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Abstract Materials design is the most important and

fundamental work on the background of materials genome

initiative for global competitiveness proposed by the

National Science and Technology Council of America. As

far as the methodologies of materials design, besides the

thermodynamic and kinetic methods combing databases,

both deductive approaches so-called the first principle

methods and inductive approaches based on data mining

methods are gaining great progress because of their suc-

cessful applications in materials design. In this paper,

support vector machine (SVM), including support vector

classification (SVC) and support vector regression (SVR)

based on the statistical learning theory (SLT) proposed by

Vapnik, is introduced as a relatively new data mining

method to meet the different tasks of materials design in

our lab. The advantage of using SVM for materials design

is discussed based on the applications in the formability of

perovskite or BaNiO3 structure, the prediction of energy

gaps of binary compounds, the prediction of sintered cold

modulus of sialon-corundum castable, the optimization of

electric resistances of VPTC semiconductors and the

thickness control of In2O3 semiconductor film preparation.

The results presented indicate that SVM is an effective

modeling tool for the small sizes of sample sets with great

potential applications in materials design.

Keywords Support vector machine � Materials genome

initiative � Materials design � Data mining � Quantitative

structure–property relationship � Materials exploration and

optimization

1 Introduction

Over the last several decades, it is a great challenge for

scientists to develop, manufacture, and deploy advanced

materials as fast as possible. In June of 2011, the materials

genome initiative (MGI) for global competitiveness was

proposed by the National Science and Technology Council

of America for the development of an infrastructure to

shorten the materials development cycle. The most

important and fundamental goal of MGI is to accelerate

materials design through the use of computational capa-

bilities, data management, and an integrated approach to

materials science and engineering [1].

In principle, there are two strategies for materials

design. One strategy is to start from the first principle, i.e.,

from quantum mechanics and statistical mechanics, to

predict the properties of unknown materials. Although the

first principle method has been widely used in materials

design [2, 3], up to now, it is still impossible to solve most

of complicated problems in materials exploration work by

using this strategy solely. The other strategy is to start from

the semi-empirical way, i.e., from the known data of some

materials to find semi-empirical rules, which can be used to

predict the properties of unknown materials. In general, the

second strategy is more practicable than the first one in

materials design or new materials exploration area, since a

variety of data mining methods can be utilized to construct

statistical models for a lot of data sets available from sci-

entific experiments [4–9].

In the research of materials design by using data mining

methods, principal component analysis (PCA), partial least
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squares (PLS) and artificial neural networks (ANNs) are

very helpful because of their relative good performance,

speed, simplicity to construct statistical models [10, 11].

However, ANN may give rise to over-fitting problems [12]

(i.e., may lead to good performance in fitting but poor

performance in prediction) in treating finite, multivariate

data set. At the meanwhile, nonlinear relations can only be

modeled in limited way by using PCA or PLS algorithm

[13].

In the semi-empirical method of materials design, the

data of known materials is usually used as the training set. In

most cases, the numbers of available known data in the

training sets are rather limited, which means that the data

processing tasks usually deals with the problem of small

sample size, and hence cause serious over-fitting problem.

As an effective way to overcome the problem of over-fitting,

support vector machine (SVM) based on statistical learning

theory (SLT) has been proposed by Vapnik [14]. SVM has

been shown to perform well in various applications

including drug design [15, 16], materials design [17–19] and

chemistry researches [20].

In new materials exploration work, there are two ques-

tions with general significance in need of answers: the first

question is ‘‘what is the chemical composition of the sub-

stance having desirable properties?’’, and the second one is

‘‘what are the optimal conditions of preparation or pro-

duction for this material at low cost?’’. Since both of these

two questions involve with very complicated systems or

processes, we have to solve these problems by using some

semi-empirical methods. To answer the first question, the

relationships between the microscopic structure of materi-

als and their properties need to be addressed. This rela-

tionship is usually known as quantitative structure–

property relationship (QSPR). To deal with the second

question, mathematical models are usually set up for the

optimization of the processes.

Based on the problems concerning materials design, the

tasks of materials design can be classified into four different

categories. The first type of task is to solve the ‘‘formability

problems’’, i.e., to find some mathematical model or crite-

rion for the stability of some unknown substances. The

second type of task is the ‘‘property prediction’’, i.e., to

make mathematical models for the structure–property

relationships and use these models to predict the properties

of new materials (or the inverse problem: to search the

unknown new materials with some pre-assigned properties).

The third type of task is to solve the ‘‘optimization prob-

lems’’, i.e., to find the conditions for optimizing some

properties of certain materials. The last but not the least type

of task is to solve the ‘‘problem of control’’, i.e., to find the

mathematical model to control some index of materials

within a desired range. Different data mining techniques

should be adopted for these different purposes. In this paper,

we demonstrate some examples of applying SVM methods

including support vector classification (SVC) and support

vector regression (SVR) as a relatively new tool to meet the

different tasks of materials design in our lab. The advantage

of using SVM for materials design is discussed based on the

applications presented.

2 Methods of SVM

The foundations of SVM have been developed by Vapnik

[14] and are gaining popularity due to many attractive

features, and promising empirical performance. In this

paper the term SVM will refer to both SVC and SVR

methods, which can be used for solving qualitative and

quantitative problems respectively [21–25].

2.1 SVC

SVC has been recently proposed as a very effective method

for solving classification problems, which can be restricted

to consideration of the two-class problem without loss of

generality [14, 20]. In this problem the goal is to separate the

two classes by a classifier induced from available examples.

It is expected that the classifier constructed has good per-

formance on unseen examples, i.e., it generalizes well.

The geometrical interpretation of SVC is that it deter-

mines the optimal separating surface, i.e., a hyperplane,

which is equidistant from two sets of data points. This

hyperplane has many interesting statistical properties as

discussed by Vapnik [14]. Consider the problem of sepa-

rating the set of training vectors belonging to two separate

classes, ðy1; x1Þ; ðy2; x2Þ; � � � ; ðyn; xnÞ; x 2 Rm; y 2 �1;þ1;

with a hyperplane

wTxþ b ¼ 0; ð1Þ

where w and b are the weight vector and bias, respectively.

If the training data are linearly separable, then there

exists a pair of parameter set (w, b), for which we can write

yiðwTxi þ bÞ � 1� 0; i ¼ 1; 2; � � � ; l; ð2Þ

wTxþ b� þ 1; for all x 2 P; ð3Þ

wTxþ b� � 1; for all x 2 N ð4Þ

where P is the set of positive sample, and N is the set of

negative sample.

The decision rule is

fw;bðxÞ ¼ sgnðwTxþ bÞ: ð5Þ

The pair (w, b) can be rescaled without loss of generality

min
i¼1;2;���;l

wT xi þ b
�
�

�
� ¼ 1: ð6Þ
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The learning problem is hence reformulated as follows.

Let us minimize ||w||2 subject to the constraints of linear

separability. This is equivalent to maximizing the distance,

normal to the hyperplane, between the convex hulls of two

classes and the optimisation becomes a quadratic

programming (QP) problem

Min
w;b

/ðwÞ ¼ 1

2
wk k2; ð7Þ

subject to yiðwTxi þ bÞ� 1; i ¼ 1; 2; � � � ; l: This problem

has global optimum, and the Lagrangian is written as

Lðw; b;KÞ ¼ 1

2
wk k2�

Xt

i¼1

ki½yiðwTxi þ bÞ � 1�; ð8Þ

where K ¼ fk1; k2; � � � ; klg are the Lagrange multipliers,

one for each data point. Hence we can write

FðKÞ ¼
Xt

i¼1

ki �
1

2
wk k2¼

Xl

i¼1

ki�
1

2

Xl

i¼1

Xl

j¼1

kikjyiyjx
T
i xj:

ð9Þ

The Lagrange multipliers are only non-zero when

yiðwTxi þ bÞ ¼ 1. Vectors fulfilling this requirement are

called support vectors since they lie closest to the

separating hyperplane. Then, the optimal separating

hyperplane is given as follows

w� ¼
Xl

iþ1

k�i xiyi; ð10Þ

and the bias is given by

b� ¼ � 1

2
ðw�ÞTðxs þ xrÞ; ð11Þ

where xr and xs are any support vectors from each class

satisfying the following equation

yr ¼ 1; ys ¼ �1: ð12Þ

The hard classifier is then

f ðxÞ ¼ sgnððw�ÞTxþ b�Þ: ð13Þ

In the case where a linear boundary is inappropriate, the

SVC can map the input vector, x, into a high dimensional

feature space, F. By choosing a non-linear mapping U, the

SVC constructs an optimal separating hyperplane in this

higher dimensional space. Among acceptable mappings are

polynomials, radial basis functions and certain sigmoid

functions. Then the optimisation problem becomes

WðaÞ ¼
Xl

i¼1

ai �
1

2

Xl

i;j¼1

yiyjaiaj UðxiÞ � UðxjÞ
� �

: ð14Þ

In this case, the decision function in SVC is as follows

gðxÞ ¼sgnðf ðxÞÞ ¼ sgn
X

i2SV

aiyi UðxÞ � UðxiÞh i þ b

 !

¼sgn
X

i2SV

aiyiKðx; xiÞ þ b

 !

;

ð15Þ

where the xi is the set of support vectors and K(x, xi) is

called the kernel function.

2.2 SVR [14, 20]

In SVR, the basic idea is to map the data x into a higher-

dimensional feature space F via a nonlinear mapping U and

then to do linear regression in this space. Therefore,

regression approximation addresses the problem of esti-

mating a function based on a given data set G ¼
fðxi; diÞgl

i¼1 (xi is input vector, and di is the desired value).

SVR approximates the function in the following form

y ¼
Xl

i¼1

wiUðxiÞ þ b; ð16Þ

where UðxiÞf gl
i¼1 is the set of mappings of input features,

and wif gI
i¼l and b are coefficients. They are estimated by

minimizing the regularized risk function R(C):

RðCÞ ¼ C
1

N

XN

i¼1

Leðdi; yiÞ þ
1

2
wk k2; ð17Þ

where

Leðd; yÞ ¼
d � yj j � e; for d � yj j � e;

0; otherwise:

�

ð18Þ

and e is a prescribed parameter.

In Eq. (17), C 1
N

PN
i¼1 Leðdi; yiÞ is the so-called empirical

error (risk), which is measured by e-insensitive loss func-

tion Leðd; yÞ, which indicates that it does not penalize

errors below e. The second term, 1
2

wk k2; is used as a

measurement of function flatness. C is a regularized con-

stant determining the tradeoff between the training error

and the model flatness. Introduction of slack variables n
leads Eq. (17) to the following constrained function:

MinRðw; n; n�Þ ¼ 1

2
wk k2þC�

Xn

i¼1

ðni þ n�i Þ; ð19Þ

s.t.

wUðxiÞ þ b� di� eþ ni;

di � wUðxiÞ � b� eþ n�i ;

ni; n
�
i � 0:

0

B
@ ð20Þ

Thus, decision function Eq. (16) becomes the following

form:
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f ðx; a; a�Þ ¼
Xl

i¼1

ai � a�i
� �

Kðx; xiÞ ¼ b: ð21Þ

In Eq. (21), ai; a�i are the introduced Lagrange multipliers.

They satisfy the equality: ai � a�i ¼ 0; ai� 0; i ¼
1; 2; � � � ; l; and are obtained by maximizing the dual form

of Eq. (19), which has the following form:

wða; a�Þ ¼
Xl

i¼1

diðai � a�i Þ � e
Xl

i¼1

ðai þ a�i Þ

� 1

2

Xl

i¼1

Xl

j¼1

ðai � a�i Þðaj � a�j ÞKðxi; xjÞ;
ð22Þ

with the following constrains:

0� ai�C i ¼ 1; 2; � � � ; l;
0� a�i �C i ¼ 1; 2; � � � ; l;
Xl

iþ1

ðai � a�i Þ ¼ 0:

2

6
6
6
6
4

ð23Þ

Based on the Karush–Kuhn–Tucker (KKT) conditions of

quadratic programming, only a number of coefficients ai �
a�i will assume nonzero values, and the data points associated

with them could be referred to as support vectors. In Eq. (21),

Kðx; xiÞis the kernel function. The value is equal to the inner

product of two vectors x and xi in the feature space U(x). That

is, Kðx; xiÞ ¼ UðxÞUðxiÞ. The elegance of using kernel

function lied in the fact that one can deal with feature spaces

of arbitrary dimensionality without having to compute the

map U(x) explicitly. Any function that satisfies Mercer’s

condition can be used as the kernel function.

2.3 Implementation of SVM

According to the Ref. [14], the SVM software package

ChemSVM including SVC and SVR has been programmed

in our lab. The free version of ChemSVM can be down-

loaded on the website of Laboratory of Computational

Chemistry in Shanghai University (http://chemdata.shu.

edu.cn:8080/MyLab/Lab/download.jsp). The validation of

the software has also been performed in the applications of

chemistry [20].

3 Applications

3.1 SVC applied to the formability of perovskite

or BaNiO3 structure

The most exciting achievement of materials research is to

find some new compound (or new phases) with specified

structure and outstanding properties. In this work, the

materials design problems of compounds with perovskite-

type structures or BaNiO3 structure will be discussed based

on SVC model.

There are numerous complex oxides or halides with

general formula ABX3 (X = oxygen or halogen) having

perovskite-type crystal structure and outstanding functional

properties [26]. Since 1945, when the ferroelectric prop-

erties of barium titanate were discovered, a series of

complex oxides and complex halides with perovskite-type

structure have been found to be valuable functional mate-

rials. In recent years, searching new complex oxides and

complex halides with perovskie-type structure has become

an active research field of new materials exploration.

The crystal structure of compounds with ideal perov-

skite structure is illustrated in Fig. 1. It is the structure of a

unit cell of SrTiO3 crystal. In this structure, tetravalent

Ti4? cation is surrounded by 6 oxygen anions to form

octahedral structure, and bivalent Sr2? cation is surrounded

by 12 oxygen anions to form cubo-octahedral structure.

Based on the understanding of such type of crystal struc-

ture, Goldschmidt proposed a famous crystal-chemical

criterion of the formability or the stability of perovskite

structure for ABX3-type compounds:

t ¼ Ra þ Rx
ffiffiffi

2
p
ðRb þ RxÞ

; ð24Þ

where t is called tolerance factor. Ra, Rb are cationic radii

of A, B ions respectively, and Rx is the ionic radius of anion

of X. According to Goldschmidt, the cubic perovskite

structure is stable only if the value of tolerance factor has

an approximate range of 0.8 \ t \ 0.9, and the distorted

perovskite structure can be stable in a somewhat larger

range of tolerance factor. This criterion is widely used in

the exploration work of new compounds with perovskite-

type or perovskite-like type structure. Owing to the accu-

mulation of the crystallographic data of compounds with

Fig. 1 Crystal structure of SrTiO3, a typical compound with ideal

perovskite structure
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perovskite structure, it is now widely recognized that the

range of tolerance factor for the stability of perovskite

structure should be 0.75 \ t \ 1.00.

Although Goldschmidt’s tolerance factor t is indeed

very useful for the exploration of new compounds with

perovskite structure, it is only a necessary condition but not

the sufficient condition for the formation or the stability of

perovskite structure [27]. Many systems having t in the

range of 0.75–1.0 do not form perovskite-type compound.

For example, MnSiO3 has t = 0.856, but it has CdGeO3

structure; RbMnCl3 has t = 0.88, but it has hexagonal

BaTiO3 structure. NaI-MgI2 system has t = 0.826, but it

has no intermediate compound at all. Therefore it is

desirable to investigate the complementary conditions for

the formability of perovskite structure, in order to help the

computerized materials design for new materials with

perovskite structure. Atomic parameters and SVM tech-

nique can be used for this purpose.

Since BX6 octahedra and AX12 cubo-octahedra are the

basic sub-structures of perovskite lattice, as shown in

Fig. 1, it is easy to see that the stability of BX6 octahedra

and AX12 cubo-octahedra are also necessary conditions for

the stability of perovskite lattice. It is obvious that the

condition 0.75 \ t\1.00 is not enough to assure the sta-

bility of the BX6 octahedral and AX12 cubo-octahedral

structure. It is necessary to find the suitable criteria for the

above-mentioned stability requirements.

Some ABX3 type compounds, such as RbNiCl3,

although having 0.75 \ t \ 1.00, do not form perovskite-

type lattice but the crystal lattices with BaNiO3 structure.

The chief difference of BaNiO3 structure (or hexagonal

BaTiO3 structure) from perovskite structure is that in Ba-

NiO3 structure (or hexagonal BaTiO3 structure) the BX6

octahdra are shared by their face with each other (see

Fig. 2), while in perovskite structure they are shared with

each other by their corners.

In order to find the criterion of relative stability between

BaNiO3 structure and perovskite structure, the data set

containing 23 samples is used for data mining [28]. By

using SVC combined with atomic parameters of com-

pounds, the mathematical model of SVC was found to

differentiate between perovskite structure and the hexago-

nal ABX3 structures involving face-shared octahedral. The

SVM model with linear kernel function manifests that

100 % of separation of the chlorides with perovskite

structure and the chlorides with face-shared structures can

be achieved. In this work, the leaving-one-out cross vali-

dation (LOOCV) method was undertaken to evaluate the

performances of the models obtained. As such, the data set

of n samples was divided into two disjoint subsets

including a training data set (n–1 samples) and a test data

set (only 1 sample). After developing each model based on

the training set, the omitted data was predicted by the

model developed. In LOOCV test, the rate of correctness of

prediction is 91 %. The criterion for the formation of face-

shared structure found by SVC can be expressed as follows

4:52Rb � 1:83Ra þ 2:23Xa � 0:142Xb � 4:10Nd

þ 0:589\0; ð25Þ

where Ra and Rb denote the Shanon-Preweit ionic radii of

A and B in ABCl3 respectively. Xa and Xb denote the Ba-

sanov electronegativity of A and B respectively. Nd denotes

the number of d electrons in the unfilled shell of d electrons

of B ions. It implies that large A? cation, small B2? cation

and large electronegativity of B favor the formation of

face-sharing of BX6 octahedra. This fact can be explained

as follows: In perovskite-type lattice the network of corner

shared BX6 octahedra form cages of A? ions. The repulsive

force due to the large A? and small cage formed by small

B2? and X- will make perovskite-type lattice unstable,

while the BX6 octahedra in face-shared structure form

parallel chains, and A? ions are located between these

chains without strict confinement. Thus large A? and small

B2? favor the face-shared structure.

3.2 SVR applied to the prediction of energy gaps

of binary compounds

III-V and II-VI binary compounds are important semi-

conductors for microwave, optoelectron and infrared

devices. The band gaps (Eg) are essential properties of

these compounds. It would be helpful for materials sci-

entists to estimate the Eg of a compound before synthe-

sizing it. On the basis of known data set available, it is

reasonable to predict the properties of unseen samples by

using data mining methods. Since there are a lot of data

mining methods available, one has to deal with the trou-

blesome problem about model selection for a particular

data set with finite number of samples and multipleFig. 2 Face-shared BX6 structure in BaNiO3 lattice
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features. It is very important to select a proper model with

good generalization ability, i.e., low mean relative error for

the properties of new compounds (unseen samples).

In this work, the data set consists of 25 compounds,

including AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs,

InSb, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe,

HgTe, AlN, GaN, InN, PbO, PbS, PbSe, and PbTe [29, 30].

Based on the data set available, the SVR model for pre-

dicting Eg of AIIIBV and AIIBVI binary compounds was

constructed by using atomic parameters as features

including electronegativity, valence, radius, atomic mass

and their functions. The data mining results indicated that

the sum of proportion of atomic electrovalent and covalent

radius
P
ðz=rcovÞ [31], mean atomic number, �N atomic

electrovalent ZA and ZB should be selected as parameters in

the model of band gap,

where �N ¼ NA þ NB

2
; ð26Þ

X

ðz=rcovÞ ¼ ðz=rcovÞA þ ðz=rcovÞB: ð27Þ

In the present work, the LOOCV test was undertaken to

find the suitable capacity parameter C, e-insensitive loss

function and kernel function for SVR model. In order to

measure the generalization ability of SVR model, we

defined the mean error function (MEF) Um as Eq. (28)

Um ¼
1

n

Xn

i¼1

pi � eij j
emax � emin

� 100 %; ð28Þ

where ei is the experimental value of sample i, pi the

predicted value of sample i, n the number of the whole

samples. emax, emin are the maximum and minimum

experimental value of whole samples respectively. In

general, the smaller the value of Um obtained, the better

generalization ability expected. It is found that the optimal

SVR model with the least Um is available when the kernel

function is polynomial form of Kðxi; xjÞ ¼ xi � xj

� �

þ 1
� �2

,

while e = 0.07 and the regularized constant C = 70. By

using above kernel function and parameters optimized, the

trained SVR model for Eg of AIIIBV and AIIBVI binary

compounds with original data is available as follows

Eg ¼ 3:479�
X25

i;j¼1

ai � a�i
� �

xi � xj

� �

þ 1
� �2þ0:7473

 !

þ 0:1410;

ð29Þ

where ðai � a�i Þis the Lagrange coefficient corresponding

to support vector. Figure 3 illustrates the relationship of

predicted Eg and experimental Eg of AIIIBV and AIIBVI

binary compounds, with related coefficient (R) of 0.97.

In this work, the LOOCV method was also undertaken

to evaluate the performances of the models obtained.

Figure 4 is the plot of the predicted values employing

LOOCV of SVR versus experimental values for Eg of

binary compounds.

From Fig. 4, it can be concluded that the predicted

results are in good agreement to experimental ones [25].

3.3 SVR applied to the prediction of sintered cold

modulus of sialon-corundum castable

Although the discovery of new materials is very exciting in

materials research, the most part of tasks of materials

research everyday is to try to improve the preparation

technology of known materials. The economic effect of

such kind of improvement is very significant because these

efforts eventually determine the cost and the quality of

products or the competitive ability in international market.

Here the example of using SVR in materials optimization

of preparing Sialon Ceramic will be described.

Fig. 4 Experimental Eg versus predicted Eg of binary compound

semiconductors by using LOOCV of SVR (R = 0.93)

Fig. 3 Experimental Eg versus predicted Eg of binary compound

semiconductors with trained SVR model
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Sialons are silicon aluminium oxynitride ceramic

materials with a range of technically important application,

from cutting tools to specialized refractories. Furthermore,

they can have a wide range of compositions and occur in

several different families of crystal structures, the proper-

ties of sialons can be tailored for specific purposes [32]. b-

sialon corundum find applications as high temperature,

corrosion resistant, thermal shock resistant, high strength

and toughness structural material [33]. The sintered cold

modulus of sialon-corundum castable is an important

property of sialon material, but the relationship between

the property and process parameters is very complicated

[34]. Hence it is necessary to find some computational

methods to correlate the properties of sialon-corundum

with their process parameters.

In this work, the data set consists of 20 samples from our

experiments. The root mean square error (RMSE) Vm of

LOOCV was adopted to estimate the quality of the model

for predicting the sintered cold modulus of sialon-corun-

dum castable. The Vm is defined as follows

Vm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1

ðpi � eiÞ2

n

v
u
u
u
t

; ð30Þ

where ei is the experimental value of i sample, pi the

predicted value of i sample, n the number of the whole

samples in LOOCV. Based on the data mining work, it was

found that the linear kernel function with C = 7.0 and

e = 0.16 can be used to construct SVR model for the

quantitative relationship of sintered cold modulus with

their process parameters. Finally, the SVR model obtained

can be presented as follows [19]

Spred ¼ �2:78CWater þ 0:40CSiO2
� 1:35CAl2O3

þ 2:25CDisperser þ 36:77; ð31Þ

where Spred means the experimental values of sintered cold

modulus of sialon-corundum castable (strength, unit: MPa),

while CWater;CSiO2
;CAl2O3

and CDisperser are the content

(mass %) of water, SiO2 powder and q-Al2O3, dispersant

and water respectively.

Figure 5 illustrates the experimental values versus pre-

dicted values of sialon-corundum cold modulus using

LOOCV of SVR model with linear kernel (C = 7.0 and

e = 0.16).

According to the Eq. (31), in order to increase the Spred,

the content of SiO2 and dispersant should be increased, at

the mean while the content of q-Al2O3 should be

decreased, which is consistent with the mechanism as

follows. Addition of SiO2 improves the flowability, but it

reduces the added water content of castable. Simulta-

neously, SiO2 reacts with water and then forms net struc-

ture of siloxene, which accelerates the sintering of castable

and improves its cold strength after sintering. However, q-

Al2O3 which usually hydrates into Al(OH)3 and AlOOH as

bonder, cannot accelerate the sintering with water increas-

ing, because mass agglomeration c-Al2O3 exists in the

commercial q-Al2O3, which holds lots of water resulting

bad flowability. Therefore, the increase of q-Al2O3 restrains

the sintering and reduces the sintered cold strength of

castable. As for dispersant, it improves the flowability of

castable by avoiding the flocculation structure of micelle

and making water difficultly into this structure.

3.4 SVM applied to the optimization of electric

resistances of VPTC semiconductors

VPTC materials are a kind of ceramic semiconductors for

electronic uses. The task of the research work of VPTC

materials is to search the optimal composition and the

optimal preparation conditions for high value of q0/qmin

(the ratio of the electric resistance at zero degree centigrade

to the minimum electric resistance) of these materials.

There are five influencing factors including Yb2O3 content

(W1), excess TiO2 (W2), sintering temperature (Tc), sin-

tering time (Tk), and relative cooling rate (V). By using

linear kernel function (C = 10 and e = 0.15), the trained

SVR model for predicting q0/qmin is available as follows

q0=qmin ¼ 29:52½W1� þ 1:315½W2� þ 0:03098½Tc�
þ 1:075½Tk� � 3:487½V � � 40:56: ð32Þ

It is found that the relationship between the property of

q0/qmin and the five influencing factors is nearly linear one.

Figure 6 shows the comparison between the experimental

values and the predicted values of q0/qmin by SVR in

LOOCV test. By using the SVR model combined with

pattern recognition techniques, some unseen samples can

be designed with new compositions and technological

Fig. 5 Experimental values versus predicted values of sialon-corun-

dum cold modulus using LOOCV of SVR model with linear kernel

(C = 7.0 and e = 0.16)
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conditions for the optimization of VPTC semiconductors.

The experimental results prove that the property q0/qmin of

new sample designed by using data mining increases to 27,

which is much higher than that of the best sample (q0/

qmin = 21) obtained before the optimization.

3.5 SVM applied to the thickness control of In2O3

semiconductor film preparation

In2O3 semiconductor nanometer film is a new material for

combustible gas detector uses. It can be prepared by sol-gel

method. How to control the thickness of the semiconductor

film is one of the crucial problems in the preparation work.

There are several factors influencing the thickness of film:

the mass percentage of In2O3 and PVA in the bath, the

viscosity of coating liquids, the drawing rate and the

drawing number in preparation. So it is desirable to have a

mathematical model for the automatic control in the film

production. In our lab, SVM methods have been used for

data mining of this purpose.

It has been found that the SVR with polynomial kernel

of second degree can make the mathematical model for the

thickness control of the semiconductor films. Figure 7

shows the comparison between the experimental thickness

data and the predicted thickness in LOOCV test [35].

4 Discussion and conclusions

Generally speaking, how to choose the right balance

between model flexibility and over-fitting to a limited

training set is one of the most difficult obstacles for obtaining

a model with good generalization ability to predict proper-

ties of materials. In the computation of SVM model, it should

be noted that the selection of appropriate value for the reg-

ularization parameter C is very important because of its

possible effects on both trained and predicted results, since it

controls the tradeoff between maximizing the margin and

minimizing the training error. Usually, C should be opti-

mized for fear of neither under-fitting nor over-fitting. It is

also noticed that the predicted results are largely affected by

the kernel functions and its parameters adopted.

It should be emphasized that the advantage of SVM is

workable with a small size of sample set. In many cases,

obtaining a sufficient number of experimental samples is

still time-consuming and costly in the development of

novel materials. Therefore, efficient learning from a limited

number of samples becomes increasingly important for

shortening the materials development cycle.

Although our research results indicate that the perfor-

mance of SVM outperforms those of traditional data min-

ing methods, it should be realized that different data

mining methods would have their own advantages and

disadvantages in different applications. Sometimes the best

approach is a combination of different methods since the

complementary approaches can provide helpful informa-

tion from different point of views.

From the examples introduced in this paper, it can be

concluded that the SVM is an effective modeling tool with

great potential in materials design. Therefore, it can be

expected that the SVM method will be further applied in

various fields of materials science.
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