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Abstract Unsatisfactory progress in cancer medicine and prevention
calls for new research approaches. Research can broaden its view
of cancer to include not only specific molecular elements, but also
the process that explains their origin and dynamics. This process is
Darwinian evolution of somatic cells. Applicable modeling techniques
are available from process-oriented systems biology. We review
relevant concepts and techniques, and their application to four key
open questions in cancer prevention research. Helpful concepts are
transferable from classical evolutionary biology and ecology, while
useful techniques include computational agent-based modeling. The
research questions we review include (1) why do benign neoplasms
often progress to malignancy? (2) what is the chronological sequence
of molecular events in cancer progression? (3) how can we find
reliable molecular biomarkers for cancer? and (4) will evolved drug
resistance stymie efforts at a long-term cancer chemoprevention? We
conclude that molecular analysis can be usefully augmented with
process-oriented systems biology to guide empirical research into the
most productive directions.
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1. Introduction

Despite the US “war on cancer” declared in 1971, cancer
incidence and mortality have fallen less than initially hoped
and expected [7]. Even within the most recent five years,
cancer incidence in the US declined less than 1%, and
cancer mortality declined less than 2% [64]. This has led
some researchers to argue that new approaches to cancer
medicine are needed, including a conceptual framework that
can explicitly address the complex dynamics that arise from
the cellular evolution and adaptation that occurs in cancer
as it interacts with its own microecology [18,26].

Compared to the areas in which medical research had
its most dramatic successes, cancer presents fundamentally
different challenges, because it arises through a process
that is endogenous to human tissues. The research strategy
of using molecular reductionism to define a fixed disease-
causing entity has a brilliant track record in the fields of
infectious disease and inherited genetic disease, but has
been less successful in cancer biology. Molecular analysis

quickly revealed the consistent genetic nature of nonhuman
pathogen species, such as bacteria, and of inherited genetic
defects. In contrast, cancer reflects a complex process of
ongoing genetic change in human somatic cells, and it usu-
ally has no fixed molecular basis. Thus, in important ways,
a cancer is not simply a thing to be removed or destroyed,
but also a process to be prevented, controlled or managed.

Although cancer risk can be greatly increased by inher-
ited genetic factors or infectious pathogens, neither of those
is necessary or sufficient on its own to be the cause of most
cancer. Because cancer arises from a process that is endoge-
nous to human tissues, it is often independent of inherited
genes or external insults. Cancer biology can most natu-
rally be organized around an understanding of this endoge-
nous process of somatic cellular evolution, which consists
of mutations causing differential reproduction, with inheri-
tance, among somatic cells. Somatic evolution is a special
case of the Darwinian process of evolution by natural selec-
tion. Process-oriented approaches from systems biology can
help to encompass the complexity of somatic cellular evolu-
tion, making cancer more comprehensible and tractable.

2. The central process of cancer biology: somatic cellular
evolution

As early as the 1970s, Cairns [12] and Nowell [50]
proposed that somatic cell mutation, selection, and resulting
Darwinian evolution are the fundamental processes by
which neoplasms arise, acquire malignancy, and evade
therapy. This hypothesis lay dormant for decades before
being further developed and confirmed with empirical
results from modern cancer biology [14,21,29,56,57,67].
Currently though, “cancer development at the cellular level
is widely regarded as a Darwinian evolutionary process
involving “natural selection” of genetically variant cells in
the context of a complex microenvironmental ecology” [6].
Our only amendment to the foregoing quote would be to
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explicitly recognize that relevant mechanisms of cellular
heredity include both genetic and epigenetic variation [57].

In common terminology, “cellular” selection and evolu-
tion are equivalently referred to as “clonal” selection and
evolution, because each dividing somatic cell produces a
clone of progeny with a shared genome and a shared fate.

As molecular techniques have provided an increasing
wealth of data, the hypothesis of cellular evolution in cancer
has been supported in multiple cancer types. For example,
cellular evolution as a basis for neoplastic progression and
changes in cancer has been documented in molecular detail
in breast cancer [47,62,61], pancreatic cancer [13], renal
cancer [28], ovarian cancer [48], leukemia [6,70], colorectal
cancer [32], and head and neck cancer [42].

The hypotheses and observations of cellular evolution
have led to an emerging scientific theory of cancer
dynamics, which elucidates origination, progression,
metastasis, and response to treatment. This development
is greatly assisted by a mature literature of concepts and
techniques from the classical study of Darwinian evolution
in populations of organisms. One optimistic assessment is
that, despite the extreme complexity of cancer, “most, if
not all, of this complexity can be explained by classical
evolutionary principles” [29].

3. Computational tools for studying evolutionary
processes

Armed with an understanding of the basic process behind
the complex dynamics of cancer, researchers are increas-
ingly adopting systems biology approaches that have
proven effective for understanding complex dynamic
processes such as cellular evolution. These approaches allow
researchers to reveal not only the molecular components of
cancer cells, but also the reasons why molecular components
vary among cells, and why they change over time during
cancer progression. Cancer is arguably the ultimate complex
biological system [31]. For coping with such complexity,
systems biology approaches have proven effective in much
of biomedicine, including cancer biology [8,44,60], and
these approaches fall into two distinct categories. One con-
sists of techniques for analyzing large “omics” data sets [1,
33]. The other category consists of mathematical and com-
putational models for representing underlying processes, as
opposed to a specific set of resulting data [4,5,31]. Here, we
refer to this second category as “process-oriented systems
biology”. Without using that label for it, other authors have
suggested that process-oriented systems biology has the
potential to play a central role in cancer prevention [27].

One specific technique for conducting process-oriented
systems biology is the use of “agent-based” computer
models [39]. In these models, each cell can be explicitly
represented by a computational “agent” (a piece of
software) that represents a cell as it interacts with its

microenvironment, mutates, divides, passes on acquired
somatic mutations, and thereby founds a new clone. In
this technique (also called “bottom-up” simulation, or
“microsimulation”), the traits and behaviors of cells are
specified in advance, but larger scale patterns and processes
are not. Only as the model is used to run a simulation, often
with a large and heterogeneous population of virtual cells,
do larger scale patterns and processes emerge, often with
collective outcomes that were not intuitively obvious in
advance. This can generate a process of “digital evolution”
inside a computer, which can provide a detailed, transparent,
and predictive model of cellular evolution and progression
under a specified set of conditions [2,52]. The results of such
simulations are not empirical data, but they can generate
incisive new hypotheses that are empirically testable, and
that can guide empirical research into productive new
directions. Far from substituting for empirical research,
computer models are most effective when they are closely
integrated with experimentation, and are used to refine
hypotheses and better focus experiments [17,22].

Other techniques are also useful for modeling in
process-oriented systems biology. For example, the
authors in [9], among others, have represented evolu-
tionary dynamics using a game theoretic framework for
mathematical analysis. Their results elucidated the role of
tissue interactions in directing the progression of prostate
cancer into distinct courses, ranging from indolent to highly
life-threatening.

4. Process-oriented systems biology in cancer prevention
research

The process of somatic cellular evolution can rarely
be observed directly, and most empirical data can only
represent a “snapshot” in time from this ongoing process.
Explicitly defining the process thought to underlie such
observable data extends their explanatory power. Below,
we consider four current questions in cancer prevention
research, and discuss a process-oriented approach to each
of them.

4.1. Why do benign neoplasms often progress to malig-
nancy?

The defining (and deadly) feature of cancer, as opposed to
benign growths, is local tissue invasion, ultimately leading
to distant metastasis. Because this process emerges from
interactions among multiple cells and their microenviron-
ments, process-oriented system models are particularly well
suited to its study. For this purpose, tools have been bor-
rowed from both classical ecology and evolutionary biology.

Ecologists have used computational studies of spa-
tiotemporal dynamics to compare tissue invasion by cancer
cells with the invasion of natural ecosystems by artificially
introduced species [40]. These authors posit that their results
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can help explain the patterns of genetic diversity observed
both within and among tumors in a patient. They also
describe a “distinct geometrical signature” of invasion
dynamics in both ecological landscapes and tumors,
which they suggest may someday be used along with
advanced imaging technologies to accurately discriminate
malignancies from benign growths [41]. Independently,
biomedical researchers have also found that computer
simulations of mathematical models closely resemble the
actual morphologies and spatial patterns of tumor growth
and invasion, and that predictions of the model are met
by observations of real tumors in vivo [23]. This group
agreed with the ecologists cited above that results from
process-oriented models can make tumor invasion more
recognizable, and they further predicted that different
invasion morphologies would correspond to different stages
of tumor progression [10]. More recently, agent-based
models have even been calibrated to match the precancerous
breast tumors of specific patients, to better track and predict
their progression, as observed by mammography [38].

Beyond mere prediction, a central goal of cancer
prevention is to block progression from benign pre-
malignancies to cancer. At a cellular level, this progression
entails the acquisition of motility by formerly sedentary
neoplastic cells. In seeking ways to block this change, it
will help to understand what causes it. Building on classical
evolutionary ecology, one research team [3] hypothesized
that the intense local competition for resources caused by
abnormally rapid cell proliferation in neoplasms selects for
motile cells that can thrive by leaving the resource-depleted
zones where other neoplastic cells languish and die, and that
this selection drives the evolution of somatic cell motility.
Agent-based computational models provided support for
this hypothesis. Their results also suggest that therapeutic
agents designed to block cell motility, instead of killing
cancer cells, will be more robust against acquired drug
resistance, and while blocking malignancy, will also select
for reduced cell proliferation and tumor growth [3].

4.2. What is the chronological sequence of molecular events
in cancer progression?

A long-standing challenge in cancer biology is to understand
and predict the chronological sequence of molecular events
underlying the initiation and progression of tumors [19].
Many early genetic models assumed that tumors were
genetically homogenous, and thus could be characterized
as having a single tumor genotype. On this basis, the
classic type of model was a linear sequence of events, or a
“canonical path model,” constructed from cross-sectional
data on multiple patients [65]. However, more recent
evidence revealed so much genetic heterogeneity within
tumors that the assumption of one single genotype per
tumor is clearly no longer valid [49,63].

Agent-based evolutionary models of tumor progression
suggest that the temporal, or evolutionary, order of muta-
tions acquired in the clones that survive over the lifetime of a
neoplasm may not be consistent with the path order inferred
from cross-sectional data [65]. Because cellular evolution
during tumorigenesis is a unique process in each patient, it is
not valid to assume that the state of one tumor is informative
for the history of even an apparently similar tumor in a dif-
ferent patient. Independent evolutionary trajectories in each
patient make it difficult to reconstruct temporal order from
cross-sectional data. In contrast, observed cellular diversity
can be analyzed with phylogenetic methods from classical
evolutionary biology to reconstruct cell lineages within indi-
vidual tumors. This can accurately reveal the true temporal
order of events for the clones within a specific tumor (Fig-
ure 1).

The two key results of this study [65] are (1) that cross-
sectional data can be misleading because of independent cel-
lular evolution within each patient and (2) that even though a
detailed study of intratumor variation can reveal the average
ordering of molecular events within that tumor, not all cells
in the tumor actually reflect that average order of events.
As with any results from rigorous simulations, these should
not be treated as final conclusions, but rather as plausible
hypotheses and strong candidates for empirical testing [34].

4.3. How can we find reliable molecular biomarkers for can-
cer?

Another major research direction in cancer prevention is
the development of cancer biomarkers for early detection
and for prognosis. To date, most biomarker development
has not been informed by evolutionary dynamics, but
instead has focused on specific molecules. This strategy has
identified many candidate somatic genetic and epigenetic
“biomarkers” of cancer or cancer risk. However, very few
specific marker molecules have proven to be reproducibly
effective for identifying cancer [59]. Similarly, no specific
molecule has yet been validated as a robust predictor of
progression to cancer, or been useful to reduce cancer
mortality [35].

One likely reason for this lack of success is that the
process of cellular evolution is fueled by stochastic muta-
tion, which is unpredictable and varies among individuals.
Because of shared selective pressures for survival and prolif-
eration, different cancer cases tend to converge on the same
“hallmark” cell traits [30]. However, because somatic muta-
tion is stochastic, the molecular basis for these traits can
differ, and at a molecular level, each cancer can be unique
in many ways [29], making it difficult to find molecular
biomarkers that will be consistent for different patients.

Instead of seeking consistency across individuals
in cancer-specific molecules, a different approach is to
recognize that the cellular genetic diversity of neoplasms
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Figure 1: Reprinted with permission from Sprouffske et al. [65]. The temporal order of mutations seen in simulated cancer
clones rarely matches the path order inferred from cross-sectional data, but it does match the order inferred from genetic
dependency analysis of intratumor data. (a) Plotting the percentage of tumors with a given mutation at increasing neoplasm
sizes can be used to infer. (b) The cross-sectional path model of mutations. (c) However, the proportion of cells within a
simulated neoplasm that has a history consistent with the inferred cross-sectional path order tends to be low (mean [SEM]
= 7.3% [1.0%], n = 90 simulation runs). (d) In contrast, the proportion of cells within a simulated neoplasm that has a
history consistent with order inferred from the genetic dependency analysis is high (mean [SEM] = 99.7% [0.1%], n= 90).
Each mutation type is represented by a different color in panels (a) and (b): loss of differentiation (LD) is green, evasion
of apoptosis (EA) is light purple, limitless replicative potential (LR) is orange, sustained angiogenesis (SA) is dark purple,
genomic instability (GI) is light green, self-sufficiency in growth signals (SG) is light blue, and insensitivity to antigrowth
signals (IA) is dark blue.

fuels their evolution, and to measure this diversity itself as
a marker, instead of any single molecule. Classical evolu-
tionary theory states that the rate of evolutionary change is
proportional both to trait variance and to fitness variance in
the members of the evolving population [58]. Thus greater
genetic variation among cells in a neoplasm is expected
to drive faster progression. There is substantial empirical
evidence supporting this hypothesis. In one study [71], five
different cell lines representing various types of cancers
were analyzed for karyotypic diversity among cells. In each
of these lines, the highest level of chromosomal diversity
was coupled with the strongest tumorigenicity (Figure 2).
This pattern is not limited to karyotype, or to in vitro cell
lines. High cellular diversity accurately predicted risk in
patients monitored for progression from Barrett’s esophagus
to esophageal cancer, and simultaneously monitored by
whole-genome sequencing of repeated biopsies. Cell
diversity was measured in SNPs, copy number, loss of

heterozygosity, and aneuploidy [36]. Every tested measure
of genetic diversity among cells produced highly significant
(P < .001) predictors of progression to cancer [43]. Similar
patterns have been reported in other human tumors. In a
study of human breast carcinomas, an index of cellular
genetic diversity based on copy number ratios was higher
in invasive than in situ components from the same section
of the same tumor [51]. Cellular genetic diversity was also
positively correlated with tumor grade [51, supplemental
Table 7]. (Note that these authors considered this latter trend
to be only “suggestive,” needing confirmation in a larger
sample set.)

Taken together, these experimental results and obser-
vational clinical results suggest that the genetic diversity
that fuels somatic cellular evolution may be a robust
general biomarker of cancer risk and prognosis. Such a
diversity marker, if proven in translational research, could
simultaneously help to address two major challenges:
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Figure 2: Reprinted with permission from Ye et al. [71].
Comparison of the spectral karyotypes of two cell
sublines, each derived in vitro from the same cell line
(MCF10A3, from a human breast carcinoma in situ).
The high-diversity subline CSC-3 (panel (b)) produced
tumors in immunodeficient mice, while the low-diversity
subline CSC-1 (panel (a)) did not. Only subline CSC-3
with xenograft tumorigenicity (panel (b)) contained many
low-frequency chromosome aberrations not found in both
sublines (indicated by the yellow shaded boxes), in addition
to the five high-frequency chromosome aberrations found
in both (indicated by blue-shaded boxes).

achieving early detection of truly dangerous neoplasms, and
avoiding overdiagnosis of nonthreatening growths.

4.4. Will evolved drug resistance stymie efforts at long-term
cancer chemoprevention?

Developing drugs for chemoprevention is a major line of
research in cancer prevention that may face pitfalls from
cancer evolution. These potential pitfalls have already been
demonstrated in cancer therapy. Many agents have been
developed and successfully used for selectively killing
cancer cells. A very general limitation on this approach,
however, is the acquired drug resistance that results from
cellular evolution [54]. This makes resistant relapse a
routine sequel to initial tumor shrinkage during therapy [15,
54], and most patients who die of cancer are killed by a
cancer that has evolved drug resistance. The problem of
acquired resistance may prove to be even more limiting for
a long-term chemoprevention than it is for therapy. While
successful therapy is completed within a shorter time frame,
cancer prevention might ideally continue throughout life.
Thus, any drugs that can be administered effectively only
for a limited time may not be entirely satisfactory.

There is clinical evidence that the time limits on
effective drug administration seen during cancer therapy
can also arise in chemoprevention. This is illustrated by the
selective estrogen receptor modulators (SERMs) tamoxifen
and raloxifene. Both of these have recently been tested
and approved as chemoprevention agents for breast cancer
in high-risk women [24,68,69]. However, the problem
of acquired drug resistance in chemoprevention has not
yet been adequately addressed. In cancer therapy, many
initially responsive tumors later develop acquired resistance
to tamoxifen [45,46]. A similar acquired resistance to
raloxifene, as well as cross-resistance between these two
SERMs, has been demonstrated in vitro with breast
carcinoma cells [25,37,66]. This established pattern
of acquired resistance to SERMs appears to arise in
chemoprevention as well as in chemotherapy. Controlled
chemoprevention trials showed a reduction in breast cancer
incidence in healthy high-risk women after using tamoxifen
for five years [20]. However, in the adjuvant treatment
setting, longer administration does not confer further benefit
in preventing new primary tumors [20]. This result suggests
that long-term intervention to prevent a new cancer may
suffer from the same limitations as long-term chemotherapy
to prevent recurrence, and for the same reason of cellular
evolution of acquired drug resistance. Achieving life-long
protection through chemoprevention may require longer
periods of effective drug administration, and thus may not
be possible with any drug that selects for drug-resistant
variants. Whenever somatic cells are dividing and subject to
mutation, resistant variants are likely to arise. Any drug that
kills or suppresses individual drug-sensitive cells thereby
“selects” more resistant cells to survive with reduced com-
petition after the removal of drug-sensitive neighbors [53].
This leads to a rapid out-growth, or “clonal expansion,” of
a lineage of resistant cells which quickly takes the place of
the drug-sensitive cells removed by treatment [54].

Providing the best possible protection through chemo-
prevention may require ways to delay cellular evolution of
acquired resistance. Application of evolutionary theory
from other contexts suggests specific strategies [53].
Therapeutics that change the tumor microenvironment
to make it less hospitable to tumor growth and invasion can
impede all cancer cells equally, without selecting among
them and thereby driving the evolution of resistance. For
example, nonsteroidal anti-inflammatory drugs meet this
criterion, and there is some evidence that they may remain
effective indefinitely for long-term chemoprevention [16].

Other potential drug classes could also exert less
selection on existing variation, and thus slow the evolution
of acquired drug resistance. Potential new drugs could
exploit the fact that cancer cells construct their own
microenvironment by producing, and depending on, many
shared substances that increase the capacity of their shared
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Figure 3: Simulation results reprinted from a previous
work [55]. Frequency of drug-resistant cells after 1,000
cell generations of mutation and evolution. High transfer
coefficients correspond to highly diffusible drug targets
produced by one cancer cell that provide benefits to
other nearby cancer cells. A transfer coefficient of zero
corresponds to a cell-intrinsic target molecule that is not
shared among neighboring cells. Each marker represents the
mean for a different drug dosage: filled circle = 100% of full
dose, open circle = 75%, triangle = 50%. Error bars show
standard error across 10 simulation runs using different seed
values for the pseudorandom number generator.

microenvironment to support tumor growth and invasion.
Examples include secreted angiogenesis factors, growth
and invasion factors, and immune suppression factors [53,
54]. In agent-based computer simulations, drugs targeting
such shared “public goods” products do not single out the
specific cells producing them, or those cells producing drug-
resistant variants of them. Thus they do not select strongly
for resistant cells, and do not strongly drive the evolution
of acquired resistance [55] (Figure 3). Thus such drugs
should retain longer-term effectiveness both in treatment,
and also in chemoprevention. Specific targets for potential
drugs of this class have been proposed, and in some cases
successfully tested in animal models [53,54]. The theoret-
ical prediction that targeting the tumor microenvironment
will produce less acquired drug resistance has also been
supported clinically for some antiangiogenic drugs [11].

5. Conclusions

Viewing cancer simply as an entity to be removed or
destroyed can overlook important aspects of cancer biology,
including why cancer is dynamic and adaptive, and why
it is difficult to target as a “nonself” entity. Molecular
reductionism contributes greatly to advances in cancer
research, but is even more useful within the framework of
understanding the somatic cellular evolution that generates
the diverse molecules observed in cancer cells. At the heart
of cancer biology is a change over time in populations of

initially normal human cells. This process is best understood
as somatic cellular evolution. Process-oriented systems
biology provides tools for modeling this process to generate
the most crucial hypotheses for empirical testing.
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