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Abstract

Background: Next-generation sequencing (NGS) can identify mutations in the
human genome that cause disease and has been widely adopted in clinical
diagnosis. However, the human genome contains many polymorphic, low-
complexity, and repetitive regions that are difficult to sequence and analyze. Despite
their difficulty, these regions include many clinically important sequences that can
inform the treatment of human diseases and improve the diagnostic yield of NGS.

Results: To evaluate the accuracy by which these difficult regions are analyzed with
NGS, we built an in silico decoy chromosome, along with corresponding synthetic
DNA reference controls, that encode difficult and clinically important human
genome regions, including repeats, microsatellites, HLA genes, and immune
receptors. These controls provide a known ground-truth reference against which to
measure the performance of diverse sequencing technologies, reagents, and
bioinformatic tools. Using this approach, we provide a comprehensive evaluation of
short- and long-read sequencing instruments, library preparation methods, and
software tools and identify the errors and systematic bias that confound our
resolution of these remaining difficult regions.

Conclusions: This study provides an analytical validation of diagnosis using NGS in
difficult regions of the human genome and highlights the challenges that remain to
resolve these difficult regions.

Background
Informed patient care requires the accurate diagnosis of the genetic alterations that

cause inherited diseases and cancer. Next-generation sequencing (NGS) can identify

these mutations within a patient genome and has been widely adopted in clinical prac-

tice. However, NGS suffers from errors and biases that can confound clinical interpret-

ation and diagnosis [1–3].

The size, complexity, and repetitiveness of the human genome can cause sequencing

errors and ambiguous alignments, which confound the analysis and interpretation of
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variants at these difficult sites [4]. In the absence of a solution, clinical NGS is currently

limited to “easy” regions of the genome and simple mutation types where error rates

are sufficiently low, while “difficult” regions or complex mutations are largely ignored,

resulting in a lower diagnostic yield for NGS.

The human genome sequence contains many difficult, polymorphic, and repetitive re-

gions that remain a challenge for NGS. These difficult regions present a challenge to

sequencing, alignment, and bioinformatic analysis [5–7]. However, some genetic se-

quences with clinical importance reside in such difficult regions, including polymorphic

loci, such as HLA genes, low-complexity sequences such as microsatellites, and com-

plex loci such as immune receptors [8]. Given their clinical importance, it is critical to

understand and improve the accuracy and precision by which these genetic features

can be resolved using NGS.

Well-characterized reference genome materials provide a ground-truth reference or

factual data for evaluating the performance of NGS [9]. Efforts like the 1000 Genomes

Project and the Genome in a Bottle Consortium (GIAB) have provided well-

characterized genomes, with high-confidence annotation of genetic variants that have

been widely adopted by the genomics community [10–12]. However, despite their ad-

vantages, these genomes often do not include pathogenic variants, and characterization

of difficult regions within these genomes still remains limited using current sequencing

technologies.

Recently, the US FDA-led Sequencing Quality Control Phase 2 (SEQC2) Consortium

conducted a broad range of projects to interrogate the technical reliability and clinical

utility of NGS in cancer genomics, liquid biopsy, single-cell sequencing, and DNA- and

RNA-seq [13]. A primary objective of this initiative is to establish working standards

and reference controls for NGS, including in difficult human genome regions that are

refractory to analysis with NGS, and which are under-represented in current reference

materials. Accordingly, as part of this initiative, we developed synthetic controls to ad-

dress this shortcoming, and evaluate these difficult, yet clinically important regions of

the human genome.

Synthetic controls are an alternative approach to providing ground-truth reference

materials. While they do not recapitulate the full size and scope of genome materials,

they can provide an unambiguous representation of difficult genome regions. Recently,

we have developed synthetic DNA spike-in controls (termed sequins) that faithfully

emulate features of the human genome, such as genetic variation. Sequins represent

mirror images of naturally occurring DNA present in the NA12878 reference genome

sample, but because of DNA’s 5′-3′ directionality, they are entirely distinguishable

from their natural counterparts (see the “Methods” section [14];). These controls can

be added to a DNA sample prior to library preparation and undergo concurrent se-

quencing and are exposed to the same technical biases of the accompanying sample

[14–16]. Given the full sequence of sequins is known, they can unambiguously repre-

sent difficult sequences with high confidence. This is particularly important given these

difficult regions are highly polymorphic due to the challenge they pose to DNA replica-

tion. Accordingly, sequins provide an ideal ground truth by which to evaluate the per-

formance of sequencing experiments and technologies.

Here, we designed sequins to represent difficult regions of the human genome. We

first designed an in silico decoy chromosome that encoded a representative selection of
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difficult and clinically important regions of the human genome (Fig. 1). Regions were

selected to include a wide representation of difficult sequences (such as different repeat

lengths and sequence complexities) or to represent important sequences currently used

in clinical diagnosis (such as microsatellites in the Bethesda panel) [17]. These difficult

chromosomal sequences were then synthesized into DNA fragments that could be

added to reference DNA samples and sequenced using a range of different technolo-

gies. By adding sequins to reference samples, they accumulate the same errors and bias

as they proceed through the NGS workflow and can be analyzed in the output library

files as internal controls. Therefore, sequins provide a ground-truth evaluation of

difficult-to-sequence yet clinically important regions represented within an in silico

decoy chromosome.

Using this approach, we evaluated a range of different short- and long-read sequen-

cing technologies, library preparation methods, and software tools. We benchmarked

the performance of each genome technology and performed an analytical validation for

the diagnosis of clinical features in difficult regions of the genome. This provides

insight into the relative strengths and weaknesses of each approach and informs the

Fig. 1 In silico chromosome design and experimental workflow. a The in silico decoy chromosome is
designed to incorporate difficult and clinically important features of the human genome. The chromosome
is divided into (i) small variants (including SNPs and indels) and simple repeats, (ii) structural variants
(including large insertions, deletions, duplications, inversions, and translocations), (iii) HLA genes, and (iv)
immune receptor genes. b The schematic diagram illustrates the use of synthetic DNA controls (sequins)
and the in silico chromosome during the NGS workflow (upper panel). The range of experimental variables
evaluated within this study, including difficult genetic features, library preparation methods, sequencing
instruments, and bioinformatic tools, are indicated (lower panel)
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use of NGS in clinical diagnostics. We provide these sequins as a reference material for

use by the research and clinical genomics community (www.sequinstandards.com) and

present our evaluation of current genome technologies to inform ongoing improve-

ments to diagnostic accuracy and yield in the remaining difficult regions of the human

genome.

Results
Assembly of an in silico decoy chromosome

We assembled an in silico chromosome that encodes difficult and clinically important

regions of the human genome represented by sequins. This artificial decoy chromo-

some sequence (termed chrQ) is designed to accompany the reference human genome

(such as hg38) during indexing and alignment and encodes the genetic features repre-

sented by sequins in a single contiguous sequence. The in silico chromosome is ap-

proximately 1.7 Mb in length and is organized into four main functional parts,

including small variants, structural variants, HLA genes, and T and B cell immune re-

ceptor genes (Fig. 1a; see Additional files 1 and 2).

The first section of the chromosome encodes a range of synthetic variants, including

SNPs and indels (n = 1353) associated with repetitive sequences and GC-rich/poor re-

gions, and clinically relevant microsatellites (n = 12). In addition, the sequins represent-

ing germline variation are produced in pairs (reference and variant; n = 24 pairs) to

emulate the diploid alleles of the human genome. This enables the evaluation of phas-

ing methods to correctly resolve broad haplotype blocks sampled from each human

chromosome (chr1-22, X and Y; average length = 5.9Kb). The second section encodes a

range of large structural variants, including deletions, insertions, duplications, inver-

sions (including mobile element insertions), and translocations (n = 45). The third sec-

tion encodes a range of alternative HLA alleles (n = 8), while the final fourth section

encodes synthetic T and B cell receptor loci that have undergone V(D)J recombination

(n = 20). Together, the in silico chromosome serves as a ground-truth reference se-

quence that encodes a wide range of difficult and clinically important features selected

from the human genome (see Additional file 3: Table S1).

Genetic reference and variant standards represented within the in silico chromosome

were first synthesized as DNA fragments (average length = 2 kb) by a commercial vendor

and validated using Sanger sequencing (see Additional file 4). These sequins were then

mixed at different concentrations to emulate different allele frequencies, including germ-

line homozygous and heterozygous genotypes, but also somatic allele frequencies (Fig. 1b;

see Additional file 5). This final mixture was then sequenced alone or added at a fractional

concentration (~ 2%) alongside the reference human genomic DNA using a range of li-

brary preparation or sequencing technologies (NA12878; Fig. 1b).

Study evaluation of genome technologies

Sequins provide a universal reference material to benchmark the performance of differ-

ent genome technologies. We identified key variables that are known to impact per-

formance in sequencing experiments, including base-calling accuracy, read length, or

the use of PCR amplification during library preparation. We then designed experiments

based on alternative preparation methods and sequencing instruments to include these
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key variables and evaluate the use of the in silico chromosome in diverse experi-

mental settings. For example, we selected library preparation methods that differ

in their fragmentation strategy and use of PCR amplification which can add fur-

ther errors and bias during library preparation (LSK110 kit, KAPA HyperPlus

PCR-based/PCR-free kits, and MGIEasy PCR-free; see the “Methods” section; Fig.

1a). We also considered different sequencing instruments that vary in terms of

cost, read length, error rate, and throughput, such as short-read (including Illu-

mina HiSeq 2500™, HiSeq X Ten™, NextSeq™, and BGI MGISEQ-2000™) and long-

read (Oxford Nanopore Technologies PromethION™) sequencing technologies (Fig.

1b). Furthermore, we also prepared the standards mixture neat, without any ac-

companying genomic DNA, with the same preparation kit (KAPA HyperPlus

PCR-based), but sequenced in different instruments (HiSeq 2500 and NextSeq) to

evaluate any instrument-specific biases (2 replicates each). Following sequencing,

reads were aligned to the combined reference genome (comprising both hg38 and

chrQ, see the “Methods” section), and we then employed a range of different bio-

informatic tools to evaluate the alternative analytical strategies that are used to

resolve difficult regions of the in silico chromosome (Fig. 1a; see Additional file

6: Table S2).

Comparison between NA12878 genome and corresponding sequins

To initially validate the sequins, we first compared their sequencing performance to

high-confidence regions and variants within the accompanying NA12878 genome sam-

ple. We showed that alignment coverage and distribution match closely between

NA12878 and the accompanying standards (RMSE; Illumina = 0.24, MGI = 0.30, ONT

= 0.18; see Fig. S1a). We next found that the sequencing mismatch error was also simi-

lar between sequins and corresponding human genome regions (RMSE; Illumina =

0.47, MGI = 0.48, ONT = 0.24; see Fig. S1b). The standards also reproduced errors and

biases observed at more complex variants, such as large deletions that have been char-

acterized with high confidence for NA12878 (see Fig. S2a). The commutability between

sequins with NA12878 supports their use in characterizing sequencing performance in

low-confidence regions and complex variants.

While the NA1878 genome and sequins exhibited similar performance in high-

confidence regions and for simple variants, we found that the error profiles were differ-

ent at genomic positions where NA12878 diverged from the reference genome. For ex-

ample, within Illumina HiSeq libraries, the error frequencies at those divergent

positions were higher in NA12878 alignments than corresponding sequins (single base

mismatches: 3.1% in NA12878, 0.6% in sequins; insertions: 10.8% in NA12878, 0.3% in

sequins; and deletions: 17.1% in NA12878, 0.3% in sequins). While sequins provide an

unambiguous measurement of error at difficult sites, such as microsatellites or simple

repeats, the measurement of error using the NA12878 genome is confounded by the

presence of bonafide variants that cannot be reliably distinguished from sequencing er-

rors (see Fig. S2b). This illustrates the value of sequins in providing an unambiguous

representation of difficult regions. Accordingly, within the following sections, we use

sequins to provide a detailed understanding of sequencing performance for these diffi-

cult regions and complex variants.
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Sequencing errors at difficult or repetitive chromosomal regions

The depth and uniformity of alignment fold coverage are key variables in the detection

of genetic variants. To first compare the alignment coverage of each library, we mea-

sured per-base normalized coverage across the in silico chromosome (Fig. 2a). We

found that PCR-free library preparation (IQR = 0.35) and long-read sequencing (IQR =

0.30) strategies achieved the most homogenous coverage, as apparent by their lower

interquartile range (IQR), while short-read PCR-based exhibited a more heterogenous

coverage (IQR; MGISEQ-2000 = 0.38, HiSeq 2500 = 0.36, NextSeq 500 = 0.46; Fig. 2a).

To identify the source of this variability in alignment coverage, we undertook a closer

analysis of alignments at difficult regions of low (< 30%) or high (> 65%) GC content

(Fig. 2b; see Fig. S1c). PCR-free library preparation and long-read sequencing, which

achieved a globally homogenous coverage, were little impacted by GC-rich/poor re-

gions. However, among the other technologies, there was a reduction in coverage at

low GC regions for MGISEQ-2000 (43.84% relative to mean global coverage) and HiSeq

2500 (51.49%) (Fig. 2b; see Fig. S1c). At high GC regions, the PCR-free and HiSeq 2500

libraries exhibited an increase in coverage with GC content (31.96% and 52.67%, re-

spectively), while the MGISEQ-2000 and NextSeq 500 libraries exhibited a reduction in

coverage as the GC content increased (32.08% and 28.14%, respectively; Fig. 2b; see Fig.

S1c). These same libraries also showed a reduction in alignment coverage at simple re-

peats; however, this was less pronounced than at GC-rich/poor regions (Fig. 2c).

Fig. 2 Sequencing performance metrics using sequins. a (left panel) Per-base normalized coverage and
absolute sequencing error distributions for different sequencing libraries. (central and right panel) The
relative frequency of transitions and transversions mismatch errors. b Average normalized coverage of
libraries relative to GC content. c Average normalized coverage of libraries relative to simple repeats. d
Erroneous false-positive rate of variant detection (SNVs and indels) relative to allele frequency. a–d Colors
represent the different sequencing technologies/preparation methods to generate each of the seven
sequenced libraries, such as HiSeq X Ten/PCR-free (purple), HiSeq 2500/PCR-based (red), NextSeq 500/PCR-
based (blue), MGISEQ-2000 (yellow), and ONT PromethION (green)
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We next used the in silico chromosome as a ground-truth reference to measure the

sequencing errors of each technology. As expected, the ONT long-read sequencing suf-

fered from substantially higher error than other technologies (0.030 mismatches/kb),

and among short-read instruments, the HiSeq 2500 achieved the most accurate reads

(0.0018 mismatches/kb), compared to MGISEQ-2000 (0.0084 mismatches/kb; Fig. 2a).

The relative frequency of transition and transversion errors also varied between instru-

ments. For example, transition errors were higher for ONT (63.4%) and lower for Next-

Seq 500 (14.4%) compared to other libraries (overall mean; transitions = 32.9% ± 15.5;

Fig. 2a). Accordingly, we generated detailed sequencing error profiles for different tech-

nologies that can provide a background against which to correct mutational signatures,

especially for low-frequency somatic variants (see Fig. S1d).

We next considered the impact of sequencing errors and coverage on the detec-

tion of somatic variants. For each library, we evaluated the frequency of erroneous

false-positive variants that otherwise impose a lower limit on the accurate detection

of low-frequency mutations. Among short-read libraries, PCR-free library prepar-

ation achieved significantly lower false discovery rates (AUC = 0.0035) than corre-

sponding PCR-based preparations (AUC; HiSeq 2500 = 0.035, NextSeq 500 = 0.039)

or MGISEQ-2000 (AUC = 0.02). In contrast, the lower sequencing accuracy of

long-read sequencing results in higher false discovery rates for somatic variants

(AUC = 0.12). These results indicate how variation in key variables, such as cover-

age and sequencing error, at difficult genomic regions by different library prepar-

ation or sequencing instruments can limit the detection of clinically important

features such as somatic mutations (Fig. 2d).

Resolution of genetic variation at low-complexity regions, including microsatellites

DNA replication of simple repeat sequences is difficult, resulting in the accumulation

of mutations at these sites which, as a result, are highly polymorphic in human popula-

tions [18–20]. These simple repeats are also a challenge to sequence accurately as these

technical sequencing errors can be difficult to distinguish from the biological genetic

variants (Fig. 3a). Therefore, we next evaluated the detection of insertion and deletion

errors at small (≤ 5 nt), medium (6–15 nt), and large (> 15 nt) homopolymer sites in the

in silico chromosome across different genome technologies (see Fig. S3a).

To evaluate the performance of sequencing repeats, we first compared the fraction of

reads with correct or erroneous repeat length within each library. We found that erro-

neous deletions (HiSeq X Ten/PCR-free = 3.14 × 10−5; MGISEQ-2000 = 6.98 × 10−5;

ONT PromethION = 5.5 × 10−2; Fig. 3b) are more common at homopolymer sites than

insertions (HiSeq X Ten/PCR-free = 6.29 × 10−6; MGISEQ-2000 = 2.13 × 10−5; ONT

PromethION = 1.1 × 10−2; Fig. 3b). Furthermore, the frequency of both error types in-

creases with homopolymer length up until ~ 15 nt, beyond which the error rates remain

constant for larger repeats (mean Pearson’s correlation; deletions = 0.85 and insertions

= 0.40; see Figs. S3b, c). However, for ONT PromethION, the rate of insertions de-

creases with homopolymer length (Pearson’s correlation = −0.97; see Fig. S3c). Notably,

we also observed substantial performance differences due to the library preparation

method and sequencing technology (Kruskal-Wallis test; H(7) = 94.54, p-value ≤

0.0001, N = 31, Fig. 3b).
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The difficulty in sequencing homopolymers with ONT PromethION is well-

established, and only a minority (~ 6%) of sequenced long reads exhibited the correct

length of homopolymers (see Figs. S3d, e). In contrast, among short-read libraries,

PCR-free preparation significantly reduces erroneous deletion rates across all homopol-

ymer lengths and insertion rates at small homopolymers (Fig. 3b; see Fig. S3f). Reads

from PCR-free libraries also exhibit a higher proportion of exact matches (~ 77.6%) for

observed homopolymer lengths compared to the other libraries (61.7%), with MGISEQ-

2000 exhibiting comparable deletion rates to PCR-free libraries at small homopolymers

(Fig. 3b; see Figs. S3e, f).

Microsatellites are highly polymorphic short repeat sequences that are interspersed

throughout the human genome, and are commonly used as markers in forensics and

genealogy, as well as for the detection of deficient DNA mismatch repair in human

Fig. 3 Sequencing performance at microsatellites. a Read alignment, for HiSeq X Ten/PCR-free and ONT
PromethION, at the synthetic unstable homopolymer BAT-25 microsatellite. The histogram shows the depth
of coverage at each position, with aligned reads shown below. Any deletions in the aligned reads are
indicated by black segments. b Frequency (log2) of deletions and insertions at small (≤ 5 nt), medium (> 5
nt and ≤ 15 nt), and large (> 15 nt) homopolymers. c Relative frequency of reads containing exact repeat
size matches for the microsatellites in the Bethesda panel. a–c The colors represent the different
sequencing technologies/preparation methods used to generate each of the seven sequenced libraries,
such as HiSeq X Ten/PCR-free (purple), HiSeq 2500/PCR-based (red), NextSeq 500/PCR-based (blue), MGISEQ-
2000 (yellow), and ONT PromethION (green)
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diseases [21]. We designed 7 stable synthetic microsatellites (NR27, NR24, NR22, NR21,

MONO27, D18S55, and CAT25) and 5 unstable (BAT-25 and BAT-26 and three di-

nucleotide loci D2S123, D5S346, and D17S250) microsatellites from the Bethesda panel

(Fig. 3a) [17]. At stable microsatellites, reads should exactly match the expected micro-

satellite length, while reads at unstable microsatellites should vary from the expected

microsatellite length (Fig. 3a; see Fig. S3g). Again, PCR-free preparation achieved the

best accuracy for most stable microsatellites (82.0%); however, performance varied

across the instruments (HiSeq 2500 = 60.0%, NextSeq 500 = 45.0%, MGISEQ-2000 =

59.0%), with each technology exhibiting distinct biases. Finally, ONT long reads were

largely unable to accurately resolve almost any microsatellites (6%; Fig. 3c).

In summary, we found that ONT is not suitable for the analysis of simple repeats due

to high error rates, and, among short-red libraries, PCR amplification reduced accuracy

substantially. The use of rolling circle amplification (within MGISEQ-2000 preparation),

which employs the original copy of the DNA as a template during each amplification

round, exhibits better performance at small homopolymers, but remains susceptible to

insertion/deletion errors at larger repeats, such as microsatellites. In summary, the ex-

clusion of amplification in PCR-free preparation methods achieved the best perform-

ance and is likely required for the accurate detection of microsatellite instability.

Resolution of synthetic structural variants with next-generation sequencing

Structural variants (SVs) involve the rearrangement of large chromosomal regions and

can be difficult to resolve using next-generation sequencing, and the annotation of

current genome references being largely restricted to insertions and deletions in high-

confidence regions of the human genome [22]. Therefore, we designed a set of sequins

that represented insertions (n = 6) and deletions (n = 10), but also inversions (n = 10),

duplications (n = 11), viral insertions (n = 9), and reciprocal translocations (n = 8) that

can benchmark the precision of structural variant detection (see Additional file 8: Table

S3). To evaluate the detection of synthetic SVs, we used different software for short-

read (Lumpy [23] and Manta [24]) and long-read libraries (CuteSV [25] and Sniffles

[1]). The performance was evaluated according to the correct identification of the SV

and the accuracy of breakpoint detection.

We first measured the performance across library preparation/sequencing technolo-

gies by aggregating the results from different structural variant callers (see Fig. S4a).

We found the depth of coverage impacted sensitivity, with short-read libraries achiev-

ing better performance compared to long-read libraries when considering all the differ-

ent SV types (see Fig. S4b). Similarly, among PCR-based libraries, we observe a

difference between instruments, with HiSeq 2500 performing better than NextSeq 500

at higher coverage (two-sample Wilcoxon test; p-value ≤ 0.01; see Fig. S4a), while both

performed equally poorly at lower coverage (see Fig. S4b).

We next evaluated the breakpoint detection achieved by the different SV software

tools. For long-read ONT sequencing, which is able to align across large variants,

CuteSV and Sniffles achieved similar overall precision (AUC; CuteSV = 0.64, Sniffles =

0.68; see Fig. S4e); however, Sniffles had better overall sensitivity (AUC; CuteSV = 0.31,

Sniffles = 0.39; see Fig. S4d). The precision of breakpoint detection was high across all

library preparation/sequencing technologies, with an average of 97.92% for short-read
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libraries, while ONT long-read sequencing correctly detected most breakpoints

(86.77%) within 5 nt of the original position (see Fig. S4c).

We also used the synthetic structural variants to evaluate popular bioinformatic tools

that identify SVs from short-read libraries. We assessed the sensitivity of these tools at

varying alignment fold coverage, finding Lumpy and Manta achieved similar sensitivities

(relative to fold coverage) across the libraries (AUC; Lumpy = 0.52, Manta = 0.51); how-

ever, Manta exhibited greater precision (AUC; Lumpy = 0.84, Manta = 0.93). Both soft-

ware use split-read and discordant read-pair evidence; however, while Lumpy also

includes read-depth into a probabilistic framework [23], Manta first assembles a graph of

all break-end associations [24]. A direct comparison of the supporting evidence for indi-

vidual SV calls showed Manta recovered a greater number of split-reads and discordant

read-pairs that may account for the higher observed precision (see Figs. S5a, b).

We next investigated the ability to detect different structural variant types. Deletions,

inversions, and reciprocal translocations were widely detected by the different libraries

and bioinformatic tools (mean sensitivity; DEL = 0.67 ± 0.24, INV = 0.67 ± 0.26, TRA =

0.57 ± 0.16; Fig. 4b; see Fig. S5c). Notably, deletions and inversions had better detection

among short-read libraries, while ONT long reads achieved better sensitivity at detect-

ing translocations (Fig. 4a; see Fig. S5d). In contrast, duplications and insertions were

more challenging to detect, with long reads performing slightly better especially as the

depth of coverage decreased (mean sensitivity; DUP = 0.35 ± 0.21, INS = 0.22 ± 0.26;

see Fig. S5c). Overall, insertions performed poorly among PCR-based methods, while

duplications had a low sensitivity particularly with NextSeq 500 libraries (Fig. 4b). Not-

ably, the performance also varied according to SV length, with ONT long-read sequen-

cing failing to detect longer insertions that were otherwise detected within short-read

libraries (see Figs. S5e, f).

Together, these results highlight the difficulty associated with SV calling, and the per-

vasive impact of library preparation, sequencing technology, and software on analysis.

Among short-read libraries, PCR-based methods impair SV detection, while long-read

sequencing can provide alignments that span large chromosomal rearrangements, and

thereby resolve complex structural variants. However, all methods exhibit variable per-

formance across the diversity of SV types. As a result, no single approach achieved

comprehensive SV detection, and instead, a combination of approaches was required to

identify the range of ground-truth synthetic SVs.

Phasing genetic variants into haplotype blocks

The phasing of alleles enables genetic variants to be linked to paternal or maternal hu-

man chromosomes [26]. However, phasing can be difficult at regions with sparse vari-

ants and be limited by fragment size and read length. To evaluate the phasing accuracy

achieved by different library preparation and sequencing technologies, we designed 22

pairs of sequins that each represent maternal and paternal alleles for large regions (~ 6

kb) of each human chromosome, as well as chromosomes X and Y. Each control pair

includes allele-specific common genetic variation and forms a diploid representation of

human chromosomes (see Fig. S6a). To phase these synthetic alleles within NGS librar-

ies, we used WhatsHap [27] and evaluated performance according to the fraction of

correctly phased variants, and the length of correctly resolved haplotype blocks.
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The initial inspection of read alignments reveals clear differences in phased haplotype

blocks between short- and long-read libraries. For example, phasing synthetic heterozy-

gous variants on chromosome 20 revealed progressively longer haplotype blocks for

ONT, HiSeq X Ten/PCR-free, MGISEQ-2000, and HiSeq 2500/PCR-based (Fig. 5a). In-

deed, ONT achieved significantly longer blocks (see Fig. S6b) overall compared to all

other technologies. The average read length for ONT was 755.3 nt (SD = 831.6; see Fig.

S6c), which was limited by the length of sequins (~ 2 kb on average; see the “Methods”

section), and long-read technology was capable of consistently phasing distant variants

(> 1000 nt apart; see Fig. S6d) that cannot be otherwise phased with short-read libraries

(Fig. 5c). These longer haplotypes generated by long-read ONT sequencing exhibited

slightly lower sensitivity (long-read = 0.93, short-read = 0.98 ± 0.01), but also a lower

Fig. 4 Structural variant calling performance. a Genome-browser view shows read alignments at deletion
for ONT PromethION (green track), HiSeq X Ten/PCR-free (purple track), and MGISEQ-2000 (yellow track) at
heterozygous deletion (in white). The histogram shows the depth of coverage at each position, with
aligned reads shown below. b Relative frequency of correctly called SVs, with breakpoints successfully
identified, relative to sequencing coverage and bioinformatic tool. a, b The colors represent the different
sequencing technologies/preparation methods used to generate each of the seven sequenced libraries,
such as HiSeq X Ten/PCR-free (purple), HiSeq 2500/PCR-based (red), NextSeq 500/PCR-based (blue), MGISEQ-
2000 (yellow), and ONT PromethION (green)
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proportion of false-positive variants compared to short-read PCR-based methods (long-

read = 3.03%, average short-read/PCR-based = 7.67%; see Fig. S6e).

Within short-read libraries, PCR-free preparation achieved longer haplotype blocks

than alternative PCR-based methods (pairwise Mann-Whitney-Wilcoxon test; Mann-

Whitney-Wilcoxon test; p-value ≤ 0.001; Fig. 5b; see Fig. S6b). Given that phasing ac-

curacy is a function of the pairwise distance between variants, we found that this ad-

vantage was most apparent in non-polymorphic genome regions, where variants are

sparsely distributed (Fig. 5c; see Figs. S6f, g). This advantage was supported by the

Fig. 5 Phasing performance. a Read alignment at synthetic haplotype blocks with multiple heterozygous
variants representing a pair of alleles from chromosome 20. The histogram shows the depth of coverage at
each position, with aligned reads shown below. The assembled haplotype blocks (boxes) obtained with the
different sequencing technologies/preparation methods are shown below the sequencing reads, with the
reads supporting the assemblies being highlighted. b Distribution of observed lengths for resolved
haplotype blocks according to different sequencing technologies/preparation methods. c Fraction of
phased variants relative to pairwise variant distance. d Size distribution for DNA fragments in the short-read
libraries. a, b The colors represent the different sequencing technologies/preparation methods used to
generate each of the seven sequenced libraries, such as HiSeq X Ten/PCR-free (purple), HiSeq 2500/PCR-
based (red), NextSeq 500/PCR-based (blue), MGISEQ-2000 (yellow), and ONT PromethION (green)
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distribution of DNA insert size which showed that PCR-based libraries had smaller

DNA fragments (HiSeq 2500 = 168.83, NextSeq 500 = 195.16) than PCR-free or MGIS

EQ-2000 libraries (HiSeq X Ten = 319.82, MGISEQ-2000 = 289.63; Fig. 5d). Indeed,

while the DNA fragment size distribution of these approaches had similar medians

(HiSeq X Ten = 308, MGISEQ-2000 = 287), there was a subset of longer fragments

(19.79%) in the PCR-free library which enabled phasing of more distant variants (Fig.

5a, d).

Together, this analysis illustrates the importance of longer DNA fragment size and

read length, as well as variant density, required to achieve successful phasing. Further-

more, the gap between shorter haplotypes with more accurate variant detection pro-

vided by short-read sequencing and less accurate but longer haplotypes provided by

long-read ONT sequencing continues to close. Optimally, a combination of these two

sequencing technologies should produce longer, but more accurate phased haplotypes.

Impact of sequencing accuracy and coverage on HLA typing

The recognition of non-self-antigens by the immune system is mediated through the

major histocompatibility complex (MHC) which is encoded within a 3.6-Mb region on

chromosome 6. Due to selective pressures, this is one of the most polymorphic loci in

the human genome, and variation of the human leukocyte antigen (HLA) genes is asso-

ciated with disease [28, 29]. The accurate and rapid resolution of HLA genes is also re-

quired for successful donor-patient matching in organ transplantation. However, due to

the complexity and hypervariability of this region, the accurate typing of HLA genes re-

mains difficult with NGS [30].

To evaluate the use of NGS to perform accurate HLA typing, we incorporated a syn-

thetic MHC region within the in silico chromosome that was accompanied by sequins

representing HLA-A, HLA-B, HLA-C, and HLA-DQB1 alleles (Fig. 6a). We first

inspected alignment accuracy at the reference HLA genes on the in silico chromosome

(Fig. 6a). We found that short-read libraries closely matched the sequins, while ONT

long-read sequencing, which exhibits an elevated sequencing error rate (mean 5-fold;

see Fig. S7a), performed comparably to other technologies at the consensus level, with

no errors observed within exons 2 and 3 of HLA-C and HLA-B (see Fig. S7b).

We then focused on typing the G-group exons (2 and 3) using HLA-LA [31] at vary-

ing fold coverage. At the antigen level (where different alleles expressing the same epi-

topes are grouped together), all libraries achieved accurate typing of the HLA alleles

(see Figs. S7c, d). However, at the allele-group resolution level, which is a more specific

standard to evaluate HLA typing, we observed variation in library performance that

was largely dependent on coverage depth (see Fig. S7e). At 25-fold coverage or higher,

HLA-typing accuracy is comparable among all short-read libraries, while PCR-free and

NextSeq 500 libraries achieved the best sensitivity at lower coverage (down to 5-fold)

due to increased coverage at the target exons used for HLA typing (see Figs. S7c, e).

ONT sequencing provides rapid, real-time sequencing that can rapidly match donor

transplants to a recipient host during surgery and has accordingly been of considerable

interest for HLA typing [32]. We found that at high-depth coverage, ONT genotyping

performs comparably with other short-read sequencing approaches. However, at cover-

ages lower than 25-fold, we observed that ONT consistently misdiagnosed allele groups,
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and the lower base-calling accuracy of ONT confounds accurate determination of geno-

types (Fig. S7c).

Clonotype repertoire analysis of synthetic immune receptors

T cell receptors (TCR) and B cell receptors/immunoglobulins (BCR/Ig) recognize di-

verse foreign antigens as part of an effective adaptive immune response. These TCR

and BCR genes undergo stochastic V(D)J recombination to generate a massive com-

binatorial diversity of receptor sequences that is further increased by random

Fig. 6 HLA typing performance. a Read alignment for Hiseq X Ten/PCR-free (purple), Nextseq 500/PCR-based
(blue), MGISEQ-2000 (yellow), and ONT PromethION (green) at exons 2 and 3 (G-group) of the HLA-A gene
representation of the in silico chromosome. Immune repertoire analysis. b The schematic figure indicates
the design of sequins for the TCRB gene loci. c Observed versus expected clonotype frequencies for
quantification of the CDR3 region at different TCRs and BCRs, with dashed lines indicating a slope of 1
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nucleotide excision and addition at rearranged junctions [33]. NGS is being increasingly

used to profile this repertoire of TCR and BCR clonotypes and measure T- and B cell

dynamics in healthy individuals, patients with cancer, infections, and autoimmune

diseases. However, these diverse applications have different requirements for sensi-

tivity, specificity, and quantitative accuracy that are impacted by sequencing and

analytical errors [34, 35].

To evaluate the genome DNA-based profiling of TCR and BCR genes using NGS, we

developed a synthetic immune repertoire containing both non-rearranged and rear-

ranged IGL, IGK, TRG, TRD, and TRB clonotypes (Fig. 6b). These synthetic clonotypes

represent TCR and BCR sequences that were derived from patient samples [36]. To

further evaluate the quantitative accuracy of profiling techniques, we also mixed the se-

quins at different concentrations to form a quantitative ladder that encompasses differ-

ent clonotype frequencies.

We first measured the sequencing accuracy of CDR3 sequences from rearranged

TCRs and BCRs standards. Among short reads, the HiSeq 2500 (0.28 errors/100 nt) and

NextSeq 500 (0.41 errors/100 nt) accumulated less errors than other instruments at

CDR3 regions (HiSeq X Ten = 0.59 errors/100 nt, MGISEQ-2000 = 0.98 errors/100 nt;

see Fig. S8a), while, as expected, the greater error rate for ONT long-read sequencing

(9.06 errors/100 nt) was insufficient for the unambiguous resolution of CDR3

sequences.

We found that the PCR-free method demonstrated the best quantification of clono-

type abundances (RMSE = 0.09; R2 = 0.95), while NextSeq 500 (RMSE = 0.15; R2 =

0.64) and ONT (RMSE = 0.14; R2 = 0.8) measured the clonotype frequencies poorly, es-

pecially at higher fractions (Fig. 6c). Notably, the ability to accurately resolve CDR3 se-

quences was directly correlated with clonotype frequency, with low-frequency

clonotypes proportionately accumulating more errors (see Fig. S8a).

We next evaluated the accuracy by which rearranged TCR and BCR clonotypes were

resolved using MiXCR [37]. Among short-read libraries, we observed high sensitivity

for measuring clonotypes (varying between 78.9 and 89.4%), with most missed clono-

types having low expected frequency (see Fig. S8b). While CDR3 sequence was cor-

rectly identified, the recombined V(D)J segments, such as TRBV12-4/TRBD2/TRBJ2-2,

were erroneously classified as TRBV12-4/TRBD1/TRBJ2-2 across all short-read librar-

ies, indicating the presence of systemic false-positive artifacts. Nevertheless, despite

these errors, we generally observed high precision (varying between 85.0 and 94.4%),

with most false-positive segments resulting from clonotypes that were identified at low

frequency (mean false-positive frequency of 0.0038; see Fig. S8c).

While the sequins do not encompass the scope and complexity of natural immune

repertoires, they do provide a ground-truth standardized reference that can identify sys-

tematic biases, even when shared by all technologies. This construction of a synthetic

repertoire provides a useful reference for the standardization of immune repertoire pro-

filing by the research community [38, 39].

Discussion
The human genome sequence contains polymorphic, repetitive, and complex regions

that are difficult to sequence and are typically ignored during analysis. However, these

regions include clinically important features, and their accurate resolution can improve
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the diagnostic yield of clinical NGS. Here, we built sequins accompanied by an in silico

decoy chromosome that incorporates these challenging sequences and provides an un-

ambiguous reference against which to evaluate the use of NGS to diagnose difficult and

clinically important human genome sequences.

The in silico chromosome is designed to accompany the human genome reference

files during the alignment and analysis of DNA samples. This in silico chromosome en-

codes a range of genetic variants, including small SNPs and indels, as well as larger

structural variants, such as duplications, inversions, and translocations. These variants

can be further organized into broader haplotype blocks that emulate the paternal and

maternal chromosomes of the diploid human genome. In addition to representing com-

mon genetic variation, the in silico chromosome also encodes multiple features of

interest, including HLA genes and immune receptors, as well as instances of viral

(HPV) insertions. We anticipate that additional genetic features can also be added to

future in silico chromosome builds.

Within this study, we employed sequins to evaluate the performance of different li-

brary preparation methods, sequencing technologies, and bioinformatic software to re-

solve these difficult human genome regions. We provided summary statistics, such as

error rate, for sequence-specific contexts for individual experiments and also compared

our sequins to a reference genome sample, such as NA12878. We showed that overall

the standards and NA12878 are commutable; however, higher error rates for NA12878

at several genome positions indicate possible unannotated variants in this reference

sample. We also observed substantial variation between similar instruments or library

preparation methods, with the sequins forming a common reference against which to

benchmark these advantages and limitations.

Using this approach, we provided a direct comparison of short-read technologies on

difficult genome regions that had not previously been benchmarked. We found that the

use of PCR amplification within library preparation methods resulted in the accumula-

tion of errors that was a major factor in differentiating the performance between

these technologies. This included variable amplification efficiencies that caused

heterogenous coverage across high/low GC regions, and resulted in the accumula-

tion of errors at short repeats and microsatellites. The use of DNA nanoballs and

rolling circle amplification (used during library preparation for the MGISEQ-2000

instrument) performed comparably to PCR-based libraries, albeit with improved

resolution of short repeats and microsatellites. However, the exclusion of PCR-

based steps during library preparation achieved the most uniform coverage of diffi-

cult regions, with less insertion/deletion errors as well as more comprehensive

phasing, more sensitive SV breakpoint detection, and also better quantitative accur-

acy in an immune repertoire analysis.

As anticipated, the long-read nanopore sequencing was superior for phasing haplo-

type blocks and resolving some types of large structural variants. Furthermore, the full

advantages of long-read sequencing may not be fully realized in our benchmarking ana-

lysis given that synthetic controls used in this study are shorter than the typical read

length achieved with long-read sequencing. Nevertheless, these benefits were often off-

set by lower base-calling accuracy, resulting in false-positive variants that were unsuit-

able to detect somatic variants or evaluate microsatellite instability, and may otherwise

confound analysis in whole-genome sequencing.
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Furthermore, at higher coverage depth, we found that short-read libraries could simi-

larly resolve the exact location of breakpoints for complex structural variants. Given

these complementary advantages, we recommend that low-coverage long-read sequen-

cing combined with high-coverage short-read PCR-free sequencing currently provides

the most comprehensive solution to sequencing and analyzing difficult and challenging

regions of the human genome. Nevertheless, despite this recommendation, we noted

that many challenges remain, and the sequencing of difficult regions can still benefit

from further improvements and innovations in genome technologies.

The use of sequins within this study provided an unambiguous ground-truth refer-

ence for complex genomic regions, including pathogenic variants of interest, repre-

sented at specific allele frequencies. Sequins can address gaps in current reference

controls and complement natural reference genome materials recently released, such as

HG002 and HG00733. Sequins confer the ability to flexibly represent pathological and/

or rare mutations that are not otherwise found in healthy reference genomes, and fur-

thermore, a single sequin mixture contains many different mutations types, while nat-

ural reference genomes may only harbor a few clinically relevant mutations each.

Therefore, sequins provide a comprehensive coverage of clinically important genetic

features and can be feasibly updated to incorporate new informatic biomarkers.

Conclusions
Given the advantages of sequins, the SEQC2 consortium accordingly provides these

controls as a reference material to encourage the benchmarking of additional new gen-

ome technologies by the research and clinical genomics community. These standards

can also be used as a reference to improve variant detection at challenging regions of

the human genome, expanding the available annotation for reference genome samples,

such as NA12878. This resource also provides an open platform for validating and

comparing the performance of NGS technologies to resolve difficult regions of the hu-

man genome. With the recent advent of rapid and affordable DNA synthesis, we antici-

pate that the creative design of additional sequins will further improve the catalog of

available reference genome standards.

Methods
Sequin design and organization into an in silico chromosome

Due to its 5′-3′ directionality, a DNA sequence is entirely distinct from its mirror

image. Sequins represent mirror images of naturally occurring DNA present in the

NA12878 reference genome sample. Therefore, in a sequenced library of NA12878 gen-

ome sample spiked with sequins, we can unequivocally partition sequin reads from

NA12878 reads. This design principle is articulated in detail in Deveson et al. [16]. In

order to represent genetic variation, sequin controls often exist in pairs, with overlap-

ping sequences encoding synthetic reference and variant alleles. The pairs have the

same sequence except for the site of genetic variants that they encode. To represent

germline heterozygous variation, reference and variant sequin molecules are added in

the final sequin mixture at the same relative concentration. In contrast, to represent

somatic variation, reference and variant sequin molecules are added at differing relative

concentrations. For example, to represent a somatic mutation at 1% VAF, the variant
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sequin allele would be added at a 1:99 ratio relative to the reference sequin allele in the

sequin mixture.

The in silico chromosome (chrQ) was designed by concatenating the sequences of se-

quins with different functional features into four different regions: difficult variants and

simple repeats, structural variants, HLA genes, and immune receptor genes. For refer-

ence/variant sequin pairs, only the reference sequence was represented in the in silico

chromosome. Consequently, reads from reference/variant sequin pairs would map at

the same position within the in silico chromosome. However, apart from this circum-

stance, there is no other overlap in the in silico chromosome between sequins repre-

senting different features. Both the sequences of individual sequins and the in silico

chromosome are available as supplementary material.

Production of DNA sequin mixtures

Each DNA sequin was synthesized by a commercial vendor (ThermoFisher-GeneArt)

and cloned into a pMA vector. The full sequence of each sequin was verified during

synthesis using Sanger sequencing by the commercial vendor, and any erroneous se-

quences were re-constructed before shipping. The individual plasmids containing each

sequin were transformed in E. coli, then grown in a 50-ml culture, and later purified.

The sequins were excised from the plasmids; then, the size of the final sequence was

confirmed on an agarose gel. Purified sequins were quantified using the BR dsDNA

Qubit Assay on a Qubit 2.0 Fluorometer (Life Technologies), by taking the average of 3

independent measurements, and verified on the Agilent 2100 Bioanalyzer with the Agi-

lent High Sensitivity DNA Kit (Agilent Technologies). Individual sequins were then com-

bined at specific concentrations using an epMotion 5070 liquid handling robot. Mixture

stocks were prepared as single-use aliquots and stored at − 80 °C.

Preparation of DNA libraries and sequencing

We first sequenced neat preparations of the sequin mixture. Libraries were prepared

using the KAPA HyperPlus PCR-based kit (Illumina) in accordance with the manufac-

turer’s instructions. Prepared libraries were quantified on a Qubit (Life Technologies)

and verified on the Agilent 2100 Bioanalyzer with the Agilent High Sensitivity DNA Kit

(Agilent Technologies). Finally, two of the libraries were sequenced on a HiSeq 2500

(Illumina) and the other two were sequenced on a NextSeq 500, producing paired reads

of 125 nt and 150 nt, respectively. The sequencing was performed at the Kinghorn

Centre for Clinical Genomics, Darlinghurst, New South Wales.

We next prepared libraries by adding the sequin mixture to NA12878 genomic DNA.

Although sequins only need to be added at ~ 0.05% to achieve similar coverage to the

human sample, we add the sequin mixture at a higher molarity than the accompanying

human DNA, so reads can be subsequently down-sampled bioinformatically to any de-

sired coverage. We prepared two libraries with the KAPA HyperPlus PCR-free kit. After

the quantification and quality assessment with the Qubit (Invitrogen) and Agilent 2100

Bioanalyzer with the Agilent High Sensitivity DNA Kit (Agilent Technologies), the librar-

ies were sequenced on a HiSeq X Ten (Illumina) producing paired reads of 150 nt at

the Kinghorn Centre for Clinical Genomics, Darlinghurst, New South Wales. Addition-

ally, we also prepared a library for nanopore sequencing, with the LSK110 kit (1D
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ligation) according to the manufacturer’s instructions and sequenced on a PromethION

instrument, at the Kinghorn Centre for Clinical Genomics, Darlinghurst, New South

Wales. Base-calling was achieved using ONT Guppy Software (version 4.5.3). Finally,

we sent a sample, combining the sequin mixture and NA12878, to be prepared and se-

quenced in a MGISeq2000, by BGI Tech Solutions, in Hong Kong.

Alignment to reference

We initially prepared a combined reference file containing the human reference gen-

ome (hg38) and the in silico chromosome (without genetic variation). We then indexed

the reference with the BWA index and aligned with the BWA mem algorithm. Default

parameters were used in all the analyses. For samples containing both the sequin mix-

ture and NA12878, we used Anaquin [40] to partition and flipped sequin reads to be in

the same orientation of hg38. The sequin reads can then be re-aligned to hg38 and ana-

lyzed concomitantly to the accompanying NA12878 reads. We aligned ONT reads with

minimap2 (version 2.22-r1105-dirty) with default parameters [41]. The length of se-

quins imposes constraints on reads mapping at the ends of the sequence. There is an

“edge effect” wherein we observe a decline in sequencing coverage at sequin termini,

within one sequencing fragment length of the first and last bases. To prevent this edge

bias from impacting results, we exclude ~ 400 nt edge regions during analysis.

Performance statistics

We estimated the variability for depth of coverage and sequencing error based on the

small variants section of the in silico chromosome. We used pysamstats (version 1.1.2)

to retrieve the coverage and specific error types, such as mismatches or insertions and

deletions, for every genome position. The coverage was normalized so that the total

read count was the same between libraries. To calculate the variation in normalized

coverage relative to GC content, we established 100-bp sliding windows, and for each

window, we calculated the GC content and average normalized coverage. We then

compared the observed relationship between GC content and normalized coverage in

each sequenced library. At each genome position, we calculated the relative frequency

of mismatches, insertions, and deletions, by dividing the number of reads containing

each of those errors by the total read count at that position. To amplify the signal, we

calculated the average mismatch, insertion, and deletion rates at 1000-bp windows. Fi-

nally, based on the total number of mismatches observed in each library, excluding po-

sitions with germline or somatic variants, we calculated the relative frequency of every

possible substitution type, also summarizing the results as the relative frequency of

transitions and transversions.

False-positive rate of detection for small variants

To perform a fair comparison across the different sequencing libraries, we used Vars-

can2 (v2.4.3) to call variants [42]. In order to maximize the discovery of somatic vari-

ants at very low allele frequencies, we set filtering parameters to be very permissive.

For example, we set the minimum coverage (--min-coverage) to 50, minimum number

of reads (--min-reads2) to 1, minimum variant frequency (--min-var-freq) to 10−5, p-

value cutoff (--p-value) to 10−1, and strand filter to 0. This strategy maximizes the
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variant discovery, enhancing the signal to calculate the false discovery rate for different

allele frequencies.

Microsatellites

We first identified homopolymers in the in silico chromosome, classifying them as

small (≤5 nt), medium (> 5 nt and ≤15 nt), and large (> 15 nt). We then measured the

rates of insertions and deletions within these homopolymer positions by using pysam-

stats (version 1.1.2). We then recovered all the reads overlapping large homopolymers

or microsatellites and measured the repeat length in each read relative to the true ori-

ginal length present in the reference chromosome. Finally, we calculated the error dis-

tribution for microsatellite lengths and the proportional of exact matches (reads in

which the observed repeat length was equal to the expected length) for microsatellites

in the Bethesda panel.

Structural variant detection

We called structural variants for the short-read libraries using Manta (version 1.6.0)

and Lumpy (version 0.2.13) [23, 24]. We ran Manta with the default parameters on the

BAM alignment files. Lumpy, however, requires split and discordant read-pairs to be

provided as separate inputs. We used “samtools view” (version 1.9) with the option -F

1294 to extract discordant read-pairs and “extractSplitReads_BwaMe,” a script provided

by Lumpy, to extract split-reads. We then used these individual subset alignment files,

as well as the original alignments, to run Lumpy with default parameters. For long

reads, we called structural variants using Sniffles (version 1.0.11) and CuteSV (version

1.0.12), also with default parameters [1, 25]. To evaluate the performance at the break-

point level, we considered breakpoints identified within 10 nt from the true position to

be true-positives (TP) and breakpoints identified outside of this window to be false-

positives (FP). Sniffles and CuteSV call duplications as insertions, so any insertions

called within the boundaries of a duplication that had the expected size were also con-

sidered true positives. Furthermore, missed calls within the 10-nt window, where true

breakpoint positions existed, were considered false negatives (FN). The sensitivity at

the breakpoint level was calculated as TP/(TP + FN) and the precision as TP/(TP +

FP). To evaluate the performance at the SV level, we considered a true-positive, if all

the individual breakpoints for a given structural variant were successfully identified;

otherwise, the SV was considered a false-negative.

Phasing

We first identified the variants present within the defined haplotype blocks. We used

GATK (version 4.0.0.0) for the short-read libraries and clair3 (v0.1-r7) for long reads,

with default parameters [43, 44]. We then used the individual VCF files and BAM

alignments as inputs to resolve haplotypes using WhatsHap (version 0.18), with the

“phase set” (PS) tag enabled, providing unique identifiers for individual blocks [27]. We

compared each of the identified haplotype blocks with the truth set to determine the

proportion of heterozygous variants that were correctly phased and also the size of

blocks relative to the expected length.
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HLA typing

We evaluated sequencing accuracy at HLA genes by aligning reads onto the in silico

chromosome. We then used pysamstats (version 1.1.2) to recover read coverage and se-

quencing error statistics for genome positions in exons 2 and 3, which are the most

commonly used for typing. We also recovered the consensus sequence for reads over-

lapping exons 2 and 3 and calculated the edit distance relative to the reference se-

quence. We also performed HLA typing agnostically to the in silico chromosome, by

using the HLA-LA software (version 1.0.1). We used the pre-computed hg38 population

reference graph provided with the software “PRG_MHC_GRCh38_withIMGT” to align

the reads, and for long reads, we also used the parameter --longReads ont2d.

Immune repertoire analysis

We first mapped reads onto the in silico chromosome. We then evaluated sequencing

accuracy at the CDR3 region, defined by the conserved cysteine-104 and typtophan-118

based on the IMGT numbering system [36]. We recovered read coverage and sequen-

cing error statistics at the CDR3 region by using pysamtats and quantified different clo-

notypes based on the average coverage at the CDR3 region relative to the expected

frequency. Then, for short-read libraries, we independently identified clonotypes by

using MixCR (version 3.0.12) with default parameters. We benchmarked the perform-

ance by evaluating the detected receptor, both at the level of the CDR3 region, as well

as individual V(D)J segments.

Statistical analysis

We used the Kruskal-Wallis test to determine significant differences between all evalu-

ated datasets followed by two-tailed Mann-Whitney tests to identify significances be-

tween any pair of specific datasets. For multiple comparisons, the p-values were

adjusted using the false discovery rate method with an alpha of 0.05. All the statistical

analyses were performed in R (v3).
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