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Using Support Vector Machine (SVM) and

Ionospheric Total Electron Content (TEC) Data for

Solar Flare Predictions
Saed Asaly , Lee-Ad Gottlieb, and Yuval Reuveni

Abstract—Predicting where and when space weather events such
as solar flares and X-rays bursts are likely to occur in a specific area
of interest constitutes a significant challenge in space weather re-
search. Space weather scientists are, therefore, gradually exploring
multivariate data analysis techniques from the fields of data mining
or machine learning in order to approximate future occurrences
of space weather events from past distribution patterns. As solar
flares emit extreme ultraviolet and X-ray radiation, which leads to
ionization effect in different layers of the ionosphere, most recent
works related to solar flare predictions using machine learning
(ML) techniques, focused on X-ray time series predictions. Here,
we suggest using support vector machine for classifying subdaily
and diurnal total electron content (TEC) spatial changes prior to
solar flare events, in order to assess the possibility of predicting
B, C, M, and X-class solar flare events. This is done as opposed to
predicting TEC time series using ML techniques. The predictions
are estimated up to three days before each tested class events, along
with different skill scores such as precision, recall, Heidke skill score
(HSS), accuracy, and true skill statistics. The results indicate that
the suggested approach has the ability to predict solar flare events
of X and M-class 24 h prior to their occurrence with 91% and 76%
HSS skill scores, respectively, which improves over most recent
related works. However, for the small-size C and B-class flares,
the suggested approach does not succeed in producing similar
promising results.

Index Terms—Ionospheric total electron content, machine
learning (ML), solar flare predictions, space weather, support
vector machine (SVM).

I. INTRODUCTION

A. Space Weather

S
PACE weather is a field of research, which provides new

perspectives into the complex interactions and effects of

the sun and other cosmic sources on the earth’s magnetosphere,

ionosphere, and thermosphere, as well as on interplanetary
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space. Space weather also influences ground- and space-based

technological systems and can also compromise human lives

and health. Hence, space weather is a highly relevant research

topic for our modern society. The effects of solar activity on

earth and in space, such as satellite damage, radiation haz-

ards to astronauts and airline passengers, telecommunication

disturbances, and outages of electric power grids, have been

well documented and studied in the last few decades [1]–[3].

Scientists are, therefore, pursuing reliable tools and methods

for predicting where and when space weather events such as

solar flares and X-rays bursts are likely to occur [4], [5]. The

sun-earth system is a highly complex system with numerous

physical processes, ranging from magnetic field reconnection

and plasma acceleration processes [6], to the effects of charged

particles on electronic and biological systems [7], covering a

large range of spatial and temporal scales [8]. Although our

understanding of the governing physics of the sun-earth system

is constantly improving, the task of achieving real-time space

weather forecasts, similar to the daily atmospheric weather

forecasts, still remains a challenging task [7], [9] as our modern

technologies and space infrastructures continue to be exposed

to space weather threats.

Zhelavskaya et al. [10] tested how different machine learning

(ML) techniques perform with nowcasting and forecasting Kp

index up to 12 h ahead. Balasis et al. [11] utilized fuzzy artificial

neural networks in order to detect ultralow frequency waves from

magnetic field time series measurements using the CHAMP low

earth orbit satellite. Others used ML approach applied with a

data-driven model for the differential electron flux, with energies

between 120–600 keV, in the outer radiation belt [12].

B. Solar Flares

Solar flares are huge outbursts of electromagnetic radiation

from the sun with time scales ranging from minutes to hours [13].

The abrupt eruption of electromagnetic radiation propagates at

the speed of light, hence, any outcome reflected on the sunlit side

of earth’s unprotected external atmosphere strikes simultane-

ously when the event is detected. The amplified level of extreme

ultraviolet (EUV) and X-ray radiation leads to ionization effect

in the ionospheric D, E, and F2 layers upon the sunlit side of

earth [14].

Solar flare magnitudes cover a broad range of intensities and

are categorized in terms of peak emission in the 0.1 − 0.8 nm
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Fig. 1. UV and X-ray time series during a day (September 6, 2017) having
two X-class solar flare occurred at 08:57, and 11:53 UTC, respectively, versus
the averaged quiet DOY between the years 2010–2019.

spectral band (soft X-rays) of the NOAA/GOES XRS [15], [16].

The X-ray energy flux levels range from the “A” level (nominally

starting at 10−8 W/m2), followed by the next level, which is ten

times stronger, “B” level flares (≥ 10−7 W/m2), “C” level flares

(10−6 W/m2), “M” level flares (10−5 W/m2), extending up to

“X” level flares (10−4 W/m2).

Typically, high frequency (HF) radio waves are capable of

supporting communication over large spatial scales by refraction

throughout the ionospheric upper layers [14], [17]. When a

strong solar flare strikes, it produces ionization in the lower lay-

ers of the ionosphere (mainly the D-layer), causing radio waves,

which interact with electrons in these layers, to lose energy due

to higher collision frequency that occurs in the higher density

environment of the D-layer, thus causing HF radio signals to

become attenuated or completely absorbed [18]. This may lead

to an HF communication deficiency (i.e., radio blackout), mainly

impacting the 3 to 30 MHz frequency band [19].

Solar flares typically develop in areas on the sun associated

with the increase of strong magnetic fields [20], frequently cou-

pled with sunspot groups active regions [21]. As these magnetic

fields develop, they can extend to a state of instability while

releasing energy in numerous forms [22]. These encompass also

electromagnetic waves, which are detected as solar flares [15].

Nevertheless, the effect on the ionospheric F2 layer is induced

by the EUV radiation, thus, if we examine the time series of both

X-ray and EUV radiation during solar flare event, both peaks at

the same time, hence providing the motivation to examine also

the impact on the total electron content (TEC) in the ionosphere,

which is mainly influenced by the F2 layer [23]. Fig. 1 shows

a time series of both EUV and X-ray during two X-class solar

flares events occurred in September 6, 2017; one starts at 08:57

UTC, and the other starts at 11:53 UTC, indicating a detectable

signatures, versus the time series of an averaged EUV and X-ray

measurements during the same day for years without solar flares

occurrence. Zheng et al. [24] proposed a hybrid convolutional

neural network model by modifying a variant of VGGNet (neural

network, which performed very well in the ImageNet Large

Scale Visual Recognition Challenge in 2014), to predict multi-

class solar flare occurrence within 24 h by collecting samples of

solar active regions data from 2010 May to 2018 September. Liu

et al. [25], on the other hand, used physical parameters provided

by the space-weather helioseismic and magnetic imager (HMI)

active region patches along with other related data products such

as survey X-ray flares occurred from May 2010 to December

2016. They managed to categorize their source regions into the

four classes (B, C, M, and X) according to the maximum GOES

magnitude of flares they generated, while using a random forest

(RF) algorithm, to predict the occurrence of a certain flare class

at a given active region within 24 h time frame [25]. Colak

et al. applied image processing techniques in order to train two

neural networks (NN) in which the first one used a numerical

representation for the three parts of the McIntosh classification

for the sunspot region, taking into account the sunspot area as

inputs, and then generated the probability that this sunspot region

will produce a C, M, or X class solar flare in the upcoming 24 h.

The second NN was trained using a new dataset containing only

the sunspot groups, which were associated with C, M, and X

class flares [26].

Jiao et al. [27] developed a mixed LSTM regression model

to predict the maximum solar flare intensity within a 24-h time

window 0–24, 6–30, 12–36, and 24–48 h ahead of time using 6,

12, 24, and 48 h of data for each HMI active region patch.

C. Ionospheric TEC

One TEC unit (TECU) is defined as the total number of

free electrons in a cylinder with a base area of 1 m2, which

is equal to 1016 electrons/m2. The ionosphere structure and

electron peak density varies markedly with altitude, latitude,

longitude, universal time, season, solar cycle, and certain solar

and geomagnetic activity, causing it to be dynamically variable,

and hence, one of the main sources of errors to technology

such as Global Positioning System (GPS) [28], [29]. The pri-

mary driving mechanism for the ionosphere is solar ultraviolet

(UV) and extreme UV (EUV) radiation, which affect ioniza-

tion, temperatures, and neutral winds [30], [31]. The study of

ionospheric modulation due to solar events is a fundamental

part of space weather research [23]. The strongest reaction of

the ionosphere occurs during the complex coupling processes

while geomagnetic storms associated with solar coronal mass

ejections, coronal holes, or solar flares, with the impact observed

at different heights in the ionosphere [13].

Global navigation satellite system (GNSS) technology is a

powerful tool for space weather monitoring and forecast, which

requires a permanent monitoring of the ionospheric state on a

global scale [32]. The world-wide use of GNSS such as GPS and

GLONASS enables an exceptional method for continuous mon-

itoring of TEC of the global ionosphere/plasmasphere stretching

up to a height of about 20 000 km [33]. The basic concept

upon which these systems operate is accurately estimating the

travel time of the electromagnetic signal emitted from satellites

high above the earth’s surface [34]. Since these signals must

propagate through the earth’s troposphere and the ionosphere,

they are considerably affected by the physical characteristics of

these layers. When electromagnetic signals propagate through

the troposphere they are delayed, and the speed of propagation

is decreased [35]. The amount of delay depends mainly on
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the pressure, temperature and water vapor content, which vary

significantly both in space and time [36]. Opposed to the nondis-

persive tropospheric effects, the speed at which electromagnetic

waves travel at a specific height in the ionosphere is bounded

by the local free electrons density [37], and the speed of the

wave is actually increased by the presence of the free electrons.

The outcome is that the electromagnetic wave phase accelerates

as it propagates through the medium, causing it to arrive at the

receiver earlier than it would have arrived had it traveled in a

complete vacuum [38]. The early arrival is generally described

as a phase advance. The total zenith ionospheric range error on

a radio wave is estimated by integrating the free electron density

along the total path from the satellite to the receiver, and thus is

proportional to the TEC in the ionosphere [38].

Most of the effort invested so far in the field of ML related

to TEC measurements were concentrated in TEC time series

prediction algorithms. Sun et al. [39] provided a long short-term

memory (LSTM) based model to predict ionospheric vertical

TEC above Beijing, where their model input was a time sequence

consisted of the daily TEC vectors and other closely related

parameters, and the output were TEC time series 24 h ahead.

Liu et al. [40], however, applied the LSTM with multiple input

data, including historical time series of spherical harmonic (SH)

coefficients, solar EUV flux, disturbance storm time index, and

hour of the day, to forecast the 256 SH coefficients, which are

traditionally used to construct global ionospheric maps. Thus,

this is the first time an attempt has been carried out for using

support vector machine (SVM) technique for classifying spatial

TEC changes caused during solar flare events.

II. MOTIVATION

Space weather research studies the interactions of the solar-

terrestrial environment, which is drawing a significant scientific

attention due to our increasing use of the space environment

for satellites, GPS navigation, TV, and cell phone communica-

tion [5]. Extreme space weather could potentially cause damage

to critical infrastructure, especially the electric grid, or the

performance of technology we use on earth [41]. Current remote

sensing technologies, operating at a wide range of electromag-

netic spectrum, have become invaluable tools to detect and

measure signatures associated with space weather events [42].

Although state-of-the-art forecasting systems today are based

on numerical models, which describe the physical processes

leading to space weather events, the lack of sufficiently detailed

and real-time measurements prevents accurate forecasting of

such events [43]. Predicting where and when a severe space

weather events are likely to occur in a specific region of interest

still remains a key challenge in severe space weather forecasting

and mitigation [44].

Recent advances in cloud-based big-data technologies cur-

rently make data driven solutions feasible for increasing num-

bers of scientific computing applications [45], [46]. One such

data driven solution approach is ML, where patterns in large

datasets are brought to the surface by finding complex mathemat-

ical relationships within the data [47]. Researchers are, therefore,

gradually exploring multivariate data analysis techniques from

Fig. 2. Flowchart describing the steps of the proposed methodology. The
suggested approach is consisted of the datasets retrieval, followed by datasets
sorting by magnitudes. Furthermore, in order to optimize and accelerate the
learning process, Preprocessing techniques were applied with the GPS-TEC
data prior to the learning process.

the field of ML in order to approximate future occurrences

of space weather events from past distribution patterns [48].

Current studies have clarified patterns of spatial sensitivity, how-

ever temporal forecasts have remained largely empirical [49],

[50]. Most ML techniques achieve overall success rates of

75%− 95% [51]. While this may seem very promising, there

are issues which remain with data input quality, potential over

fitting and inadequate choice of prediction models, introducing

unintentional inclusion of redundant or noise variables, and

technical limits to predicting only certain types and sizes of

the flare event [52]–[54]. Simpler models provide only slightly

inferior predictions to more complex models and should guide

the way for a more widespread application of data mining in

solar flares prediction [55], [56]. Here, we propose to study

how to implement machine learning methods, such as SVMs,

with global GPS-TEC dataset, constructed from ground base

measurements, in order to forecast solar flare events.

The current suggested methodology is to utilize the SVM

classification algorithm in order to predict solar flare events

by applying it with spatial changes introduced into global TEC

maps one, two, or three days before B, C, M, or X class solar

flare.

III. DATASETS AND METHODOLOGY

Although severe space weather events are not common, low-

level space weather events occur on a regular basis. Since the

beginning of the 20th century, all aspects of our space-based

technology have been affected by severe and extreme space

weather disturbances. When they do occur, the impacts to our

national infrastructures are extremely significant and the ability

to predict them is of the highest priority in natural hazards

prediction. Therefore, a considerable amount of efforts has

been devoted for conducting continuous monitoring of different

solar indices [30], augmenting current available datasets [57].

The workflow (shown in Fig. 2) of the suggested methodology

consists of the dataset collection and preprocessing (averaging,

differentiating), followed by the implementation of the SVM

under various measures.
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Fig. 3. Example for the sorting procedure step, applied with the strongest solar
flare data available for the year 2006 [taken from https://spaceweatherlive.com].
As can be noticed, during the year 2006 only X, M, and C flare classes were
registered among the strongest 50 solar flares, where there were 4 X-class solar
flares, 10 M-class solar flares, and 36 B-class solar flares.

1) Solar Flares Dataset: For the solar flares dataset, we

used the NOAA SWPC - spaceweatherlive.com website, which

provides real-time auroral and solar activity and archive data

since June 1996, based on the space environment monitor in-

strument subsystem, carried on board Geostationary Operational

Environmental Satellites (GOES) [58]. The dataset consists of

the strongest 50 solar flares each year, where for each flare the

exact level, region, and time is provided. Since our primary goal

is to study how ML methods can be implemented with GPS-TEC

estimations to forecasts solar flare events, we examine only

the solar flare events, which were timely correlated with the

available GPS-TEC data between the years 1998–2018 (i.e.,

TEC data for the day of the flare and the three consecutive

days before). After sorting the entire database, we arrived at

171 X-class solar flares, as well as 586 M-class, 193 C-class,

and 100 B-class solar flare. A typical example for the sorting

procedure, applied with the strongest solar flare data found for

the year 2006 is shown in Fig. 3.

2) TEC Dataset: For each of the maps, we used the global

ionospheric maps of VTEC computed with a resolution of

15 min, 5◦ and 2.5◦ in time, longitude and latitude, respectively,

which results in 96 maps per day with dimension of 73 × 71

for each map [59]. A typical example of a VTEC map snap-

shot is shown in Fig. 4, corresponding to a X-class solar flare

event.

3) TEC Dataset Selection: Due to the fact that there are five

different models (CODE - University of Bern in Switzerland,

ESA - ESOC Darmstadt Germany, JPL - Jet Propulsion Lab

in Pasadena USA, and UPC -University Polytechnic Catalonia

in Barcelona, Spain), which produces global ionospheric GPS-

TEC maps, in addition to the International GNSS Service (IGS)

Analysis Centre dataset, which contains also global ionospheric

TEC maps, extracted from averaging the four different models,

we first set to examine the differences between all 5 datasets, dur-

ing quiet and disturbed days, to determine whether our learning

results will be effected while using a specific model. The IGS

dataset includes rapid global TEC maps and movies in cylindri-

cal projection; rapid RMS TEC maps and errors of in cylindrical

Fig. 4. Example of a global TEC map around the time of an X-class solar flare
event, occurred on February 25, 2014, at 00:45 UTC. [source: ftp://cddis.nasa.
gov/gnss/products/ionex/].

projection; and rapid TEC maps and movies in polar projection

(https://spdf.gsfc.nasa.gov/pub/data/gps/tec15min_igs/).

Furthermore, following Liu et al. [60], which analyzed 11

years of global TEC maps, derived from the JPL model, while

investigating a new approach for extracting overall climato-

logical feature of the ionosphere, we divided each hemisphere

into three separate strips: low, mid, and high latitude. The

low strip ranges from latitudes 0◦ − 25◦, middle strips range

from latitudes 25◦ − 55◦, and high strips ranges from latitudes

55◦ − 87.5◦. For each longitude, in each strip we calculated

the mean TEC value, and as a result, we obtained for each

individual longitude a single mean TEC value. In addition, as

suggested by Liu et al. [60], we have also combined each strip

with its identical one in both hemispheres, resulting in global

low latitudes (25◦N − 25◦S) strip, global middle latitudes strip

(25◦N − 55◦N, 25◦S − 55◦S), and global high latitudes strip

(55◦N − 87.5◦N, 55◦S − 87.5◦S). This is done due to the fact

that there is a strong solar activity variation in the daily global

mean TEC strips [60], where the mean TEC indicates stronger

solar activity sensitivity in the lower latitude strips, thus, the

resulting saturation in the mean TEC versus F10.7 solar index

is more prominent at low latitudes, however, the mean TEC

increases more rapidly with higher solar EUV fluxes, evidently

observed at high latitudes.

Fig. 5 shows the comparison between the three global strips

(low, middle, and high latitudes) for each model versus the IGS

averaged model during September 6, 2017 at 12:00 UTC.

As can be noticed, the spatial pattern extracted from the four

different models, within the three geographical strips, coincide

with the IGS averaged model, except the JPL model, which

gain the same spatial pattern for the middle and high strips,

but exhibit a bias from all the other models. As such, we choose

to use the low latitude strip, as was also pointed out by Liu

et al. [60], where all models agree with each other. Thus, we

used the unified IGS low latitude strip model for the learning

process. After classifying all the relevant solar flare events and

their conjugated TEC maps, we ended up with 72 triplet sample

TEC maps for the X-class solar flares (i.e., each sample contains

96 TEC maps for 1–3 days prior to the solar flare events), 362

samples for the M-class solar flares, 124 samples for the C-class,

and 65 samples for the B-class events.

ftp://cddis.nasa.gov/gnss/products/ionex/
https://spdf.gsfc.nasa.gov/pub/data/gps/tec15min_igs/
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Fig. 5. Comparison between the five different models for extracting global
GPS-TEC maps (UPC, CODE, JPL, ESA, and IGS) using low, middle, and high
latitude strips mean TEC values from the map resulting on September 6, 2017,
12:00 UTC.

4) TEC Data Rejection Process: As we are aiming to have

a pure prediction of solar flares, we filtered out all the relevant

maps during days when there were solar disturbances along with

high Kp index values (kp ≥ 6) or strong earthquakes events

(> 6.0 Mw), since several recent studies indicated possible links

between earthquakes and the ionospheric F2 layer [61], [62],

thus, we ended up with a model that predicts only solar flares and

not any other disturbance, which can influence the ionosphere.

In addition, we also filtered out days that have more than one

flare so we can make sure we are predicting a particular flare and

not a day that has several flare events with different magnitudes.

A. TEC Dataset Preprocessing and SVM

After the data retrieval is accomplished, we set to apply several

procedures in order to optimize the learning process results.

In order to optimize our learning process time, we first deal

with feature dimension reduction, applied with the TEC dataset,

while taking under consideration how to optimize any loss of

information due to the removal of the rows and/or columns from

our dataset.

1) Dataset Preprocessing: Daily average maps (AM). In this

study, instead of learning the overall 96 · n maps for each day,

where n is the number of previous days, we estimate an average

daily TEC map for each day i. This is an average of 96 overall

maps, where each map is a matrix Mi,j with a dimension of

73 × 71 for each day. Thus, the learning process is also applied

with one map for each day, allowing us to decrease extensively

the amount of data we learn, along with its dimensions tonmaps

for each studied solar flare event. The data can be represented

as a matrix with 73 × 71 × n elements, which are defined as

follows:

Avgi =
1

96
·

96
∑

j=1

(Mj). (1)

For each day i in year y, the map’s matrix is defined as follows:

Veci,y =
(

Avg
1,y,Avg

2,y, . . .,Avgn,y

)

. (2)

Fig. 6. Example for the AM procedure during quiet (right side) and disturbed
(left side) days. During the quiet day (January 24, 2014), TEC values peaks
around 50 TECU, where for disturbed days, maximal TEC values peaks above
70 TECU a day before an X-class solar flare event (February 24, 2014) accorded.

Fig. 7. Comparison between time series of one point (lat = 12.5, long =−10)
during a quiet day (October 5, 2013 - red graph), and a solar-flare day (November
5, 2013 - blue graph).

An example for the resulting procedure is shown in Fig. 6 during

quiet and disturbed periods. The AM approach, which averages

the 96 maps each day and is mainly (but not entirely) sensitive

to the daily variability (which also includes subdaily variations)

and shows a smoothed behavior with maximal differences of

0.5–1.5 TECU for the low latitude strips, when an average quite

day is compared with a disturbed day.

Subdaily spatial difference trends - Derivative of the maximum

difference (DMF). Following the daily AM procedure, for each

day we also calculated the derivative (M ′) of the map difference

extracted from the maximum and minimum maps, which takes

into account the diurnal (subdaily) variability (at a time scale of

half a day, Fig. 7), which is noisier but yield a maximal difference

of about 3 TECU for the low latitude strips, when an average

quite day is compared with a disturbed day. This procedure can

be postulated as

Diff(i, j) = Maxi,j − Mini,j (3)

where Max, Min maps are defined as follows:

Maxi,j = max
A∈S

(Ai,j) (4)

Mini,j = min
A∈S

(Ai,j) (5)

where i, j are the latitude, and longitude, respectively, and S is

defined as the set of all maps for a given day

M ′(i, j) = (Diff(i− 1, j)− Diff(i, j))

+ (Diff(i, j − 1)− Diff(i, j)). (6)
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Fig. 8. Examples of the result of the M ′ matrix during a quiet day (August 31,
2007) (bottom), and one day before an X-class solar flare (November 5, 2013)
(up). The resulting maps focus on the local spatial changes inside the map for
each day. Strong spatial changes are considered as spatial locally maximal values,
unlike the average or differential maps which the strong change is distributed
over the entire map.

Fig. 9. Low, middle, and high latitude mean strips calculated for AM pre-
processing procedure applied on a date that has a solar flare, and the three
consecutive days before, as well as on average of quiet days for the same date.

Furthermore, for each day we calculated the DMF between the

minimum and maximum maps (see Fig. 8). We then learned the

DMF maps of n days before quiet and disturbed days, resulting

with n differential maps for each learned event.

2) Data Analysis: Before starting the learning process, it is

crucial to verify that there is no loss of information, thus, we

first examined the results from both preprocessing approaches

(i.e., AM and DMF) by applying them with data during a solar

flare (September 6, 2017) event and the three consecutive days

before it occurred, along with the average quite day for the same

day of year (DOY) averaged from all available maps having no

solar flare between the years 1998–2018. As such, we compared

the low, middle, and high-latitude mean strips (see Figs. 9 and

10), and verified that there is a significant difference (2.45–7.23

TECU) between the TEC values for the days within the range

Fig. 10. Low, middle, and high latitude mean strips calculated for DMF
preprocessing procedure applied on a date that has a solar flare, and the three
consecutive days before, as well as on average of quiet days for the same date.

of the solar flare event (three consecutive days before), and the

averaged quiet DOY. This basically means that there are some

features we can learn from the database using the suggested

approach. In addition, due to the fact that the highest TEC values

are found at low latitude strips, but the highest TEC differences

between the three consecutive days prior the flare day and the

averaged quiet DOY are found at the high latitude strips, it is

better to learn the full TEC maps to avoid losing any important

information from a particular strip.

3) SVM Technique: A SVM is a supervised machine learning

algorithm that can be used for both classification and regression

tasks [63]. Given a training set of N data points {xi, yi}, 1 ≤
i ≤ N where xi ∈ Rn is the ith input pattern (feature vector), n
is the data point dimension, and yi ∈ {+1,−1} is the ith output

pattern, the SVM builds a hyperplane that is the linear separator,

dividing the space into two halfspaces, each of which contains a

single sample class. Bestriding the separator are two equidistant

parallel planes [64]. The purpose of the SVM is to increase the

distance between the linear separator and each of the parallel

planes (i.e., the margin). The training examples that are on in

direct contact with the parallel planes are called support vectors,

hence the name of the technique [65].

The equation representing the separating hyperplane is as

follows:

wTxi + b = 0 (7)

where x is the input vector, w is the parameter vector, and b is

the bias. As is apparent in Fig. 11, the estimation equation of yi
can be rewritten as follows:

ŷ =

{

wTxi + b ≥ 0, yi = +1

wTxi + b ≤ 0, yi = −1.
(8)

The support vectors are the vectors closest to the optimized

hyperplane, and therefore, are the most difficult to separate,

since they are in direct contact with the location of the optimal

separation boundary.

a) Hard margin: As we take under consideration the con-

straints in 8, alternatively, we can write the same that covers
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Fig. 11. Illustration for the SVM definitions, with blue dots indicating data
points of type 1, and red dots indicating data points of type -1. The blue and
red arrows indicate the margin of the hyperplane, and the points surrounded by
black circles are the support vectors.

both constraints

yi(w
Txi + b) ≥ 1. (9)

In this case, we require that each point should be on the correct

side of the hyperplane.

b) Soft margin: SVM can be extended to handle problems

where there is no linear separation between the two groups. This

is done using the hinge loss function

max(0, 1− yi(w
Txi + b)). (10)

The abovementioned function equals zero when the condition

required for hard margin is met, i.e., when xi is on the correct

side of the separator. For points that are on the wrong side of the

separator, the function receives a value relative to its distance

from the separator. Thus, in this approach, we try to minimize

the expression

[

1

N

N
∑

i=1

max(0, 1− yi(w
Txi + b))

]

+ λ ‖W‖2 (11)

where λ defines the extent to which the margin is allowed to

expand. For a low λ value the soft margin behaves similarly to

the hard margin when the input is linearly separable.

c) Classifier calculation:

1) Primal:

Minimizing 11 can be rewritten as a constrained optimiza-

tion problem with a differentiable objective function in the

following way.

For each i ∈ {1, . . ., N}, we introduce a variable ζi =
max(0, 1− yi(w · xi + b)).
We see that ζi is the smallest nonnegative number satisfy-

ing yi(w · xi + b) ≥ 1− ζi.
Thus, we can rewrite the optimization problem as follows:

minimize
1

N

N
∑

i=1

ζi + λ ‖W‖2

subject toyi(w · xi + b) ≥ 1− ζi and ζi ≥ 0 for all i. This

is called the primal problem.

2) Dual:

By solving for the Lagrangian dual of the abovementioned

problem, one obtains the simplified problem

maximizef(c1. . .cN ) =

N
∑

i=1

ci

−
1

2

N
∑

i=1

N
∑

j=1

yici(xi · xj)yicj

subject to

N
∑

i=1

ciyi = 0, and 0 ≤ ci ≤
1

2nλ
for all i.

Here, the variables ci are defined such that

�w =

N
∑

i=1

yici �xi.

Moreover, ci = 0 exactly when �xi lies on the correct side

of the margin, and 0 < ci < (2nλ)−1 when �xi lies on the

margin’s boundary. It follows that �w can be written as a

linear combination of the support vectors. The offset b can

be recovered by finding an �xi on the margin’s boundary

and solving

yi(�w · �xi − b) = 1 ⇐⇒ b = �w · �xi − yi.

3) Nonlinear separation using the kernel trick:

The idea in this approach is to embed the training examples

from the original linear space to a higher dimension space,

with the hope we can find a better linear separator that in

the new space. Embedding is done using the kernel trick,

by replacing the inner product used for the linear separator

with a kernel function that simulates the redistribution of

the original vectors in a richer space, without significant

computational cost. However, the transition to a higher

dimension may result in an increase in the generalization

error. The linear separator in the new vector space corre-

sponds to a nonlinear separator in the original space. The

classification work is also performed with the help of the

nuclear operator. Then, the SVM method aims to construct

a classifier of the form

SVM(x) = sign

[ N
∑

k=1

αkykψ(x, xk) + b

]

(12)

where αk are positive real constants and b is bias, and

ψ(x, xk) is the kernel function. Here, we consider several

functions for ψ(x, xk). One typically has the following

choices:

1) linear SVM: ψ(x, xk) = xT
k x;

2) polynomial SVM of degree d : ψ(x, xk) = (xT
k x+

1)d;

3) radial basis function (RBF SVM): ψ(x, xk) =

e
−‖x−xk‖2

σ2 ;
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4) two layer (TL SVM) neural network: ψ(x, xk) =
tanh kxT

k + θ.

Where σ, k, θ are parameters that are tuned during the learning

process.

Each input map is flattened to a vector by concatenating its

rows into a single vector. For each solar flares class (X, M, C,

and B-class), we separately trained each of the abovementioned

four SVM models of different kernels. Moreover, each model

was trained on two different type of inputs, AM and DMF TEC

maps, in order to predict whether a flare will occur within 0, 1, 2,

or 3 days ahead, where 0 implies that no flare event will occur at

all. The SVM algorithm utilized in our study was implemented

using MATLAB environment.1

IV. EXPERIMENTAL RESULTS

A. Data Splitting

Applying ML approaches to a given set of measurements

typically requires splitting the data into two sets: Training-set:

which consists all the data that the model will be trained on, and

testing set (an unseen Test-set): which consists of the data that

the resulting model will be tested on after the training process

is been finished. A common separation ratio which we used in

this study was set to 70% and 30% for the training and test

sets, respectively. Due to the fact that the available solar flare

data might not be sufficient to train our model, allocating part

of it for the test-set could pose an issue of underfitting. Thus,

by reducing the amount of the training dataset, we risk losing

important patterns and features, which can increase the overall

error induced by the bias. Therefore, in order to overcome this

issue, we used the k − fold cross validation technique [66],

which provide sufficient amount of data for training the model

while also leaving enough data for validation (i.e., the test-set).

k − fold cross validation technique divides the training set into

k subsets, while for each repetition one of the k subsets is used as

a test set and the remaining k − 1 subsets are assembled to form

the training set. The process repeats itself k times, and the error

estimation is averaged over all k repetitions to achieve optimal

effectiveness of the model. the k value used in the current study

was set to 10% of the training sets.

B. Results

Given the results, it is necessary to characterize the perfor-

mance. A useful way is by using different combinations between

TP, FN, TN, and FP to express different aspects of the model

performance and output quality

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

HSS =
2 · [(TP × TN)− (FN × FP)]

(TP+FN) · (FN+TN)+(TP+FN) · (FP+TN)
(15)

1[Online]. Available: https://www.mathworks.com/discovery/support-
vector-machine.html SVM Matlab

Fig. 12. Comparison of ROC curves for the best performance obtained when
the two classes are X/M/C/B-class solar flares and no event occurrence, applying
the TL SVM and DMF products. C, and B predictors have very poor predictive
power (AUC ∼ 0.56 - asymptotically behaves as the “no skill” line) as it cannot
differentiate between a solar flare and nonsolar flare days, while X and M
predictors have the ability for highly accurate prediction of a solar flares (AUC
∼ 0.96 and AUC ∼ 0.89, respectively).

Accuracy =
TP + TN

P + N
(16)

TSS =
TP

TP + FN
−

FP

FP + TN
. (17)

While the precision term aims to quantify the fraction of rele-

vant instances (true positive identifications) among the retrieved

instances (true positive plus false positive identifications), the

recall term (also known as the sensitivity term) aims to quantity

the fraction of the total amount of relevant instances (true pos-

itive identifications) that were actually retrieved (from the true

positive plus false negative identification). The accuracy term

(ACC) aims to quantify how well a classification test correctly

identifies or excludes a condition (i.e., whether it’s a TP or

TN). The Heidke skill score (HSS) [67] aims to quantify the

fractional improvement of the prediction accuracy relative to

some set of control or reference predictions. It is normalized by

the total range of possible improvement over the standard (which

basically means it can be compared with different datasets). The

range of the HSS is defined as: HSS = 1 is a perfect prediction;

HSS = 0 shows no skill. If HSS < 0, the prediction is worse

than the reference prediction. The true skill statistics (TSS) [68]

term on the other hand compares the probability of the true

prediction, to the probability of false prediction. The range of

the TSS is between −1 and +1, where the value 0 means that

the algorithm has no effect. High positive values indicate that

the algorithm performs well, while negative values indicate a

contradictory behavior, suggesting that the labels should be

reversed. Another widely used performance measurement tool is

the receiver operating characteristics (ROC) curve (see Fig. 12),

which give us a sense of how much the model is capable of

distinguishing between classes at all classification thresholds.

Higher area under curve (AUC) values mean that the model

performs better at predicting flare/nonflare days. The AUC term

summarizes the integral (i.e., the area under the ROC curve). The

results of the 4 different SVM ψ kernel functions described in

https://www.mathworks.com/discovery/support-vector-machine.html ignorespaces SVM ignorespaces Matlab
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Fig. 13. X class prediction results by applying the 4 different ψ SVM kernel
functions on both AM and DMF proposed methods for one (a), two (b), and
three (c) days before the solar flare events.

Section III-E3 applied on the two proposed methods described

in Sections III-E1 and III-E1 with 1, 2, and 3 days before the

solar flare events are shown in Figs. 13– 16 for X, M, C, and B

class solar flares, respectively.

V. DISCUSSION

In this study, we propose a new methodology for predicting so-

lar flare events, up to 3 days before they occur, by applying SVM

Fig. 14. M class prediction results by applying the 4 different ψ SVM kernel
functions on both AM and DMF proposed methods for one (a), two (b), and
three (c) days before the solar flare events.

technique with TEC maps extracted from GPS ionospheric path

delays. Two approaches for learning the data were developed:

The AM and the DMF. Considering the number of days before

a solar flare event occurs, the AM approach reduces the input

dimensions by a factor of 96 when taking the average map of each

of then days instead of taking 96 maps for each day and learning

them. The DMF approach aims to learn the spatial change of each

day by taking the derivative of the map, which was produced
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Fig. 15. C class prediction results by applying the 4 different ψ SVM kernel
functions on both AM and DMF proposed methods for one (a), two (b), and
three (c) days before the solar flare events.

from the elementwise maximum difference for each day, while

learning these 3 · n maps. As a preprocessing step. We tested

4 different variations of kernel functions for the SVM in order

to learn the AM and DMF products. The results indicate that

the best combination is achieved by learning the spatial changes

(the DMF approach), using two-layer neural network SVM with

the tanh(kkTx + θ) as the kernel function, which results in the

Fig. 16. B class prediction results by applying the 4 different ψ SVM kernel
functions on both AM and DMF proposed methods for one (a), two (b), and
three (c) days before the solar flare events.

prediction of solar flare events of the X and M-classes with

80%–90% and 80%–87% accuracy, for n ∈ [1, 3], respectively.

The results also indicate that the proposed method does not

succeed in predicting small-size C- and B-class solar flares. This

outcome can be rationalized by the fact that small-size flares

have small impact on the ionization effects in the ionosphere,

explained leaving the TEC unchanged.
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Fig. 17. Multiclass solar flare prediction results within 24 h of our methods
(DMF/AM) with TL SVM in comparison with previous methods using precision
metric.

Fig. 18. Multiclass solar flare prediction results within 24h of our methods
(DMF/AM) with TL SVM in comparison with previous methods using recall
metric.

After sorting all the solar flares dates that are relevant to

the TEC maps we have, we were left with a relatively small

amount of data that the algorithm could be taught, which could

be one of the reasons why the algorithm does not perform well

on small-size solar flares (in addition to their insufficient power).

The average behavior of the cost function across iterations

decreased exponentially, but relatively slowly due to the fact

that the learning rate of the gradient decent algorithm was 10−3

in order to try to achieve the best results.

The best results we achieved (1 d before each Solar flare)

using both methods (DMF and AM), while trained by a TL

SVM, are compared with the abovementioned previous studies

in Figs. 17– 21. The proposed methodology presented previously

achieves better results in comparison with most previous related

works; 12%–15% improvement for the precision skill scores,

9%–17% improvement for the recall skill scores, 21%–37%

improvements for the HSS skill scores, 1%–2% improvement

for the Accuracy skill scores, and 11%–24% improvement for

the TSS skill scores, for X, and M class solar flare predictions,

respectively. However, for the small size solar flares (B, C

classes), the suggested approach does not succeed in producing

similar promising results. Furthermore, all previous studies used

X-ray time series, sunspots data, and active region analysis,

which required using image processing-based ML techniques

Fig. 19. Multiclass solar flare prediction results within 24 h of our methods
(DMF/AM) with TL SVM in comparison with previous methods using HSS
metric.

Fig. 20. Multiclass solar flare prediction results within 24 h of our methods
(DMF/AM) with TL SVM in comparison with previous methods using accuracy
metric.

Fig. 21. Multiclass solar flare prediction results within 24 h of our methods
(DMF/AM) with TL SVM in comparison with previous methods using TSS
metric.

or more complex ML models, which concededly consume more

time and computing power. Here, we suggest using the SVM

algorithm in order to classify spatial changes within global TEC

maps to predict whether there will be a solar flare events up to

three days ahead.

VI. CONCLUSION

We present the use of SVM applied with ionospheric TEC

data, derived from worldwide GPS geodetic receiver network,
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in order to evaluate the possibility of predicting B, C, M, and

X-class solar flare events. While testing a wide range of possible

products estimated from the initial GPS-TEC maps, taking into

account low data budget, we conclude that when using the DMF

variation applied with TL-SVM technique, the model has the

ability to predict solar flare events of X and M-class with 91%

and 76% HSS skill score, respectively. However, the proposed

method does not succeed with small-size solar flares, such as

B and C, where the HSS skill score decreases to −0.3%–0.1%.

This can be attributed to the difficulty in obtaining sufficient

amount of TEC samples to train the SVM classifier with small-

size solar flare events, along with the fact these small sized

bursts have negligible impact on the ionosphere. Future work

might include a modified combination of TEC measurements

and additional remote sensing data, which will better preserve

small-sized features related to the flare events that could not be

identified through TEC modifications. This might also improve

the accuracy of small-size solar flare predictions.

SOURCE CODE

The source code of the preprocessing steps as well as the best

model parameters can be found at:

https://github.com/saedAsa/TEC_SolarFlare.git
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