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Abstract

Background: As in many countries, quantifying COVID-19 spread in Indonesia remains challenging due to testing

limitations. In Java, non-pharmaceutical interventions (NPIs) were implemented throughout 2020. However, as a

vaccination campaign launches, cases and deaths are rising across the island.

Methods: We used modelling to explore the extent to which data on burials in Jakarta using strict COVID-19

protocols (C19P) provide additional insight into the transmissibility of the disease, epidemic trajectory, and the

impact of NPIs. We assess how implementation of NPIs in early 2021 will shape the epidemic during the period of

likely vaccine rollout.

Results: C19P burial data in Jakarta suggest a death toll approximately 3.3 times higher than reported. Transmission

estimates using these data suggest earlier, larger, and more sustained impact of NPIs. Measures to reduce sub-

national spread, particularly during Ramadan, substantially mitigated spread to more vulnerable rural areas. Given

current trajectory, daily cases and deaths are likely to increase in most regions as the vaccine is rolled out.

Transmission may peak in early 2021 in Jakarta if current levels of control are maintained. However, relaxation of

control measures is likely to lead to a subsequent resurgence in the absence of an effective vaccination campaign.

Conclusions: Syndromic measures of mortality provide a more complete picture of COVID-19 severity upon which

to base decision-making. The high potential impact of the vaccine in Java is attributable to reductions in

transmission to date and dependent on these being maintained. Increases in control in the relatively short-term will

likely yield large, synergistic increases in vaccine impact.
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Background
As of 28 April 2021, Indonesia has reported the highest

number of confirmed COVID-19 cases (1,657,035) and

deaths (45,116) among Southeast Asian countries [1].

Cases were first reported in West Java province, on the

island of Java, on 2 March 2020, amid concern that the

disease had circulated widely before [2, 3]. The city of

Jakarta (the capital of Indonesia) subsequently became

the epicentre of the country’s epidemic, following which

the disease spread throughout the island.

Non-pharmaceutical interventions (NPIs) have in-

cluded national social distancing measures encouraging

people to work, study, and worship at home (March 15)

[4]; mandated social distancing measures implemented

on April 10 as part of a lockdown, named Pembatasan

Sosial Berskala Besar or PSBB in Indonesian [4]; and a

ban on domestic travel during the month of Ramadan

(April 24 to June 7) [5]. In June, Indonesia entered the

Adaptasi Kebiasaan Baru (AKB or ‘new normal’) period

where some restrictions were lifted (Fig. 1a and b) [4].

During this AKB period, the reported incidence of

COVID-19 cases and deaths increased across Indonesia,

with community transmission evident across the six

provinces of Java (Fig. 1c and d). PSBB was subsequently

reimposed in mid-September for 4 weeks in Jakarta in

response to pressures on healthcare facilities across the

city [6]. Cases and deaths continued to rise in early

2021, prompting further restrictions in districts across

the island from January 11 [7]. On 13 January 2021,

Indonesia initiated a nationwide vaccination campaign

[7, 8]. The campaign initially involved vaccinating health

care workers but was extended to the elderly and public

workers on 17 February 2021 [9].

Understanding the trajectory of the epidemic in Java

has been challenging. As in many countries [10, 11],

testing constraints in Indonesia have limited the extent

to which officially confirmed cases reflect underlying

trends. Similar concerns exist for mortality data, based

upon the high numbers of individuals exhibiting

COVID-19 like symptoms who die before receiving a

diagnosis [12, 13]. In Jakarta, such individuals are buried

under strict COVID-19 protocols (C19P). Here, we use

mathematical modelling approaches incorporating these

data, and other measures of suspected mortality, to bet-

ter understand the dynamics and burden of the epidemic

experienced across Java to date, evaluate the impact of

control measures, and understand how these past ac-

tions will shape future burden and vaccine impact.

Methods
Assessing SARS-CoV-2 transmissibility over time in

Jakarta

Daily numbers of confirmed COVID-19 cases, deaths,

and C19P funerals [14] were used to reconstruct daily

incidence of symptom onset, using delay distributions

between symptom onset and case reporting or death de-

rived from individual patient data obtained from the

Jakarta Department of Health (Additional file 1: Figure

Fig. 1 Burden of COVID-19 and timeline of interventions in Indonesia (data up to 7 December 2020). a Daily number of reported COVID-19 cases.

b Daily number of reported COVID-19 deaths. c Total reported COVID-19 cases at province level in Java island. d Total reported COVID-19 deaths

at province level in Java island
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S1 [15–26]). For each data source (cases, deaths, and

C19P funerals), 100 reconstructed time-series of daily in-

cidence of symptom onset were generated, with esti-

mates also adjusted for right-censoring in individuals

where outcomes had yet to occur (Additional file 2: S2).

These reconstructed time series were translated into

estimates of the daily effective reproduction number

(Rt,case for cases, Rt,death for deaths, and Rt,funeral for fu-

nerals) in Jakarta using EpiEstim [27, 28]. This package

estimates Rt using a branching process-based estimator

that incorporates information on the serial interval dis-

tribution and dates of onsets of symptoms. Correlations

between estimated Rt and the average daily changes in

non-residential mobility [29] were assessed based on

1000 posterior samples from each estimated Rt time

series and compared using Pearson’s correlation coeffi-

cient formula.

Modelling subnational COVID-19 spread across Java

We developed a district-level metapopulation model to

explore the expected spread of COVID-19 across the is-

land of Java (Additional file 2: S5 [15–26]). For each dis-

trict, stochastic differential equations representing a

Susceptible-Exposed-Infected-Recovered (SEIR) model

were implemented. Movement matrices were derived

from anonymized mobile phone data, with separate

matrices calculated for the high-migration period of

Ramadan. Disease severity parameters were adjusted to

account for the demography of each district. Transmissi-

bility of the virus over time was calculated under the as-

sumption that the relationship between mobility and Rt

observed in Jakarta was informative across the rest of

the island, exploring multiple assumptions about the

transmissibility of COVID-19 in rural districts relative to

urban districts (Additional file 1: Table S3 [15–26]). We

simulated five different scenarios to assess the impact of

restrictions (namely PSBB and Ramadan movement re-

strictions) on COVID-19 deaths and hospitalisation rates

across Java (Table 1).

Assessing the current province-level spread of the

pandemic in Java and generating future scenarios

To estimate the recent trajectory of the epidemic and

current cumulative levels of spread within each province,

we adapted an existing modelling framework allowing

the relationship between mobility and transmission to

vary over time [10]. This allows us to capture the ob-

served decoupling between aggregated movement pat-

terns and burden in the ‘new normal’ period and

simulate scenarios of future spread within each province.

We fit this modelling framework both to officially re-

ported COVID-19 deaths, as well as estimated suspected

deaths, which include deaths of probable cases (i.e., pa-

tients with clinical criteria or chest imaging suggestive of

COVID-19), which have been published by World

Health Organization (WHO) Indonesia [4]. As the pub-

lished suspected deaths data are only available on a

weekly basis between 1 June to 29 November 2020, we

augmented the data to reflect the entire time-period of

the epidemic based upon the proportion of all suspected

deaths (i.e., probable and confirmed) that were con-

firmed by each province in the period covered by the

WHO reports (Additional file 2: S6 [15–26]).

Our future scenarios are projected based on a future

‘reproduction number under control’, Rc, defined simi-

larly to R0 as the average number of secondary infections

within an entirely susceptible population but incorporat-

ing the impact of NPIs (and, equivalently, Rt but not in-

corporating the effects of population-level immunity

such that R0 > Rc > Rt). We evaluated three scenarios: a

‘current trajectory’ scenario (where the current trajectory

of the epidemic continues with approximated Rc = 1.25),

a ‘suppression’ scenario (where the transmission in the

population is assumed to be immediately suppressed

with Rc = 0.75) and an ‘unmitigated’ scenario (where the

epidemic was assumed to be uncontrolled with Rc =

2.00). Our first set of projections were generated from

September 2 onwards [30], at a time where policymakers

were attempting to understand the potential benefits of

the implementation of further NPIs, such as the

Table 1 Metapopulation model simulation scenarios (one baseline scenario and four counterfactual scenarios)

Scenario
name

Details

Baseline Movement from a district is assumed to reduce according to reductions in movement within a district scaled by an odds ratio of 2
to reflect assumed lower likelihood of travel outside a district relative to travel within a district.

Ramadan 1 No movement reductions between districts during the Ramadan and Eid festivals period and the Rt values during the period were
assumed to be similar to the baseline scenario.

Ramadan 2 No movement reductions between districts during the Ramadan and Eid festivals period and the Rt values during the period were
assumed to be 75% of each district R0,i.

Ramadan 3 No movement reductions between districts during the Ramadan and Eid festivals period and the Rt values during the period were
assumed to be the same as each district R0,i.

Unmitigated No interventions assumed which implies no movement reductions over all period of simulations with the Rt values to be the same
as each district R0,i over the period of simulations.
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reimposition of PSBB in Jakarta, which was then sched-

uled to be implemented on September 14 [6], in the

context of no vaccine yet being any available. These sce-

narios evaluated the potential trajectory of the epidemic

throughout 2021, including the impact of a ‘return-to-

normal’ (Rc = 2.00) once burden had returned to low-

levels (median of simulated trajectories reached less than

7 cumulative deaths over 7 days period). Our current set

of projections are generated from December 7 and in

the context of an imminent vaccine campaign. Given the

large remaining uncertainties in rollout and effective-

ness, we do not incorporate any role of the vaccine. In-

stead, we aim to understand how different scenarios

involving NPIs over the next few weeks and months will

shape the potential longer-term effectiveness of future

strategies in which vaccines will likely feature as a major

component. To do this, we evaluate how both the

number of lives lost, and number of lives that remain to

be saved is likely to change incrementally by month ac-

cording to the same future scenarios (i.e., current mitiga-

tion, suppression and unmitigated), relative to an

unmitigated epidemic from the date of our projection (7

December 2020).

Results
Understanding initial establishment, transmission, and

dynamics of SARS-CoV-2 in Jakarta

Figure 2a shows the daily reported cases, deaths, test

positivity ratios, and funerals with C19P in Jakarta,

transformed into inferred dates of symptom onset (Fig.

2b) using the relevant delay distributions. We estimate

that 31 (22–41 95% CrI) and 124 (107–139 95% CrI)

confirmed deaths and C19P funerals (assuming all fu-

nerals represent deaths due to COVID-19) had symptom

Fig. 2 Temporal trends of cases, deaths, C19P funerals and respective estimates of Rt relative to the timing of intervention measures. Light green shaded

areas denote periods of PSBB whilst the dark green shaded areas represent the period of Ramadan domestic travel restrictions. a Daily reported cases, deaths,

and C19P funerals in Jakarta. Black line denotes the daily test positivity ratio. b Estimated frequency of symptom onset date of reported cases, deaths, and

C19P funerals. Each bar represents the median daily frequency of 100 stochastic reconstructions. c Coloured lines and regions show, respectively, median and

95% CrI of estimated Rt (left y-axis) based on the reconstructed data (cases, deaths or C19P funerals). Grey areas denote periods where the estimated median

Rt is above 1. Black lines and dots denote average changes in non-residential mobility (right y-axis). d The relationship and correlation coefficient between the

estimated Rt and the average non-residential mobility reduction (up to 4 June 2020 or before the lifting of the first PSBB)
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onset occurring before 2nd March when COVID-19 was

first identified in Indonesia. We estimate 10,950 (7530–

14,040 95% CrI) infections based on confirmed deaths or

42,100 (36,280–47,570 95% CrI) based on C19P funerals

(reflecting an assumption that all undiagnosed individ-

uals provided with a C19P funeral would have tested

positive) had occurred in Jakarta by March 2.

Reported cases in Jakarta appear to indicate two epi-

demic peaks to date (around mid-April and mid-

September, when PSBB was imposed), with the number

of cases reported during the second peak far higher than

the first (Fig. 2b). However, the test-positivity rate de-

clined in the first half of 2020, indicating increased test-

ing rates and case-ascertainment, which complicates the

interpretation of trends based on case data alone. In-

deed, data on C19P funerals suggest that the first peak

in infections likely occurred in mid-March and that in-

fection levels during the second peak were at levels com-

parable to their initial peak.

Our branching-process-based estimates of Rt support

the substantial impact of NPIs when applied to all three

metrics (Fig. 2c). We estimate Rt to be between 1.5 and

2.5 initially, subsequently declining to below 1 during

the first PSBB period, followed by a more recent increase

to slightly above 1 as Jakarta entered the transitional

PSBB in early June. The reimposition of the second

PSBB in September also brought the Rt to below 1. Fig-

ure 2d shows a strong and significant correlation be-

tween Rt estimates with observed mobility patterns as

measured by Google Mobility Reports (0.91, 0.72, and

0.92 for cases, deaths, and C19P funerals, respectively,

all with p < 0.001) observed before the lifting of the first

PSBB, though showing little correlation after the lifting

of the first PSBB (Additional file 1: Figure S3 [15–26]).

Estimates based upon funeral trends support a more

rapid, larger, and more sustained impact of interventions

than those based upon case reporting. The correlation

with within-city mobility is lowest for the deaths data,

where substantial variation in day-to-day death reporting

leads to more unstable Rt estimates over time. Calculat-

ing the correlation between mobility and Rt before and

after the AKB period suggests a decoupling between

transmission and mobility, whereby estimates of Rt dur-

ing periods of equivalent levels of mobility during AKB

are lower than estimates obtained before AKB.

Understanding COVID-19 risk and subnational spread of

SARS-CoV-2 across Java

Substantial variations exist across the island in terms of

demography, healthcare capacity, and between-district

mobility. The proportion of individuals over the age of

50 is typically higher (26%) in rural districts than urban

ones (19%) (Fig. 3a). There are also substantial dispar-

ities in healthcare availability, ranging from the

comparatively well-resourced Jakarta setting (2.22 hos-

pital beds per thousand population) to the poorer, more

rural setting of Tasikmalaya in West Java (0.18 beds per

thousand population) (Fig. 3b). Patterns of between-

district mobility outside of the window of the pandemic,

estimated using mobile phone data over the period of 1

May 2011–30 April 2012, highlight the extent to which

these settings are connected. Between-district connectiv-

ity is particularly high during the Ramadan period, with

large-scale movements from densely populated Jakarta

to other more rural regions with lower availability of

healthcare (Fig. 3c, d). Applying our modelled relation-

ship between mobility and Rt obtained from the Jakarta

C19P funeral data (Fig. 3e) to trends in mobility data

from the remaining provinces in Java suggests large re-

ductions in transmission in all provinces coinciding with

the first PSBB period (Fig. 3f). However, they also sug-

gest that measures were sufficient to bring Rt below 1

for a sustained period only in Jakarta and Yogyakarta.

Increases in mobility occurred either during early May

(Banten, West Java, Central Java, and East Java) or

alongside the establishment of the AKB in June (Jakarta

and Yogyakarta), leading to corresponding increases in

our estimates of Rt (Fig. 3f).

These estimates were integrated into our meta-

population model (Fig. 4a). Estimates of deaths in the

baseline scenario were consistent with observed qualita-

tive patterns prior to the shift to the AKB phase of the

epidemic in early June. The epicentre shifted over time

from Jakarta to satellite towns and other provincial capi-

tals and with Yogyakarta remaining least affected. Our

baseline scenario’s median deaths fall within the range of

cumulative confirmed and suspected deaths up to 31

May 2020 and the number of confirmed and suspected

deaths between May 13 and May 31, 2020, in most prov-

inces (Table 2). Total suspected deaths fell within the

model’s uncertainty bounds for most provinces except

Jakarta and Central Java (Table 2).

The scenarios estimates are consistent with reductions

in contact rates serving to reduce spread, reduce health-

care demand, and avert mortality prior to AKB phase: an

estimated 57,000 (24,800–105,400, 95% UI) deaths

averted when compared to an effectively unmitigated

epidemic with Rt = 2 throughout this period (which we

estimate would have resulted in 59,900 (26,800–112,800,

95% UI deaths). These numbers do not consider the ef-

fects of healthcare services becoming overwhelmed (as

shown by the negative values of the median number of

hospital beds available per COVID-19 case needing hos-

pitalisation under the unmitigated epidemic scenario;

Fig. 4c) on both direct and indirect mortality, an impact

which would likely have been sizable given the wider

spread to more rural settings with more scarce health-

care provision in our unmitigated scenario (Fig. 4d, e).
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Our baseline scenario increasingly over-predicts deaths

in most provinces during the AKB. This is in line with

our results suggesting a decoupling of within-province

mobility from virus transmissibility over that period.

Estimating current COVID-19 burden, modelled future

scenarios, and estimated vaccines impact in Java

Our projections generated 2 September 2020 [30] (Add-

itional file 1: Figure S12 [15–26]) suggested that, whilst Rt
was well below that observed at the beginning of the epi-

demic, this was driven primarily by the impact of control

measures rather than the accumulation of population-

level immunity. As a result, in the absence of additional

control measures, death rates were likely to rise for the re-

mainder of the year in all provinces, pushing all provinces

beyond available hospital capacity. We found that

reimplementation of PSBB could largely prevent capacity

from being exceeded but would not prevent a subsequent

wave if such control was not maintained.

Subsequently, between our two sets of simulations (2

September 2020 and 7 December 2020), both confirmed

deaths and our inferred estimates of total suspected

deaths increased from 5108 to 11,370 and 12,254 to 26,

206, respectively, across Java. At the island level, the esti-

mated attack rates on both time points increased from

1.21 to 2.57% and 2.95 to 6.03% based on confirmed

deaths and assuming all suspected deaths as COVID-19

deaths, respectively (Fig. 5a). At the province level, esti-

mates of attack rate and total burden from COVID-19

differ quite significantly, with Jakarta accumulating the

highest attack rates in the region by 7 December 2020

(Fig. 5b; Additional file 1: Table S5 [15–26]). In all

Fig. 3 Key factors that are affecting the spread and severity of COVID-19 epidemic in Java, Indonesia. a Proportion of the population aged over

50 years old at the district level. b Number of regular hospital beds per one thousand population at the district level. c Proportion of Jakarta

residents who spent their day in other districts in Java during a non-Ramadan period. d Increased proportion of people of Jakarta who spent

their day in other districts in Java during Ramadan compared to the non-Ramadan period. e The relationship between the estimated Rt values

based on C19P funerals data and average reduction in non-residential mobility in Jakarta using data only before the lifting of the first PSBB. Grey

dots represent 100 samples of Rt values. Orange lines show the modelled smoothing spline relationship between 100 samples of Rt values and

mobility reduction. f Extrapolations of Rt values in provinces in Java based upon Google Mobility trends for each province and the 100 sampled

smoothing splines in Fig. 3e (orange lines). Light green shaded areas denote periods of PSBB whilst the dark green shaded areas represent the

period of Ramadan domestic travel restrictions
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provinces and based on models fitted to either suspected

or confirmed deaths, there were consistent increases of

around 2–3 times on the province-level attack rate from

2 September to 7 December 2020. However, as seen at

the island level, discrepancies between the estimated at-

tack rates based on the model fitted to suspected deaths

and confirmed deaths data were still observed at the

province level, with the highest difference observed in

Jakarta.

Projections of future scenarios from December 2020

(Fig. 5c; and Additional file 1: Figure S13 [15–26] for

province-level breakdown), incorporating these changes

in estimated attack rate and extrapolating current trends

of Rc, leads to the projected daily incidence of mortality

across the island continuing to grow throughout the first

half of the 2021 irrespective of whether reported or sus-

pected mortality are more reflective of true direct

COVID-19 mortality. In this scenario, with future Rc =

1.25, the epidemic would be projected to peak earliest in

Jakarta, driven by the higher degree of population-level

immunity implied by the higher cumulative attack rate

to date. This peak’s timing was sensitive to the mortality

metric the model is calibrated to, with projected peaks

occurring early in 2021 for a current scenario based

upon suspected deaths and towards the end of the first

quarter of 2021 based upon reported deaths (Fig. 5c; and

Additional file 1: Figure S13 [15–26]). Subsequently to

these simulations, the incidence of COVID-19 deaths in

Fig. 4 Metapopulation model simulation results. a Comparison of model simulations in the baseline scenario (red lines and their shaded 95%

uncertainties ranges) and unmitigated scenario (yellow lines and their shaded 95% uncertainties ranges) and daily confirmed (solid black lines)

and suspected (dashed black lines) deaths from COVID-19. b Model simulations in five different scenarios: (1) baseline scenario as shown in a, (2)

Ramadan counter-factual 1 where it is assumed that there is no movement restrictions during the Ramadan period and Rt values are similar to

the baseline scenario, (3) Ramadan counter-factual 2 where it is assumed that there is no movement restrictions during the Ramadan period and

Rt values are 75% of each district’s R0 value, (4) Ramadan counter-factual 3 where it is assumed that there are no movement restrictions during

the Ramadan period and Rt values are each district’s R0 value, and (5) unmitigated scenario where no interventions since the beginning of the

epidemic are assumed. c Median hospital beds availability per severe COVID-19 case over time based on different simulation scenarios. d

Proportion of people infected based on the actual scenario up to 31 May 2020 (before AKB/the ‘new normal’) at the district level. e Proportions

of people infected based on the unmitigated scenario up to 31 May 2020 (before AKB) at the district level. Light green shaded areas denote

periods of PSBB whilst the dark green shaded areas represent the period of Ramadan domestic travel restrictions
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Jakarta peaked in late January, prior to the rollout of the

vaccine to the elderly in the province (Additional file 1:

Figure S15 [15–26]), aligning more closely to our projec-

tions based upon these funeral data than those based upon

confirmed deaths alone. Jakarta has also seen the largest

and most steady subsequent decline of all provinces in

Java (Additional file 1: Figure S16 [15–26]), supporting

our model result that population-based immunity due to

the mature stage of the epidemic is having the largest im-

pact in this province. However, in all provinces, at no

point in any of our current scenarios was there sufficient

population-immunity to preclude a subsequent upsurge in

deaths if transmission levels returned to those estimated

at the beginning of the pandemic (Rc ≈ 2.00) prior to com-

pletion of an effective vaccination campaign.

Figure 6a shows trajectories of the three different fu-

ture scenarios summarized in terms of the proportion of

lives lost before the beginning of a month (Fig. 6b) and

the total remaining lives to be saved (deaths that can still

be averted) after the start of the month (Fig. 6c). We es-

timate that reimposing suppression scenarios in areas

where epidemics are on an upwards trajectory would

significantly reduce lives lost during a period whilst the

vaccine is rolled out. In some settings, such as Jakarta,

assuming all suspected deaths were COVID-19 deaths, a

combination of control measures currently in place and

increasing levels of population immunity may combine

to reduce transmission and burden to low-levels tempor-

arily. At this point, the future incremental impact of

suppression measures would likely be limited. However,

in such scenarios, the need for ongoing NPIs as the vac-

cine is rolled out is highlighted by the high loss of life

we estimate if such control measures are now lifted. This

also highlights the substantial remaining incremental

value of the vaccination campaign (Fig. 6c).

Discussion
Our analysis uses C19P funeral data in Jakarta to high-

light the considerable benefits of using syndromic mea-

sures of COVID-19 mortality to not only better measure

the past but also to guide the future. Collecting such

data is likely to yield high value for many countries

where testing capacity has been severely strained in the

face of the pandemic and for future pandemics of re-

spiratory pathogens that require the development of new

diagnostic capacity. C19P funerals and other measures

of suspected mortality provide an alternative lens

through which to understand COVID-19 burden and dy-

namics but do not allow precise measurement. Without

confirmed diagnoses, the proportion of these individuals

who were infected will always be unknown and liable to

vary spatiotemporally, as will the extent to which mea-

sures of suspected deaths represent all deaths of individ-

uals displaying COVID-19 symptoms. These data also

support the substantial circulation of SARS-CoV-2 in

Indonesia well before the first confirmed COVID-19

case [3] and the higher impact of the virus than sug-

gested by confirmed deaths alone. Simultaneously, they

also indicate an earlier decline in transmission during

the early stages of the pandemic, coinciding with reduc-

tions in mobility and more sustained declines in trans-

missibility in response to NPIs than observed in

confirmed deaths, a metric which is likely sensitive to

limitations in testing. We also found these effects

Table 2 Total number of estimated deaths based on model simulations of the baseline and unmitigated scenario

Province Confirmed
deaths May 13–
31 (WHO
Indonesia
situation report
10 [4])

Suspected
deaths May 13–
31 (WHO
Indonesia
situation report
10 [4])

Baseline
model
scenario
deaths
May 13–
31

Confirmed
deaths up
to May 31
[14, 31]

Suspected deaths
up to May 31
(provincial data
collated by
KawalCOVID19
[32])

Baseline
model
scenario
deaths up
to May 31

Unmitigated
counterfactual
deaths up to
May 31

Averted
deaths up to
May 31
(unmitigated–
baseline)

Jakarta 74 447 158 (47–
333)

520 2435 810 (292–
1777)

16,356 (7896–
21,593)

15,560 (7567–
19,691)

West Java 46 351 197 (55–
525)

135 653 525 (149–
1368)

19,733 (5682–
39,876)

19,151 (5516–
38,400)

Central
Java

4 269 88 (36–
216)

66 666 203 (67–
511)

6321 (2147–16,
052)

6068 (2056–15,
485)

Yogyakarta 0 1 2 (0–8) 9 29 6 (1–33) 401 (138–1097) 397 (132–
1088)

East Java 241 458 437 (98–
944)

395 1127 1091 (226–
2646)

12,182 (3625–
20,800)

10,997 (3277–
18,102)

Banten 13 47 82 (20–
224)

67 332 229 (66–
711)

7302 (2180–14,
732)

7079 (2111–14,
141)

Java island
total

378 1638 983 (360–
1930)

1192 5242 2912
(1109–
5851)

59,896 (26,787–
112,795)

57,030 (24,
843–105,378)

Values inside the brackets denote 95 percentile range of simulations. Suspected deaths are a combination of confirmed and probable COVID-19 deaths
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consistent with NPIs substantially attenuating spread

across Java, including to older, more rural populations

with lower access to healthcare.

Better quantifying impact in the past helps us to better

understand likely scenarios in the future. In our first set

of projections in September 2020 [30], we suggested that

C19P funeral data could indicate up to a fourfold in-

crease in cumulative exposure to the virus relative to

confirmed deaths. However, even when assuming a

higher burden of the disease in the population, immun-

ity accumulated at the population level would not

prevent the burden from increasing throughout the re-

mainder of 2020. We also suggested that measures to

suppress the virus could prevent such a scenario but

would need to be sustained to prevent further upsurges.

From early 2021, these projections appear to have been

valid as transmission declined in Jakarta whilst PSBB

was implemented between September 14 and October

11, 2020, but subsequently resurged once restrictions

were lifted. At the beginning of 2021, Java’s epidemio-

logical situation is substantially worse than in Septem-

ber, with record deaths reported week-on-week [33].

Fig. 5 a Model fitting to confirmed and suspected (both confirmed and probable) COVID-19 related deaths and inferred population susceptibility

in Java; green and blue dots show data on reported and suspected respectively (where suspected includes augmented estimate of probable

deaths in provinces outside Jakarta), with associated median (lines) and 95% CrI (shaded areas) of model fits. b Estimated province-level attack

rates (cumulative proportion infected) based on confirmed (purple) and suspected (pink) COVID-19 related deaths. c Projections of daily number

of deaths due to COVID-19 based on four different transmission scenarios
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Subsequently, our projections, based upon C19P funeral

data, of a likely decline in the epidemic in Jakarta inde-

pendent from any vaccine impact has also come to fru-

ition, again highlighting the utility of understanding the

true impact of the disease in the population using syn-

dromic measures of mortality.

Despite the qualitative validity of both our September

and December 2020 projections, there are multiple limi-

tations associated with these analyses that should be

noted, particularly as our current estimates of attack

rates in all provinces in Java have increased substantially.

Firstly, it remains difficult to say what level of

population-immunity is required to achieve herd im-

munity as individual immune responses to the virus are

still not yet well understood (including strength and dur-

ation) [34, 35], and heterogeneity in population mixing

beyond age-structure likely play important roles [36, 37].

Moreover, our estimates of counterfactual ‘return-to-nor-

mal’ scenarios rely upon an estimate of Rc = 2.00 from the

early stage of the epidemic in Jakarta, a period in which

data were particularly limited and where a degree of rele-

vant behaviour change may have already occurred given

increasing global concern around the pandemic. As this

estimate is also below those estimated in the early stage of

the epidemic from other settings [38], this estimate may

represent a conservative measure of the basic

reproduction number. These limitations around the inher-

ent transmissibility and critical immunity threshold to

control the virus need to be further considered in the light

of recent concerns of new variants of concern across the

globe which appear more transmissible [39–41]. There

have also been observed resurgences in populations where

attack rates have likely passed many estimates of the herd

immunity threshold [39, 42].

Fig. 6 a An illustration of future scenario projections and how to define the number of lives lost and the number of deaths that can still be

averted after a certain time point. The graph shows simulations based on a model fitted to confirmed COVID-19 deaths in Jakarta, which

subsequently ‘returning to normal’ on 1 March 2021. b Projected percentage of lives lost (compared to total deaths from an unmitigated

epidemic scenario) prior to the start of each month from February to June 2021, based on each simulation scenario and model fitted to

confirmed or suspected deaths in each province in Java. c Projected number of lives remaining to be saved (or deaths that can still be averted)

per million population after the start of each month from February to June 2021, based on each simulation scenario and model fitted to

confirmed or suspected deaths in each province in Java
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The initiation of the vaccination campaign in the mid-

dle of January [8] provides hopes for more sustainable

control of the virus. However, challenges in access and

distribution [43] and uncertainty in vaccine efficacy [43]

could hamper the life-saving impact of the vaccination

programme. On top of that, possible introductions of

variants of concern (VOC) able to escape immune re-

sponse [44], exhibit increased transmissibility [45, 46], or

cause more severe disease [47] could also bring add-

itional challenges in controlling the spread of the virus.

Those changes in virus characteristics could lower the

real-life vaccine effectiveness, increase the threshold to

reach ‘herd immunity’, and threaten the healthcare cap-

acity once again if infections from those VOC were able

to dominate and take off. To date, Indonesia had re-

ported several VOC (i.e., B.1.1.7 [48], B.1.525 [49], and a

variant with E484K mutation [50]) via a ramp-up of gen-

omic surveillance capacity at the turn of the year [51].

Whilst the sporadic nature of the genomic samples

makes it difficult to determine whether local transmis-

sion had been established or not [51], such VOCs fur-

ther underline the need to maintain control whilst the

vaccination campaign is ongoing.

Despite the unprecedented speed of global vaccine de-

velopment, our study indicates that in the absence of

NPIs implemented over the previous year, this campaign

would have been too late to prevent most deaths that

currently remain avertable. It also highlights the ongoing

value and need to maintain current control measures

during the coming months as the vaccine is rolled out.

Given low estimated attack rates and current increasing

trends in transmission across much of the island, our re-

sults suggest that further measures aimed towards sup-

pression of the disease over the next few months would

substantially increase the proportion of the population

who receive the vaccine prior to being exposed to infec-

tion, leading to a likely substantial incremental impact of

the vaccination campaign. However, we are not able to

capture the socio-economic costs of such approaches,

which would need to be factored into balanced decision-

making.

The case for maintaining or increasing control mea-

sures is likely more intuitive to grasp in circumstances

where the incidence of cases and deaths continues to

rise. However, our projections for Jakarta, particularly

those incorporating suspected deaths, suggest that

population-level immunity is contributing largely to the

decline in observed deaths. This effect may have conse-

quences for the perceptions of both the vaccine’s relative

impact, with deaths declining at a faster rate in Jakarta

relative to other provinces as the vaccine is being rolled

out, as well as the ongoing need for NPIs and/or high

vaccine uptake. In such circumstances, our counterfac-

tual of a ‘return-to-normal’, which produces major

upsurges in cases and deaths in every province regard-

less of mortality metric, provides a valuable reminder

that the epidemic, and the need to control it, is far from

over in any region of Java.

Conclusions
This study gives evidence of the value of syndrome-

based mortality as a metric, which is less dependent

upon testing capacity with which to estimate transmis-

sion trends and evaluate intervention impact. NPIs im-

plemented in Java earlier in the pandemic have

substantially slowed the course of the epidemic with

movement restrictions during Ramadan preventing

spread to more vulnerable rural populations. Further re-

laxation of measures would lead to more rapidly pro-

gressing epidemics, depleting the eventual incremental

effectiveness of the vaccine. Maintaining adherence to

control measures in Jakarta may be particularly challen-

ging if the epidemic enters a decline phase but will re-

main necessary to prevent a subsequent large wave.

Elsewhere, higher levels of control with NPIs are likely

to yield high synergistic vaccine impact. Enduring vigi-

lance is vital whilst the vaccination campaign is rolled

out, especially in light of the emergence of VOC across

the globe.
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