematically affect response
variables X. If the conditional independence does not hold, that is, if f1 �= f2, then
the measurement of T by X is said to be biased by V and the assumption of measure-
ment invariance is violated. The definition, as introduced by Mellenbergh (1989) is
very general as it defines measurement invariance as statistical independence (not just
linear independence), and variables X, T , and V can be of any measurement level,
continuous or discrete, observed or latent.

Meredith (1993) used Mellenbergh’s definition to define weak (linear) measure-
ment invariance and applied it to multigroup confirmatory factor analysis (CFA). In
this application, X generally are observed continuous indicators, T are latent con-
tinuous variables (common factors), and V are observed discrete variables, defin-
ing some group membership. This application of measurement invariance analysis
in multigroup CFA is well known and has been reviewed by Vandenberg and Lance
(2000) and Schmitt and Kuljanin (2008). Terminologies vary, but we may distin-
guish configural factorial invariance (same patterns of fixed and free elements in
factor loading matrices), weak factorial invariance (same factor loadings), strong
factorial invariance (same factor loadings and intercepts), and strict factorial in-
variance (same factor loadings, intercepts, and residual variances). Similar tests
for configural, weak, strong, and strict factorial invariance can and have been con-
ducted with longitudinal data (Sayer and Cumsille 2001; Meredith and Horn 2001;
Oort 2005a). The measurement invariance definition then still applies, with V repre-
senting an index for the time of the measurement occasion (Oort 1991, 2005b). When
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this assumption of measurement invariance is violated with respect to time, we can
consider this a special case of measurement bias, often referred to as “response shift”.

The term response shift was coined by Howard and colleagues who conducted
research on educational training interventions (Howard et al. 1979). They defined re-
sponse shift in terms of changes in internal standards of measurement, obfuscating
true change in the attribute of interest. Golembiewski et al. (1976), researching orga-
nizational change, described three types of change, which they labelled alpha, beta,
and gamma change. Alpha change refers to objective change (or true change), beta
change is a change in the meaning that respondents attach to the labels of response
scale points, and gamma change refers to a change in the respondents’ understanding
of item content, that is, the meaning of the wording of the items in the questionnaire.
Response shift seems to encompass both beta and gamma change. In the field of med-
ical psychology, Sprangers and Schwartz (1999) distinguish three types of response
shift. Recalibration response shift is a change in the respondent’s internal standards
of measurement, reprioritization response shift is a change in the respondent’s val-
ues, and reconceptualization response shift is a redefinition of the target construct.
According to Oort (2005a), recalibration response shift (or beta change) violates in-
tercept invariance, reprioritization response shift (or gamma change) violates factor
loading invariance, and reconceptualization response shift (or gamma change as well)
violates the invariance of factor loading patterns.

The purpose of the present paper is to show how structural equation modelling
(SEM) can be used to investigate measurement bias and response shift in longi-
tudinal data, by applying SEM to health-related quality-of-life data collected from
HIV/AIDS patients over four semi-annual measurement occasions. Measurement
bias detection in longitudinal data from four time points (instead of two) highlights
the problem of chance findings. Here we will propose global tests at Bonferroni ad-
justed levels of significance to reduce the number of chance findings. The global tests
also solve the problem with so-called interaction constraints (i.e. when arbitrary scal-
ing choices affect test results). In addition to the consideration of these two issues,
the example also serves to illustrate how response shift is related to measurement bias
in two ways: response shift as measurement bias with respect to time, and response
shift as measurement bias with respect to exogenous variables.

2 Methods

The goal of the procedure presented below is to detect and account for measurement
bias and response shift in longitudinal data, in order to validly assess “true” change
in the attributes of interest.

The procedure has three steps. The goal of the first step is to find a confirmatory
factor model that constitutes an appropriate measurement model with good fit and
clear interpretation. In the second step, the longitudinal factor model is used to detect
measurement bias by testing the invariance of factor loadings and intercepts across
measurement occasions. In the third step, we add exogenous variables to the measure-
ment model, and detect measurement bias by testing direct effects of these variables
on the observed indicator variables. After detecting and accounting for apparent bias,
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change in the attributes of interest can be evaluated by assessing the differences in
the common factor means.

2.1 Measurement bias and response shift

In the second step, the measurement bias that is investigated is covered by the
measurement invariance definition if we substitute an index of time or measure-
ment occasion for V . We therefore consider any bias detected in this step to be
response shift (Oort 1991, 2005b). In the third step, measurement bias is investi-
gated with respect to exogenous variables V that are possibly related to the attributes
of interest and that are suspect to induce bias in the observed indicator variables.
If the size of such measurement bias varies across measurement occasions, then
such measurement bias may be considered as response shift as well (Oort 2005b;
Oort et al. 2009).

2.2 Structural equation modelling

The three-step procedure relies on fitting series of structural equation models and
comparing their fit. The maximum likelihood estimation method yields a chi-square
measure of overall goodness-of-fit that constitutes a test of the equivalence of the
model implied means, variances, and covariances and the observed means, variances,
and covariances. As this test of exact fit is very sensitive to small deviations, we addi-
tionally consider the root mean square error of approximation (RMSEA) as an index
of approximate fit. According to a generally accepted rule of thumb, RMSEA values
smaller than 0.05 suggest close fit and values smaller than 0.08 suggest satisfactory
fit (Browne and Cudeck 1992).

Chi-square difference tests will be used to assess the appropriateness and signifi-
cance of changes made to the model as a result of testing measurement invariance. It
is important to note that these difference tests can also be used to compare the fit of
nested models when neither model shows good fit, if only we can assume equivalence
of the non-centrality parameters of the associated non-central chi-square distributions
(Steiger et al. 1985). The chi-square difference tests can be complemented by calcu-
lating the difference in the expected cross-validation index (ECVI) for nested models.
The ECVI is an information criterion that is linearly related to the Akaike’s criterion
(Browne and Cudeck 1992). If a 90% confidence interval for an ECVI difference be-
tween nested models includes zero then the fit of the two models is considered to be
essentially equivalent (ibidem).

2.3 Circumventing constraint interaction

The results of the chi-square difference tests should not depend on the arbitrary choice
of scale and origin of the common factors. In our procedure, we will choose to impose
scale and origin by fixing the variance and mean of the common factors of the first
measurement occasion. The common factors of the other measurement occasions are
then given scales and origins through invariance constraints on factor loadings and
intercepts. However, the detection of measurement bias involves testing and possible
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removal of these constraints. If we would choose, as customary, to investigate the
invariance of factor loadings first and intercepts second, then the removal of one or
more factor loading constraints would interact with the chi-square difference tests
of subsequent intercept constraints. Such constraint interaction is caused by the fact
that the model implied means (μ) of the observed variables are a function of both
intercepts (τ) and the product of factor loadings (Λ) and common factor means (κ),
μ = τ + Λκ . As a result, an across occasion difference in Λ affects the across occa-
sion difference in μ and thus the significance test of the across occasion difference in
τ , yet the impact of a Λ difference depends on the size of κ , and thus on the choice
of the common factor origin.

Byrne et al. (1989), who considered partial measurement invariance in multigroup
designs, proposed a multistep procedure in which across group invariance of factor
loadings is investigated before intercept invariance. They do not mention the con-
straint interaction, but in their procedure the problem is circumvented as they only
constrained the intercepts of variables that have factor loadings that were found to be
invariant. In effect, they use a one degree of freedom test to decide the invariance of
two parameters.

In our procedure, we choose to always test the invariance of factor loadings and
intercepts simultaneously, applying tests with multiple degrees of freedom. This also
solves the related problem that in the presence of factor loading differences (“nonuni-
form bias”; Barendse et al. 2010, present AStA issue) the size of intercept differences
(“uniform bias”) is dependent on the (arbitrary) scale of the common factor.

2.4 Guarding against chance findings

The procedure to detect measurement bias in longitudinal data involves a very large
number of possible tests, especially when there are more than two measurement oc-
casions. The suggested steps in measurement bias detection are similar to the steps in
model modification, and we should be aware of the chance capitalization problems
that are associated with specification searches (MacCallum et al. 1992). Modifica-
tions should be theory driven, not data driven, and we should prevent overfitting,
which would diminish the generalisability of our results.

In our procedure, we guard against chance findings in three ways. Firstly, we will
only test specific hypotheses that are formulated in advance, and we will not use
statistics such as the modification index and the expected parameter change (Kaplan
2000) to explore possible improvement in fit that is not associated with the hypotheses
under consideration. Secondly, we will limit the number of tests by using global tests
with multiple degrees of freedom, to test for the invariance of multiple parameters
across all measurement occasions simultaneously. In this way, we once more forego
the use of the modification index with its associated problems (Kaplan 1990). Thirdly,
to prevent inflation of the family-wise error rate we will conduct all tests at Bonferroni
adjusted levels of significance, in the way described by Holm (1979). To achieve this,
in each step of the procedure we will test at a level of significance that is equal to the
quotient of a chosen family-wise level of significance (e.g. 5%) and the number of
tests under consideration.
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2.5 Procedure

2.5.1 Step 1: Establishing a measurement model

Based on theory and previous research, we specify a longitudinal factor model with
a pattern of factor loadings that is the same for each measurement occasion, without
any constraints across measurement occasions. The matrix of residual variances and
covariances consists of diagonal blocks as the residual factors of the same indicator
variables are allowed to covary across measurement occasions. If this Model 1.1 does
not show satisfactory fit, modification indices (or Lagrangian multiplier tests; Bollen
1989) and standardised residuals may help to guide a specification search. When
modifying the model, we require equivalence of patterns of factor loadings across
occasions (to consolidate equal interpretation and naming of common factors across
occasions), even if this means that not all factor loadings are significant. Moreover,
to guard against chance findings and the inflation of the family-wise error rate, the
model should only be modified if the chi-square difference test with nt degrees of
freedom is significant at an adjusted level of significance α∗ = αf /(nznt ), where αf

is the family-wise level of significance, nz is the number of factor loadings fixed
at zero for a single measurement occasion, and nt is the number of measurement
occasions. So the product of nz and nt is the number of tests under consideration.

Of course, to preserve a clear interpretation of the resulting model, all model mod-
ifications should have substantive justifications. We will refer to the final model in
Step 1 as Model 1F.

2.5.2 Step 2: Testing measurement invariance across measurement occasions

In Step 2, the first model that we fit, Model 2.1, has the same pattern of factor loadings
as Model 1F, but with across occasion equality constraints on all factor loadings and
intercepts. The variances and means of the common factors are fixed for the first
occasion (e.g. variances at unity and means at zero) and free for the other occasions.
The matrix of residual variances and covariances has the same specification as in
Step 1. The chi-square test of the difference between the fit of Model 2.1 and the fit
of Model 1F may serve as a global test of the across occasion invariance of factor
loadings and intercepts, but even if the test does not turn out significant we may want
to consider more specific tests for each indicator variable separately.

For each of the ni indicator variables, the fit of Model 2.1 is compared to the fit
of a model in which the equality constraints on the factor loadings and intercepts
associated with the indicator variable are removed. These chi-square difference tests
have (nt − 1)(1 + nf ) degrees of freedom, where nt is the number of measurement
occasions and nf is the number of free factor loadings of that indicator variable on
one measurement occasion. As the number of tests is ni , we suggest to test at an
adjusted level of significance α∗ = αf /ni . If the largest of the ni chi-square test
results is significant, then we consider the associated indicator variable as biased.
The factor loadings and intercepts of the biased indicator variable remain free in
Model 2.2. The fit of this model is compared to the fit of (ni − 1) other models in
which the equality constraints of one of the remaining items are also cancelled. If
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Fig. 1 Graphical display of part of Model 1F, showing the first measurement occasion variables only.
Note: Only part of the model is depicted. The full model has 40 indicator variables, eight common factors,
and 40 residual factors. Abbreviations: BP = bodily pain, PF = physical functioning, RF = role function-
ing, GH = general health perceptions, SF = social functioning, EF = energy and fatigue, MH = mental
health, HD = health distress, CF = cognitive functioning, and QL = quality of life

the largest of the resulting chi-square differences turns out significant at a re-adjusted
level of significance α∗ = αf /(ni − 1), then that indicator variable is also considered
biased. This step should be repeated, re-adjusting the level of significance every time
(α∗ = αf /(ni −n2), where n2 is the number of indicator variables detected as biased
previously within Step 2, until no significant improvements in fit are found. Of note,
if this iterative procedure leads to less than a majority of unbiased items, then this
may compromise the interpretation of the findings (e.g. changes in common factor
means).

After establishing the invariance or partial invariance of factor loadings and in-
tercepts, one might also investigate the invariance of residual variances across mea-
surement occasions, following a procedure similar to the one described above. This
would be necessary if the goal is to investigate “strict” measurement invariance of the
observed indicator variables (or their reliability). In the present procedure, however,
the ultimate goal is to assess true change in the attribute of interest, by testing change
in the common factor means. We may therefore choose to leave the residual factor
variances unconstrained, as the residual factors affect neither the measurement nor
the explanation of the common factors (as can be seen in Fig. 1).

The final model in Step 2 is referred to as Model 2F. If measurement bias has
been detected, then one or more of the indicator variables will have varying factor
loadings and intercepts across measurement occasions. Post hoc tests may aid the
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interpretation of such bias, but we should be prudent when conducting such tests, in
view of possible interaction constraints. Moreover, to prevent unwarranted gains in
degrees of freedom, it may be better to not use the results of post hoc tests to partly
re-impose constraints on the parameters concerned.

2.5.3 Step 3: Testing measurement invariance with respect to exogenous variables

Model 3.1 is obtained by extending Model 2F to include exogenous variables. All
correlations between the exogenous variables and the common factors are free to be
estimated and all direct effects of the exogenous variables on the observed indicator
variables are fixed at zero. A non-zero effect of an exogenous variable on a particular
indicator variable would indicate measurement bias in the indicator variable with
respect to the exogenous variable, as the observed covariance of these two variables
is not sufficiently explained by the common factor.

For each of the ni indicator variables we test for measurement bias with respect
to each of the ne exogenous variables separately, by fitting nine models in which the
direct effects of the exogenous variable are set free to be estimated at all nt mea-
surement occasions. The associated chi-square difference tests have nt degrees of
freedom. As the number of tests is nine, we suggest to test at an adjusted level of
significance α∗ = αf /nine. If the largest of the nine chi-square test results is sig-
nificant, then we consider the indicator variable as biased, leave the regressions on
the exogenous variable free, and continue testing for additional measurement bias,
consistently re-adjusting the level of significance (α∗ = αf /nine − n3, where n3 is
the number of indicator variables detected as biased previously within Step 3), until
no significant improvements in fit are found.

The final model in Step 3 is called Model 3F. This model can be used to assess
the true change in the attributes of interest. One might evaluate such change by just
inspecting the values of the common factor means, taking their standard errors or
confidence intervals into consideration. If one should want to conduct significance
tests, we once more suggest conducting global tests (first), at adjusted levels of sig-
nificance, by fitting additional models, one for each common factor, in which the
common factor means are constrained to be equal (e.g. by fixing all means at zero).
The associated chi-square difference test has nt − 1 degrees of freedom. If this test
is conducted for each common factor separately, the adjusted level of significance is
α∗ = αf /nf , where nf is the number of common factors per measurement occasion.

3 Illustrative example: Health survey of HIV patients

To illustrate the procedure outlined above we use data compiled from several stud-
ies that investigated the health-related quality-of-life (HRQL) of HIV/AIDS patients
(Nieuwkerk 2006). The present sample comprised 403 respondents who completed
an HRQL test on four semi-annual measurement occasions. The majority of the sam-
ple was male (87.5%) with a mean age of 41 (m = 40.7, s = 8.7).

The questionnaire used to assess HRQL was the well validated Medical Outcomes
Study HIV Health Survey (Wu et al. 1997). The test contains 35 items that assess ten
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HRQL domains: physical functioning (PF), bodily pain (BP), role functioning (RF),
social functioning (SF), general health perceptions (GH), energy and fatigue (EF),
health distress (HD), cognitive functioning (CF), mental health (MH) and quality of
life (QL). For each domain, scale scores are calculated by summing all item scores.
Item scores have been re-scaled in such a way that higher scale scores indicate better
health.

Other variables included in our analysis are age, gender, time on highly active an-
tiretroviral treatment (HAART) and the CD4-cell count, (i.e. the number of T-cells
present in a cubic millimetre of blood). HAART is the treatment given to HIV and
AIDS patients to postpone or slow the progression of the disease. In this case, time
on HAART roughly coincides with time after diagnosis. The CD4-cell count is an
indicator of the functioning of the immune system; a count less then 200 suggests
progression from HIV to AIDS, and the CD4-cell count was dichotomised accord-
ingly (Hogg et al. 2001).

The computer program LISREL was used to for maximum likelihood estimation
in SEM (version 8.5, Jöreskog and Sörbom 1996). The freely available computer pro-
gram NIESEM was used to calculate ECVI differences and the associated confidence
intervals (Dudgeon 2003).

Table 1 includes the results of the chi-square measure of fit (CHISQ), RMSEA,
and ECVI for all models discussed below, as well as CHISQ and ECVI differences
for specific comparisons.

3.1 Step 1 results: Measurement model

The test manual suggests that BP, PF and RF are indicative of physical health, that
MH, QL, CF and QL are indicative of mental health, and that GH, SF and EF are
indicative of both physical and mental health (Wu et al. 1997). A corresponding factor
model with two common factors is depicted in Fig. 1. A longitudinal version of this
model with four times two common factors was fitted to the variance-covariance
matrix of the four times ten HRQL scales.

The chi-square test of exact fit for this model was significant (CHISQ = 1505.0,
df = 640), but the RMSEA indicated satisfactory fit (Table 1, Model 1.1). Inspec-
tion of standardised residuals and modification indices suggested cross-loadings of
QL on the physical HRQL factor. Adding these parameters for each of the measure-
ment occasions yielded a model with significantly better fit (Table 1, Model 1F). The
chi-square difference test (CHISQ DIFF = 182.0, df = 4, p < 0.0001) is significant
at the adjusted level of significance, α∗ = 0.05/(7 × 4) = 0.0018. As the QL scale
contains very general questions, we believed this to be a theoretically sound sug-
gestion. Using this model as the new model of comparison, we checked for other
significant modifications, but found none to be significant (at the re-adjusted level of
significance, α∗ = 0.05/(6 × 4) = 0.0021). As the fit of Model 1F was satisfactory
(RMSEA = 0.052, 90% confidence interval = [0.048,0.056]) and its interpretation
was clear, we proceeded to Step 2.

3.2 Step 2 results: Measurement invariance across measurement occasions

In Model 2.1, all factor loadings and intercepts were constrained to be equal across
the four measurement occasions. The fit of this model (Table 1, Model 2.1) was
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significantly worse when compared to Model 1F (CHISQ DIFF = 100.2, df = 60,
p = 0.0009). In the series of models that was fitted next, the model in which the
equality constraints were removed for HD showed the best fit (Table 1, Model 2.2).
The chi-square difference test (CHISQ DIFF = 28.2, df = 6, p < 0.0001) turned
out significant at the adjusted level of significance, α∗ = 0.05/10 = 0.005. Re-
taining the additional parameters, Model 2.2 was used as the comparison model
in the evaluation of a new series of models. The model with the parameters of
EF freed yielded the largest chi-square difference (CHISQ DIFF = 21.7, df = 9,
p = 0.0099). As the CHISQ DIFF was significant at the re-adjusted level of sig-
nificance, α∗ = 0.05/9 = 0.0056, we retained the additional parameters and used this
model for subsequent comparisons. However, none of the models in the next series
showed a significant improvement of fit (the largest improvement was found for a
model with free MH parameters, CHISQ DIFF = 7.5, df = 6, p = 0.2771).

With HD (health distress) we see that the intercept for the first measurement oc-
casion is notably lower than the other intercepts. Apparently, it is more difficult for
respondents to answer positively to the HD items (to show less health distress and
score high on the HD scale) when they have just entered the research and complete
the HRQL test for the first time. In subsequent administrations of the HRQL test,
respondents score higher on the HD scale, relative to their Mental HRQL. The factor
loadings of HD on Mental HRQL go up and down with time, which makes the bias
difficult to interpret.

With EF (energy and fatigue), the intercepts seem to decrease, which would in-
dicate that with time, it becomes more difficult to agree with the EF items (i.e. to
do well and score high on the EF scale), relative to the respondent’s Physical HRQL
and Mental HRQL. That is, when general HRQL improves, EF does not improve as
much. The factor loadings of EF on Physical HRQL and Mental HRQL show a pat-
tern that suggests that with time, the answers to the energy and fatigue (EF) items
become less indicative of the respondents’ Physical HRQL and more indicative of
the respondents’ Mental HRQL, but these differences are very small.

Model 2F was also used as the comparison model in a test of invariance of the
residual variances. This test turned out highly significant (CHISQ DIFF = 104.7,
df = 30, p < 0.0001, Table 1). As invariance of residual variances is not required
for valid assessment of change in the common factor means, we did not follow up
with tests of partial invariance of the residual variances.

3.3 Step 3 results: Measurement invariance with respect to exogenous variables

We included variables that are supposed to be related to HRQL of HIV/AIDS patients
and that may induce bias in the test scores. In Model 3.1, age, gender, CD4-cell count
and time on HAART were correlated with the common factors Physical and Mental
HRQL at all four measurement occasions, but the four new variables were not allowed
to directly affect the observed indicator variables of Physical and Mental HRQL.
Part of Model 3.1 is depicted in Fig. 2, only showing the HRQL variables of the
first measurement occasion. The fit of Model 3.1 was satisfactory (CHISQ = 1535.8,
df = 809, RMSEA = 0.047, Table 1).

We used Model 3.1 as the comparison model in the first iteration of tests for bias
with respect to the exogenous variables. The largest chi-square difference was found
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Fig. 2 Graphical display of part of Model 3.1, showing the first occasion variables only. Note: Only part
of the model is depicted. The full model has 40 indicator variables, eight common factors, 40 residual
factors, and four exogenous variables. The dashed arrow represents measurement bias in RF and EF with
respect to CD4-cell count

for the direct effects of CD4-cell count on the EF indicators (CHISQ DIFF = 28.4,
df = 4, p < 0.0001), and it was significant at the adjusted level of significance of
α∗ = 0.05/(10 × 4) = 0.0013. We therefore retained these direct effects in the next
comparison model, Model 3.2, to test for additional direct effects of exogenous vari-
ables on observed indicators. The largest chi-square difference was found for the
direct effects of CD4-cell count on the RF indicators (CHISQ DIFF = 18.5, df = 4,
p = 0.0010), which was only barely significant at the re-adjusted level of significance
of α∗ = 0.05/39 = 0.0013. In the next iteration, none of the resulting chi-square dif-
ference tests turned out significant. The largest chi-square difference was associated
with direct gender effects on HD (CHISQ DIFF = 10.3, df = 4, p = 0.0357).

In order to interpret apparent measurement bias, we have to take the relationships
of the exogenous variables with the common factors into account as well. The corre-
lations from Model 3F are given in Table 3. To check whether apparent measurement
bias is consistent over time, we compared the fit of Model 3F with a model in which
the direct effects of CD4-cell count on EF were constrained to be equal. The result-
ing model fitted almost as well as Model 3F (Table 1, CHISQ DIFF = 1.4, df = 3,
p = 0.7055). In this model, the direct effect of CD4-cell count on EF was estimated at
−0.39 (se = 0.09) for all four measurement occasions, indicating that a low CD4-cell
count (indicative of having AIDS rather than HIV) affects the respondent’s energy
and fatigue (lower EF scores) in another way than would be expected on account of
the positive correlation between CD4-cell count and Physical HRQL at the first mea-
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Table 2 Intercepts and factor loadings (selected parameter estimates from Model 2F)

HRQL Intercepts for Factor loadings Factor loadings Mental

scale four measurement Physical HRQL for HRQL for four

occasions four measurement occasions measurement occasions

BP 7.83 1.64 0

(0.10) (0.08)

PF 7.86 1.64 0

(0.10) (0.08)

RF 6.60 2.86 0

(0.18) (0.14)

GH 5.02 1.24 0.58

(0.10) (0.08) (0.07)

SF 7.51 1.68 0.35

(0.11) (0.09) (0.07)

EF 6.20/6.17/6.06/6.01 1.09/0.86/0.85/0.89 0.90/1.10/1.03/0.97

(0.10/0.10/0.10/0.10) (0.08/0.08/0.08/0.07) (0.08/0.09/0.08/0.07)

MH 7.00 0 1.62

(0.09) (0.07)

HD 7.54/7.76/7.68/7.74 0 1.32/1.58/1.38/1.50

(0.10/0.10/0.10/0.10) (0.08/0.09/0.08/0.08)

CF 7.60 0 1.03

(0.09) (0.06)

QL 6.80 1.07 1.10

(0.10) (0.07) (0.07)

Notes: standard errors are given within parentheses; a single entry indicates that the parameter estimate
is constrained to be equal across the four measurement occasions; to save space, common factor means,
variances, and covariances, and residual variances and covariances are not shown

surement occasions (Table 3). In other words, a CD4-cell count indicative of AIDS is
associated with worse Physical HRQL, but not as much with EF.

We also tested whether the measurement bias in RF (role functioning) with respect
to CD4-cell count was consistent over time, but this appeared not to be the case
(CHISQ DIFF = 17.5, df = 3, p = 0.0006). The direct effects of CD-4 cell count
on RF varied across measurement occasions, being negative at the first occasion and
positive on the other occasions, −0.60 (se = 0.37), 0.92 (se = 0.34), 0.39 (se = 0.35),
and 0.08 (se = 0.31). In spite of testing at an adjusted level of significance, this may
be a chance result. In fact, due to the large standard errors, only the second occasion
0.92 effect is significant at the 0.05 level.

With measurement bias accounted for, Model 3F was used to evaluate change in
Physical and Mental HRQL. The common factor means and their standard errors
are given in Table 3. Both Physical HRQL and Mental HRQL improve after the first
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measurement occasion. Perhaps patients get used to the idea of being HIV infected or
even of having AIDS, and learn to live with it, so that the disease does not affect their
HRQL as much when they completed the HRQL test for the first time. The correla-
tions between the exogenous variables and HRQL are generally small, except for the
correlation between CD4-cell count and the first occasion measurement of Physical
HRQL (0.30, if you do not have AIDS yet then you are doing better physically) and
the consistent negative correlations between time on HAART and Physical HRQL.
The longer the respondents receive HAART, the worse their Physical HRQL, which
is understandable in view of the invasive side effects of HAART (Nieuwkerk 2006).

4 Discussion

In the application of the measurement bias detection procedure to the longitudinal
HRQL data of HIV/AIDS patients, we found four examples of measurement bias.
First, we found the factor loadings and intercepts of HD (health distress) and EF (en-
ergy and fatigue) not to be invariant across measurement occasions and, second, we
found direct effects of CD4-cell count on EF and RF (role-functioning). The first two
findings of measurement bias are considered as response shift by definition, as the
measurement invariance is violated by the time of the measurement occasion. How-
ever, upon inspecting the HD and EF parameter estimates (Table 2) there did not
appear to be an obvious substantive explanation for the changes in the factor loadings
of HD. The other two findings of measurement bias are considered as response shift
only if they vary with time. The bias in EF with respect to CD4-cell count is con-
sistent over time and therefore not considered as response shift. The bias in RF with
respect to CD4-cell count did vary with time, but again, it was difficult to provide a
substantive explanation for this so-called response shift. Perhaps some of our results
are chance findings, despite our best attempts to guard against such findings.

The Bonferroni adjustment of the level of significance guards against inflation
of the family-wise error rate, but the chi-square difference test can still be affected
by model complexity and sample size. In a simulation study, Cheung and Rensvold
(2002) considered various alternatives to the chi-square difference test for testing
across group constraints in multi-group factor analysis, and recommended inspec-
tion of differences in Bentler’s (1990) comparative fit index (among others). In our
longitudinal factor analysis, we complemented the chi-square differences with ECVI
differences, really only in order to provide additional information about the necessity
of further modifications that cannot be substantively justified. In the present analyses,
the ECVI differences generally agreed with the chi-square difference tests at Bonfer-
roni adjusted levels of significance. One notable exception was that according to the
90% confidence interval of the ECVI difference, the fit of Models 2.2 and 2F was es-
sentially equivalent, suggesting that constraints on EF factor loadings and intercepts
could have been retained.

It should be noted that most response shift researchers in substantive areas of psy-
chology contend that response shifts are the result of some catalyst event, such as an
intervention in educational research (Howard et al. 1979), or a health state change in
medical research (Sprangers and Schwartz 1999). In the HRQL study of HIV/AIDS
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patients, there is not a well defined event that all respondents have in common, other
than having been diagnosed with HIV or AIDS some time ago. However, the time
since diagnosis and the time on HAART vary greatly across patients and cannot be
considered true catalysts. The one thing all patients have in common is that they par-
ticipate in the HRQL study, and that they complete HRQL tests every half year. The
test taking itself can have an effect on their response behaviour, which may change
with time. The patients may become more accustomed to both their disease and tak-
ing the test, which perhaps induces a response shift. It should also be noted that most
work on response shift in substantive psychological research was not aimed at inves-
tigating measurement invariance, but rather at explaining paradoxical intervention
effects. Seeing that research into response shift was hampered by researchers having
different conceptions of response shift, Oort (2005b) proposed to formally define re-
sponse shift as a special case of measurement bias, although some researchers may
still have another perspective on response shift (Oort et al. 2009).

As is illustrated by the empirical example, Step 2 and Step 3 of the detection
procedure are laborious and time consuming. Especially if the numbers of observed
variables and exogenous variables are large, these two steps involve the fitting of
numerous models, in order to evaluate the chi-difference tests. An advantage of using
modification indices is that, within each iteration, the researcher only has to fit a
single model. Therefore, although perhaps less sound (Kaplan 1990), we explored
the use of the modification index as an alternative to the global tests with multiple
degrees of freedom.

When we evaluated the modification indices with the Bonferroni adjusted levels
of significance, none of the findings were significant because of the large number
of tests under consideration (e.g. 120 in Step 2). When testing at less conservative
levels of significance, for example by considering tests of intercept constraints first
and factor loading constraints second, or by simply raising the family-wise level of
significance, there was a number of modification indices that reached significance.
However, as multiple modification indices were about equally large, the choice of
which constraint to remove first seemed arbitrary, yet highly consequential for the
removal of constraints in subsequent iterations, leading to very different conclusions.
In addition, we also had to be careful not to run into constraint interactions. Still, the
most important problem with relying on modification indices and less conservative
testing was that many of the modifications were difficult to interpret and that the num-
ber of iterations grew very large. Saris et al. (2009) suggest only modifying models if
the modification indices are associated either with moderate (instead of high) statis-
tical power or with substantial expected parameter changes. When statistical power
is high, one can only rely on substantive arguments for modification (ibidem), which
we did, as in the present analyses the power to find medium sized differences was
consistently above 99%.

In such situations, the decision making becomes increasingly subjective, as re-
searchers will have to base their decisions between modifications and when to stop
modifications on the interpretability of the different modifications. It is therefore
highly likely that different researchers, with different substantive knowledge and dif-
ferent interpretation skills, will end up with different conclusions when analysing the
same data. As can be seen from the procedure using modification indices, subjectiv-
ity in measurement bias detection influences whether and where bias is found. Not
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all researchers may want to test every possible combination of tenable equality con-
straints. When this is the case, a priori hypotheses driven by theory should be stated
before analysis and only these tests should be conducted. Under these circumstances,
chance findings may further be reduced and more generalisable results found.

The problems associated with devising an objective procedure for measurement
bias detection is common to specification searches in general. Bollen (2000): “Mod-
elling strategies are subject to debate for virtually all statistical procedures. Witness
the sharp disagreements over stepwise regression, the interpretation of clusters in
cluster analysis, or the identification of outliers and influential points. The largely ob-
jective basis of statistical algorithms does not remove the need for human judgment
in their implementation.” Similarly, when investigating measurement invariance, it is
impossible to completely remove the element of human judgement. This is certainly
true for the substantive interpretation of apparent measurement bias. However, we
think that the procedure presented in this paper, with its safeguards against chance
findings, at least helps to more objectively decide which measurements are biased
and which are not.
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