
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1995

Using Taguchi''s Method of Experimental Design to Control Errors Using Taguchi''s Method of Experimental Design to Control Errors

in Layered Perceptrons in Layered Perceptrons

William E. Bond
Missouri University of Science and Technology, bondw@mst.edu

Gerald E. Peterson

Daniel C. St. Clair

Stephen R. Aylward

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

W. E. Bond et al., "Using Taguchi''s Method of Experimental Design to Control Errors in Layered

Perceptrons," IEEE Transactions on Neural Networks, Institute of Electrical and Electronics Engineers

(IEEE), Jan 1995.

The definitive version is available at https://doi.org/10.1109/72.392257

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/72.392257
mailto:scholarsmine@mst.edu

EEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANEURAL NETWORKS, VOL. 6, NO. 4, m Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1995 949

Using Taguchi’ s Method of Experimental Design
to Control Errors in Layered Perceptrons

Gerald E. Peterson, Daniel C. St. Clair, Stephen R. Aylward, and William E. Bond zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract-A significant problem in the design and construction

of an artificial neural network for function approximation is
limiting the magnitude and the variance of errors when the
network is used in the field. Network errors can occur when the
training data does not faithfully represent the required function
due to noise or low sampling rates, when the network’s flexibility
does not match the variability of the data, or when the input data
to the resultant network is noisy. This paper reports on several
experiments whose purpose was to rank the relative significance
of these error sources and thereby find neural network design
principles for limiting the magnitude and variance of network
errors.

I. INTRODUCTION

AGUCHI’ S method of experimental design is widely T used in industry for the purpose of finding those factors

in a manufacturing process which are most important in
achieving useful goals. Several factors which are related to

the goals and are under the user’s control are selected. These
factors are varied over two or more levels in a systematic

way and the results analyzed. The analysis reveals which of

the factors are most effective in reaching the goals. Control

over achieving the goals will be best obtained by changes in

these primary factors. This paper applies these methods to the

control of errors in neural networks.

For neural networks, one useful goal is to decrease errors

in the final fielded network and another is to decrease the

variability of those errors. Factors related to these goals that

may be under the network builder’s control include the noise in

the training data, the density of the training data, the network

architecture, the time at which training is stopped, and the

noise in the testing data. The result of a Taguchi analysis

can help provide answers to the following critical design and

construction issues.

What is the proper density for training samples in the
input space?

When is the best time to stop training to avoid overfitting?
Which is the best architecture to use? Is it better to use

a large architecture and stop training optimally or to use

Manuscript received March 15, 1993; revised July 23, 1993 and May 24,
1994.

D. St. Clair is with the University of Missouri-Rolla, St. Louis, MO 63146
USA.

G. Peterson and W. Bond are with McDonnell Douglas Corporation, St.
Louis, MO 63146 USA.

S. Aylward is with the Department of Computer Science, University of
North Carolina at Chapel Hill, on educational leave from McDonnell Douglas
Comoration.

an optimum architecture, which probably will not overfit

the data, but may require more time to train?
If noise is present in the training data, is it best to reduce

the amount of noise or gather additional data?

What is the effect of noise in the testing data on the

performance of the network?

This research was undertaken because answers to the above

questions would be useful for the application of neural net-

works to engineering problems, but unavailable, except in

bits and pieces, in the literature. We believe this is the first

systematic experimental investigation into the causes of errors

in neural networks.

Intuitively, the manner in which the above factors could

help control network errors is as follows. Decreasing training

noise decreases the opportunity for fitting errors in the training

data. Increasing training data density increases the amount of
flexibility necessary to approximate the noise. An optimum

architecture would have exactly that degree of flexibility

required to fit the function, but not the noise. Since overfitting

occurs in the later stages of training, it is possible to exert some

control over it by stopping training when overfitting begins.

From the results of the Taguchi experiments, several con-

clusions were drawn. They are discussed in detail in Section

VI. These conclusions should be considered somewhat ten-

tative because they are based on experiments with only two

functions. We believe, however, these conclusions are correct

and will withstand further scrutiny. The primary conclusions

are the following:

1) For the values of training data noise and data density

and for the two architectures which were used, reducing

the size of training data noise had more effect on the
size and variability of errors than changes in any of the

other factors.
2) Training time is significantly reduced for network archi-

tectures having two hidden layers when compared with

networks having one hidden layer if both networks have

a similar number of weights. In general, networks with

two hidden layers more closely approximate training

samples than those with one hidden layer. Furthermore,

if training can be stopped before overfitting starts, then

architectures with two hidden layers limit the level and

variability of errors better than those with one hidden

layer.

3) If error is plotted versus the number of training iter-

ations, then overfitting frequently starts at the bottom

of a steep drop in the training error. The possibility
I iEE Log Number 9409400. of overfitting decreases with increasing density of the

1045-9227/95$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1995 EEE

950 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAON NEURAL NETWORKS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 6, NO. 4, JULY 1995

training data, increases with the number of hidden layers

in the architecture, and increases with increasing training

data noise.

4) Increasing training data density will decrease testing

error.

Two other observations were made as the research pro-

gressed. The first is that a wide variety of training and testing
behaviors were observed. For example, cases were found in

which the testing error was below the training error for the

entire training period. In other cases, no error reduction seemed

possible and both error curves were flat. In most cases, even for

very large networks, it was not possible to bring the training

error to zero-it flattened out at some positive error value.

The second observation is that in some cases, a significant

increase in the initial random values of the weights improved

convergence dramatically. From a situation in which no con-

vergence was occumng, an increase in the initial values of

the weights produced a situation in which convergence was

immediate and steep. This was unexpected since many authors

[ll], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[12], [15] suggest starting with small initial weights.

It is intended that this work lay a foundation for building

trust in the operation of neural networks, especially in critical

applications where the well-being of property or people is
at stake. Gaining better control over network errors can

contribute to this goal.

In the following sections, the type of neural network used

and the manner in which errors are measured are described

first. Then an overall description of the experiments is pre-

sented. This includes a description of the data, the network

architectures, and the experimental method. The two experi-

ments are described in detail, including several graphs which

illustrate the generalization behavior, and tables which rank

the factors that were effective in reducing errors and their

variances. Guidelines for error control which were inferred

from the work are presented in Section VI. Finally, some

conclusions about the approach and suggestions for further

research are given in Section VII.

11. NEURAL NETWORKS

In this section, notation is fixed and the error measures

which were used in the experiments are defined.

A data sample is a set of cases, each case being a pair con-

sisting of an input vector and the corresponding output vector.

The sample is drawn from a parent population of all possible

input-output pairs. For notation, use E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(xi, yi)}K1 for a
data sample. The components of xi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi are denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xi = (zil, . . . , Z ~ I) and yi = (yil, . . . , Y ~ M) where I is the
number of inputs and M is the number of outputs. The data

sample used to train a neural network is called the training

sample or the set of training cases.

A feedforward neural network with one hidden layer and

one output is given by the expression

the positive integer H is the number of hidden nodes, the

activation functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg and h are given, and the weights wk and

wkj are variables which are adjusted in a way such that f (~ i)
approximates yi for every training case (xi, yi). A so-called

sigmoidal function, such as s(x) = t a n h i s , is a common

choice for each of the activation functions.

The apparent error of a network is the error produced by

the training sample. The true error is the error on the parent

population. It is tempting to believe that the true error will be

close to the apparent error, but experience (see 1171) has shown

that the true error is often greater than the apparent error and
in common situations the true error can be very significantly

greater than the apparent error.

The true error may be estimated (see [17]) by using a

separate sample of cases for testing, by using resampling

techniques such as cross validation or by algebraic estimates

such as the final prediction error of Akaike [11. Four-fold cross

validation is used in the experiments described here. That is,

the data sample [= {(xi, y i))E l is partitioned into four equal

parts El, 52, S 3 , [4 and the network is trained four times. During

the 4th training, is used for

training. The final error is the average of the errors during the

four trials. The error measure used in this report is the average

root mean squared error, which is defined as

is set aside for testing and [-

. K

Even if the average value of the true error of the network

is of an acceptable size, the network may be unusable if the

magnitude of the error varies too much. The measure of error

variability used here is the variance of the ARMSE over the

last half (see Section 111-D)) of the training iterations. If T is
the number of training iterations, then this variance is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m

rJ2 = - 2 (ARMSE, -m)2
T
2 i=T/2+1
- _

where ARMSE = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 c:=T,2+1 ARMSE;. In most cases,

T is a multiple of iY2

111. DESCRIPTION OF EXPERIMENTS

The experiments were designed to investigate how to deter-

mine the proper density of training samples, when to stop

training to reduce overfitting, the best architecture to use,
and the effect of noise in the training and testing data. The

objective of these experiments was to evaluate theory and

practice to produce a set of guidelines which would be useful

to practitioners.

Backpropagation neural networks are usually used in one

of two situations: to estimate the values of a function or to

perform classification tasks. The experiments performed in

this research focused on the use of back propagation neural

networks to estimate function values. There are a significant

number of engineering applications related to this capability.

- .

PETERSON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: USING TAGUCHI’S METHOD OF EXPERIMENTAL DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA95 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.2

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- -0.2

-0.4

-0.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0.8

1

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 1.

I I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0.5 1 1.5 2 2.5 3

x

Graph of F1.

A. Functions

single variable defined by

Two functions were used. The first was a function of a

F l (z) = 4.26(eCx - 4eC2” + 3eC3”), 2 E [O, 31

and shown in the graph of Fig. 1 . This function was chosen

because it has been used as an example to test overfitting

and underfitting of spline curves [16] and because the relative

simplicity of its graph provided an easy way to observe the

effects of the various evaluation criteria.

The second was a function of three variables defined by

F2(21,22,23) = z1ez2 C O S (2 3) ; 2 1 , 2 2 E [-1,1]:

2 3 E [-3,3].

This function models a more complex domain than the first

function due to increases in both nonlinearity and dimension-

ality. The function F2 is a shortened form of the function

4

used in modeling damped vibrations such as those found in

aircraft components. The shortened form, F2, was used to

facilitate interpretation of experimental results and to reduce

the size of the training sets required for the experiments.’

Fig. 2 shows graphs of the functions formed from F2 by

setting a) 2 1 to 1 or b) 2 2 to 1 and illustrates the nonlinearity

involved.

B. Experimental Data

Two factors were considered when generating experimental

data for each of the functions. The first was the density of the

data and the second was the amount of noise in the data.

Data density is associated with the question of how much

data is necessary to train a BP network. Two classes of data

density were defined. The first class, DQ1, was chosen to

represent data sets containing “relatively few” data points. The

second class, DQ2, was chosen to represent “relatively many”

data points. Table I shows the number of data points in each

set for each function. The number of points in each class was

chosen by looking at one or more graphs of the functions and

trying to select point densities which were conservative or

excessive. This was an iterative process. Points were selected

’ Generating data for a function defined on n-space requires points to be
generated for an n-dimensional grid. This necessitates extremely large sets of
training data to adequately model the domain.

3

Fig. 2. Graph of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2.

TABLE I

and experiments performed to evaluate the effects. Points were

chosen at equally spaced intervals along the respective axes.

To determine the effect of noise on network robustness,

various levels of noise were added to the training sample.

The approach used was to generate data using the following

952 EEE TRANSACTIONS ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, JULY 1995

Noise Class

TR0,TEO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo2 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF1* o2 for F2'

0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I TR1,TEl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0.4 I 0.1 I

I Architecture I F1' F2'

A0
A1

modified functions

1-30-1 1- 120- 1

1-10-5- 1 1-30- 15- 1

where n(O, c') denotes a normal random variable with mean

0 and variance 02. Similar amounts of noise were added to

the testing sample. Table I1 shows the values of cr2 used

in the experiments. Again, these values were determined by

experimenting with various values and observing parts of the

graph of each function.

C. Network Architectures

Two basic types of network architectures were considered.

The first, denoted as AO, will represent a network configuration
of the form I - H - 0 where I is the number of nodes in the

input layer, H the number of nodes in the single hidden layer,

and 0 the number of output nodes. The second architecture,

denoted as A l , represents a network configuration of the

form I -H l -H2-0 with two hidden layers of H1 and H 2
nodes, respectively. The specific network architectures for

each function are given in Table 111.

Theoretical results suggest that any continuous function can

be approximated to an arbitrary degree of accuracy using
a single hidden layer neural network [lo]. This work and

the work of other authors [4] suggests that two-hidden-layer

networks can often provide solutions with fewer hidden nodes

and faster training times. The present paper, however, goes on

to evaluate the robustness of each basic network architecture in

the presence of noise. Hence, both basic types of architectures

were included in these experiments. In the tables of Sections

IV and V, a network with two hidden layers is called a pliable

architecture, whereas one with one hidden layer is called a

stiff architecture.

D. Experimental Method

The Taguchi Method of Experimental Design: To provide
scientific discipline to our experimental approach, Taguchi's

method of experimental design [13] was used. This method

assesses which of several varying factors have the most effect

on a desired outcome. Since the goal of this research was

to decide which of several factors was most effective in

reducing neural network errors and their variances, it seemed

appropriate to use the Taguchi approach. In this section the

Taguchi method is briefly described.

Suppose an experimental outcome zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 is a function of several

variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1, . . . , un whose values can be controlled. Write

'U = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (u1, . . . , un). The controlled variables u1,. . . , un are

called factors. The goal is to find those factors which, when

changed, will have the most beneficial effect on U. This

can be done by varying each factor independently of the

others and recording the corresponding change in 71 or by

varying the factors simultaneously in a disciplined way to

also determine if the change in II by a particular factor is

influenced by the values of the other factors. The Taguchi

methods are disciplined ways of varying two or more factors

simultaneously.

In one of the simplest of the Taguchi methods, the indi-

vidual factors are varied between two values each. In a full

experimental design, all possible combinations of the values

of the factors must be tried. In a fractional design, a subset of
the possible value combinations is used.

To conduct the experiments required by a full design using
three factors, Table IV is useful. The factors are denoted by

X , Y and 2, each with a Levl and a Lev2 value. There

are eight trials of the experiment, each using the Levl, Lev2

combination depicted by the white boxes in the X , Y, and Z
columns of the row containing the trial number. For example,

in Trial 5, the value of X is Lev2, Y is Levl, and Z is

Levl. The value of the experiment for each trial is recorded

in the Value column and copied to each of the white boxes

along the row for the trial. Totals and averages are taken of
white boxes in each column. The values in the Effect row

are found by subtracting the average outcome for Levl values

from the average outcome for Lev2 values in the X , Y, and 2
columns and analogously in the other columns. This provides
a numerical value for the average effect on the outcome of

moving a factor from its Levl value to its Lev2 value. The

columns labeled X Y , etc. are used for measuring interaction

effects. For example if the number in the Effect row of the

X Y column is large in absolute value, when compared to

the Effects in the X , Y, and Z columns, then X and Y may

interact in a beneficial or detrimental way. In this case, further

analysis should be done to decide the best settings for X and

Y (see [13]).

If additional factors are to be considered and the number

of experiments kept at eight, other designs may be chosen.

For example if there are four factors at two levels each,

then the design of Table IV may be modified by replacing

the X Y Z column with the fourth factor, say W . The eight

trials of the table are used with W having the value of the

column of last white box in the row of the trial. This is

now a fractional design with only eight of the possible 16
experiments being used. The drawback in using this fractional

design is that the interaction column headed X Y becomes a

column representing the interaction effects between X and Y
and also the interaction effects between 2 and W . Similarly

the columns headed X Z and Y Z also include the interactions

YW and X W , respectively. If the numbers in the Effect row

of these columns are small compared to the other numbers,

however, then all these interaction effects are small.

PETERSON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: USING TAGUCHI’S METHOD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF EXPERIMENTAL DESIGN

TABLE IV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I I

4verag

Effect

953

I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I

Description of Experiment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI
X Y Z XY xz YZ XYZ

I

The Training Process: Backpropagation [151 was used for

training with weights being adjusted after each presentation

of an input vector. This is called iterative training as opposed

to epoch training in which weights are adjusted only after a

complete pass through the training sample.

A target value for the ARMSE was set. If this value was

achieved at iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, then training would continue for

another L iterations. A maximum number of iterations was

also set which would override the other stopping criterion.

accurately
calculate the true error and its variance, four-fold cross

validation, as described previously in Section 11, was used.

Test results were then averaged over the four runs.

The ARMSE training and testing errors were calculated after

every 10 epochs. At the end of each 10 epochs of training, the

weights were frozen and the training and testing samples were

run through the network. The ARMSE was calculated using

the formula given in Section 11. The graphs of the training and

testing errors which are shown later were made from these
values.

Error variances were calculated from the ARMSE errors
usually over the last half of the training iterations using the

formula which is presented in Section 11. Normally the errors

were no longer decreasing or increasing significantly during

the last half of training, so the variance would measure the

variability in the errors during the later stages of training, and

would approximate the variability present in a fielded network.

Determination of Over-tting: Overfitting occurs when the

testing error rises as the training error falls. This indicates that

noise in the training sample, rather than the underlying func-

tion, is being fit by the network. Obviously, when overfitting

occurs, additional training is detrimental rather than beneficial.

Training should stop at that iteration when overfitting begins,

assuming that this iteration can be determined. Identification

of overfitting was made by plotting both training and testing

ARMSE on a single graph. As expected, no overfitting was

observed when there was no noise in the training data.

Calculation of Errors and their Variances: To

I V . F1: A FUNCTION OF ONE VARIABLE

A. Experimental Results

The single variable function

Fl*(x) = 4.26(e-”-4e-2x+3e-3x)+n(0,02), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E [O,3]

was studied first. Taguchi tables were constructed to evaluate

the effects the different experimental factors had on ARMSE

error and its standard deviation. Averages over the four cross

validation runs were calculated for both training and testing

errors. The Taguchi table for average ARMSE testing error is

shown as Table V.

Columns in the table correspond to various combinations

of experimental parameters. The columns labeled DQ-TR,TE-

A, etc. measure the amount of interdependence between the
experimental factors, with two possible interdependencies con-

founded (see [13]) into each column.

The total ARMSE value for each experimental parameter is

shown in the row labeled “Total.” Experiment numbers marked

with * denote experiments which were terminated when the

maximum number of iterations was reached, as opposed to

reaching the target training ARMSE.

The row labeled “Effect” can be used to evaluate the results

of the experiments. For example, Table V indicates that for

the test ARMSE averaged over the four runs of four-fold

cross validation, the testing noise level is, by far, the most

influential factor since the value of Effect is 0.268 which

is more than double the value of any other value of Effect.
Therefore, testing data noise is deemed to be a major factor

influencing the magnitude of testing ARMSE.

Further evaluation of the Effect values ranks the influences

of the experimental factors in the following order: TE, TR,

A, and DQ. These values indicate that noise in testing data

contributes most to high testing ARMSE values, noise in

training data is the next largest contributor, architecture the

next, and the amount of data contributes the least. Analysis of

954 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Trial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Value

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, NO. 4. JULY 1995

TABLE V

Data Quantity Training Noise Testing Noise tK-TR.TE-A DQ-TE,TR-A TR-TE,DQ-A Architecture

DQ1 I DQ2 TRO I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRl TEO I TE1 I A0 A1

I ARMSE (Test) Average

Low Tcst Mean

Low Testing Noise 99

Low Training Noise 95

Low Train Mean Low Train Std zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADev

Low Training Noise 99 High Data Quantity
High Data Quantity 95 High Testing Noise 95 Stiff Architecture

Pliable ArChllecNc 90

Low Test Std Dev

Low Training Noise 99

TABLE VI

variance techniques ([14, Chapter 31 or [13, Chapter 81) using

the F-test reveal that testing noise is statistically significant at

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA99% level and training noise is significant at the 95% level.

Data quantity and architecture are statistically insignificant.

The conclusion is that for the settings of the factors which

were used, decreasing testing data noise and, less significantly,

decreasing training data noise, will be effective in decreasing

the testing error; whereas changing the architecture or the data

quantity will have little effect. The sign of the Effect values,

however, indicate that using a single-hidden-layer architecture

or a large data quantity probably would decrease testing errors

some.

Table VI summarizes both the training and testing ARMSE

errors and their standard deviations for all experiments per-

formed on function PI*. Each column ranks the factors that

were found effective in obtaining the goal at the top of that

column. For each column, eight experiments were run and

a Taguchi table constructed to obtain the results listed. For

example, Table V was used to obtain the first column.

B. Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Results

Effect of Noise in Training: Table VI1 shows the average

ARMSE values for each of the possible combinations of
traidtest noise from Table V. For example, the value in the

TRO, TEO row of Table VI1 is the average of the values for

Trials 1 and 5 in Table V. Evaluation of the tests confirm what

one suspects about noise. Noise-free data produced the best

results while noise in both training and testing data produced

the worst results. In the presence of testing noise, it appears

that a slightly lower average ARMSE is obtained with this

function by training the model with noise-free data.

1

0.5

0 -
U

3 -0.5
G:

-1.5

2

TABLE VI1

0,0155
0.1741
0.3548
0.3711

- - - - -F1 -Out -F1'

1 I I I I I
L -I

, 0 6 0 8
0 2 0 4

x

Fig. 3.
F1* with variance of 0.4.

Plots of F1 vs Out vs F1* generated by a network trained from

It is important to note that for these experiments, the noise

in the training data was quite severe. In fact, the noise in the

training data essentially dominated the samples and changed

the problem being modeled. Fig. 3 illustrates this concept.

Note the graph of the original function, F1, in comparison

to that of F1* with g2 = 0.4. Noise has made F1* a very

different function than Fl! The effect of the trained neural

network is to smooth out the results of F1*. This new function,

however, is still very different than the original function being

modeled.

While an analytical expression for the function of interest is

usually unknown, the graphing approach provides a valuable

technique for estimating responses of a trained neural network

for unseen test data. The approach is to produce a graph

PETERSON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: USING TAGUCHI'S METHOD OF EXPERIMENTAL DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I I I I
I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-- --

_ _ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
955

_-

0.6

0.5

0.4

% 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.3

<
0.2

0.1

0

I -ARMSE(test) - - - - - ARMSE(train) I
0.5

0.45

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w
3 0.35
d

Iteration

Fig. 4. Results of a DQl/TRO/TEl/Al test.

showing the training data and the network output as shown

in Fig. 3. If the network does a poor job of fitting the data, as

is the case in Fig. 3, it is highly likely that it will not perform

well on unseen data. For multivariate functions, sections of

the graph in each plane could be reviewed [3].
Effect of Noise in Testing: Similar statements can be made

about noise in the testing data. The more noise in the testing

data, the less likely the network represents the data being

tested. Again, plots of training and testing data along with

neural network output provide an indicator of the type of

performance that can be expected from the network. Fig. 4

shows the results of one of the DQl/TRO/TEl/Al tests.2 The

network learns the training data reasonably well. The noise
in the test data causes it to appear to be from a different

model than that represented by the training data. The test error

remains consistently poor through the training cycle.

Effect of Data Density: Evaluation of Table V indicates

that DQ2 data density produces smaller training and testing

ARMSE's than DQ1. In addition, the DQ2 values have a

smaller standard deviation. This result suggests that increasing

training data density decreases testing error.

Effect of Architecture: For this function, the differences in

ARMSE averages and standard deviations between the A0 and

A1 architectures is very small for both testing and training

data. The single hidden-layer architecture, AO, produced a

slightly smaller ARMSE average and standard deviation on

test data. This is not surprising in view of the simple domain

of the function.

The amount of training required for each of the architectures

was approximately the same. Four of the eight test sets did not

converge. Half of them, however, were architecture A0 while

the other half were Al .3
Overfitting: Fig. 5 illustrates a situation in which overfitting

occurs. The top graph shows training ARMSE while the

bottom shows testing ARMSE. Training ARh4SE suddenly

increases at about 2.6E6 iterations through the training data.

This is possible due to the way in which network training

2The quadruple represents the combination of experimental factors arranged
in the form: Data quantityllevel of training noiseflevel of testing noisehetwork
architecture.

3Recall that this lack of training convergence was caused by the excessive
noise in the training data.

0.3

0.25

0.2

I -ARMSE(test) I
0 5 I I I I I I I I I

I I I I I I -I

o b I I I I I I I I I
b 5 0 i 0 5 l . 0 i 0 6 l .5:06 2.0;06 2.5106 3.010' 3.5106 4.0106

I

Iteration

(b)

Fig. 5. Overfitting in a DQl/TRl/TEO/Al test.

was implemented. After this point, it again begins to decline.

Throughout this cycle, the testing ARMSE is steadily increas-

ing. Hence, the network is doing a good job learning the

training data even though it is not the correct function.

The differences between noise and overfitting are not always

distinct. For example, the phenomenon exhibited in Fig. 4 is

not overfitting. The poor test results are caused by noise in

the testing data, not the training data. One marked difference
between the results is that, in overfitting, testing error contin-

ues to increase as training continues. In cases like that shown

in Fig. 4, the testing error becomes more and more constant

as training continues.

C. An Experiment with Long Training Time

It was decided to train the network which approximates

the no-noise version of Fl for a very long time to discover

changes which may not be observed in the shorter runs.

The result is shown in Fig. 6. The network trained for over

13 million iterations, many times the usual run time. The

following observations are evident from the graph.

The training error, although initially above the testing

error, eventually drops below, as expected. Generalizing,

for a function with no or little noise, if testing error is

on average better than training error, then a network may

not have trained long enough.

956 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAON NEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, JULY 1995

Low Test Mean Low Train Mean Low Test Std Dev

Low Training Noise 99

High Data Quantity Pliable Architecture

Low Training Noise 95 Low Training Noise 95

Low Train Std Dev

Low Training Noise 99

High Data Quantity 95

Low Test Mean

Low Training Noise 95

High Data Quantity 90

Low Train Mean

Low Training Noise 99

Pliable Architecture

Low Test Std Dev

Low Training Noise 99

Low Train Std Dev

Low Training Noise 95

High Data Quantity 90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.06 - w

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.04 -:

I
I I

network under the conditions of a more nonlinear mapping and

a higher dimensional input space. Additionally, this function
provided a transition of this work to a “real-world’ task. As

mentioned in Section 111-A, this function is used in modeling

In an effort to more completely understand, visualize, and

control the data generated by this function, it was slightly

reduced and converted to the form

-- .. j .. 1..,--

... i__.__ _ damped vibrations in aircraft components.

.. ! i <-

.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi__

0 i I

F2*(x1 ,22 ,z3) = 51ez2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcos(x3) + n(0,cr2),

I I 0.1 I ! 1

0.08 -- 1.. --

0.06 _ ___.. j .. i..
i 2

2 0.04 -1 1. ... I-
.. . ~ _ _ 0.02 -

- ’ ” - - ” ’:
0 I I I I

The following tables summarize the results of the Taguchi

experiments on F2*. For this function, several Taguchi tables

were generated.
Table VI11 was generated from four full three-factor Taguchi

tables which were each similar to the one shown in Table V
for F1*. For Table VIII, all combinations of data quantity,

training noise, and network architecture were evaluated over

the last 250 000 iterations of the training process. So, if training

to a 0.02 ARMSE error level required 1 million iterations,

the training would be continued until 2 million iterations

PETERSON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: USING TAGUCHI'S METHOD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF EXPERIMENTAL. DESIGN

Low Test Mean

Low Testing Noise 95

Low Training Noise 95

High Data Quantity 90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
951

Low Train Mean

Low Training Noise 99

Low Test Std Dev Low Train Std Dev zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Low Training Noise 95 Low Training Noise 99

Pliable Architecture High Testing Noise High Data Quantity

Pliable Architecture

Low Test Mean

Low Testing Noise 95

Low Training Noise 95

High Data Quantity 90

Low Train Mean

Low Training Noise 99

Pliable Architecture 90

Low Test Std Dev

Low Training Noise 99

High Testing Noise 95

Low Train Std Dev

Low Training Noise 99

High Data Quantity 95

-ARMSE(test) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - - - - ARMSE(uain)

.......... I f j $: ...;
: t . . : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' Y . '
: -1,. :

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 , ---I. L : : ,I,", ;
0 1.0 10 2.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 0 6 3.0 :06 4.0 :06 5.0 : 0 6 6.0 : O h

Iteration

Fig. 7. Training noise variance = 0.2; 125 data points.

and a network with high flexibility resulted in overfitting.

Additionally, training noise was the most significant factor

in both the final testing error and its variance.

Another significant lesson learned from this data set focuses

on the magnitude of the noise. Consider Fig. 7. In this run, the

magnitude of the noise which was added to the training data

was equivalent to half the magnitude of noise added to the data

in Experiment 1. There is no noise in the testing data. Notice

how the testing error significantly increases as the training

error significantly decreases.

Fig. 8 represents the training and testing performance when

the amount of data used for training was increased from 125

data points to 512 data points. Testing performance is now

significantly better since the minimum testing error differs

from the final testing error by -0.17, versus a difference of

-0.30 for the testing graph of Fig. 7. The training performance

has diminished, however. Overfitting is not as significant. The

increase in the number of data points provided additional

information about the underlying function and allowed the

network to compensate for the noise.

Now consider Fig. 9. Here the noise is an order of mag-

nitude less (a2 = 0.1) and 512 training cases were used.

The testing performance has again improved while the training

performance has declined. Overfitting is still present, but its

effect has decreased to the point where the minimum testing

error and the final testing error only differ by -0.04.

-ARMSE(test) - -. - - ARMSE(train) I

Iteration

Fig. 8. Training noise variance = 0.2; 512 data points.

I -ARMSE(test) - - - - - ARMSE(uam) I

0 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w 0.12

2 0.08

0.04

0 I I I I I I I

b 5 0 : 0 5 10:06 ' 20 :06 '25:06 30:06 3 5 : 0 6
Ireratlan

Fig. 9. Traimng noise vanance = 0.1; 512 data points.

It was concluded that the effect of noise in Fig. 7 was too

extreme and so severe that the underlying function was no

longer a factor in the training data. Testing on a no-noise

case produced results which were uncorrelated with training

results, as if one function was being used for training and a

completely different function was being used for testing. Fig. 8
shows how additional training data offered some compensation

for the additional noise, but "acceptable" performance in the

presence of overfitting was finally achieved by decreasing the

noise level and including additional training points as shown

in Fig. 9. A tentative conclusion based on the necessity of

958 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
reducing the noise level when going from F1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2, is that
the amount of noise that can be tolerated is inversely related

to the variability of the function being approximated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Effect of Noise in the Testing Data: These results are sim-

ilar to those achieved for the first function as would be

expected, testing noise is positively correlated with the av-

erage testing error, however higher testing noise was slightly

negatively correlated with the testing error’s variance. Given

careful consideration and with the knowledge of hindsight, the

common sense nature of these results becomes apparent.

Effect of Data Density: Again, the results are similar to

those for F1*. Increased data density offered some compensa-

tion for the existence of noise in the training set by producing

a lower mean testing error. This fact is key in understanding

the cause of overfitting and how it can be reduced.

Effect of Architecture: For this data set, the effect of net-

work architecture was mainly significant in producing a low

training mean. The Taguchi tables, however, do not accurately

represent the relationship between network architecture and

overfitting, since overfitting was not one of the experimental

factors.

Overfitting: It is the general conclusion of the F2* exper-

iments that several factors must exist for overfitting to occur.

In turn each of these factors offers a method of reducing

overfitting.

First, noise must be present in the training data for over-

fitting to occur. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs stated earlier, overfitting results from

learning the nuances of each sample pair which distances

it from the underlying function being approximated. If the

sample pairs contain no such abnormalities (i.e., no noise),

such effects will not occur. In no case and with no amount

of extended training did the neural network begin to produce

wild interpolations between the noiseless training points. The

networks consistently produced approximations which were no

more nonlinear than the training data.

Second, for overfitting to occur the network architecture

must be overly pliable for the function being learned. As with

any polynomial interpolation technique, the degree of the poly-

nomial for which the coefficients are being sought, determines
the smoothness/flexibility of the resulting approximation. For

neural networks, the number of weights is not the determining

factor in the flexibility of a network. The arrangement of the

weights, the architecture of the network, is the deciding factor.

Drastically differing results were achieved between one and

two hidden layer networks even though the number of weights

was equivalent in both cases. The two-hidden-layer network

was consistently quicker in fitting the training data. In the

presence of noise, this implies quicker overfitting.

Third, training data quantity must be low for overfitting to

occur. Experiments on this function demonstrated a consistent

tie between data quantity and noise levels. As the tables show,

increasing the data sampling rate decreased the mean testing

noise level. When observing only those cases where noise was

present in the training data and the more pliable architecture
was used, the effects of data quantity become even more

obvious.

Overfitting can be monitored by periodically evaluating a

network using testing data during the training process. If

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1995

1

0.5

0

;
-1.5

2

Fig. 10.

I I I I
I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0 2 0 4 0 6 0 8 1

x

Wo-hidden-layer approximation for F 1 * with significant noise and
sparse training data.

overfitting occurs, these results provide insight into possible
causes and suggest several possible ways to reduce the effect

of overfitting. First, reduce training noise if possible. Second,

reduce the network architecture. Do not simply reduce the

number of weights, but consider a simpler design. Third,

increase the number of training samples. Taken together, as

shown in Figs. 7-9, the improvement in performance can be

phenomenal.

VI. GUIDELINES FOR THE DESIGN AND

CONSTRUCTION OF NEURAL NETWORKS

Some guidelines for the design and construction of neu-

ral networks which were suggested by the experiments are

summarized in the following paragraphs.

Use a training sample that is as free of noise as possible.

Some researchers have suggested [9] that better general-
ization will occur if noise is added to the training data.

These experiments, however, suggest just the opposite:

the larger the amount of noise in the training data, the

larger the testing error and its variance.

Use dense training data. To decrease errors, dense data

is better than sparse data. Denser data means more data,

however, and a penalty is paid in training time.

For best error control, use networks with two hidden lay-

ers. This research focused on network architectures with
a single hidden layer or with two hidden layers. Both

architectures had nearly the same number of weights.

For example, a network with one hidden layer of 120

nodes and another network with two hidden layers of 30

and 15 nodes, respectively, were used in the experiments

with F2. The primary question was which of these is

better for error control. We found that the network with

two hidden layers was invariably more flexible than the

one with one hidden layer. In general this allowed the

two-hidden layer networks to tit the function closer and

to give smaller errors.

For best smoothness of the approximating function, use

networks with one hidden layer or use a dense training

sample. Smoothness of the approximating function could
be sacrificed when two layers were used. For example,

the two-hidden-layer approximating function for F1* is

shown in Fig. 10 and the one-hidden-layer approximat-

ing function for the same function is shown in Fig. 11.

...

PETERSON er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: USING TAGUCHI’S METHOD OF EXPERIMENTAL DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA959 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

os zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 5

d
1

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5

2 , I I I 1

0 0.2 0.4 0.6 0.8 1
X

Fig. 11.
and sparse training data.

One-hidden-layer approximation for F1* with significant noise

tnr’ v
2 , I I

I I
I I I

0 0.2 0.4 0.6 0.8 1
x

Fig. 12.
and dense training data.

Two-hidden-layer approximation for F1* with significant noise

The two-hidden-layer approximation has more abrupt

changes and much steeper slopes than the one-hidden-

layer approximation.
Examination of graphs indicated that when the density

of points in the training sample for the two-hidden-layer
approximation was significantly increased, the approxi-

mation function became smoother as shown in Fig. 12.

Because of the increased number of data points, the

network was not flexible enough to move sharply up

and down fitting the errors, and, therefore, the best fit

was a smooth interpolation through roughly the center

of the noise.

If convergence is not occumng, start over with different,

perhaps much larger, random initial weights. The initial

choice of weights is a significant factor in the speed

of training and, in some cases, whether satisfactory

convergence takes place at all. Consider Figs. 13 and

14. In Fig. 13, initial weights between -.l and +.l
were chosen. Note that decreases in the training error

did not occur at all. When weights were initialized ran-

domly between -1.0 and +1.0, as in Fig. 14, however,

convergence was immediate and steep.

Stop training when the error on the testing data begins

to rise. Overfitting occurred when there was significant

noise in the training data, especially if the data set

was not very dense. The best results will be obtained

if training is stopped just at the point that overfitting

begins. To determine this point, it is best to divide the

data sample into training and testing portions, perhaps

using n-fold cross validation. Then the testing error can

be watched and training stopped when it begins to rise.

-ARMSE(iesi) - -. . . ARMSE(Iram) I
0 28

0 24

0 2 !;:Ii I I I I

OM

0

0 5 0 1 0 5 1 0 1 0 6 1 5 1 0 6 2 0 1 0 6 2 5 1 0 6 3 0 1 0 6 3 5 1 0 6 4 0 1 0 6

Itcrahon

Fig. 13 F2 training and testing errors with small initial weights

0.28

0.24

0.2

3 0.16
5
2 0.12

O.OR

0.04

0

-ARMSE(test) ARMSE(train) I
I I I I I I I I I
L I 4

, .. ,. . .

6

Iteration

Fig. 14. F2 training and testing errors with large initial weights.

If there is no testing data, stop training at the bottom of

the initial steep drop. If it is not feasible to have both

testing and training data, then it may still be possible

to estimate when overfitting begins. If there is a steep

drop in the training error, then overfitting frequently

begins near where the error curve begins to level out.

Typical training and testing error curves which illustrate

this phenomenon are shown in Fig. 15.

To decrease the variance of the testing error, decrease

the noise in the training sample. The Taguchi tables

indicated that changing the architecture or even the

density of the training data had little effect on the

variance of the testing error. The only effective way
to decrease it, using the factors considered here, is to

decrease the noise in the training data. Unfortunately, it

may not be easy or even possible to control this noise.

VII. CONCLUSION

this section there is a brief description of some over-

all reactions to the approach taken, and mention of some

suggestions for further research.

There was an unexpected wide variation of behaviors in
the neural networks used in the experiments. For example,

the significant differences between networks with one and two
hidden layers was unexpected. It was unexpected to see as

much variability in network errors-for example, testing errors

960 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, JULY 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I- ARMSE(test) . - - - - ARMSE(trrun)

0.2

0.15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9
=? 0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.05

0

Iteration

Fig. 15.
the bottom of a steep drop in the training error.

F2 training and testing errors illustrating overfitting beginning near

sometimes below training errors. The profound difference

in convergence between networks initialized with small and

large weights was a surprise. In some cases, testing errors

[5] W. Finnoff, F. Hergert, and H. G. Zimmermann, “Extended regulariza-
tion methods for nonconvergent model selection,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvances in Neural
Information Processing V, C. L. Giles, S. J. Hanson, and J. D. Cowan,
Eds. San Mateo, CA: Morgan Kaufmann, pp. 228-235, 1993.

[6] Stuart Geman, Elie Bienenstock, and Rent Doursat, “Neural networks
and the bias/variance dilemma,’’ Neural Computation, pp. 1-58, 1992.

[7] Masafumi Hagiwara, “Novel backpropagation algorithm for reduction of
hidden units and acceleration of convergence using artificial selection,”
in Proc. Int. Joint Con$ Neural Networks, vol. I, 1990, pp. 625430.

[SI Babak Hassibi and David G. Stork, “Second order derivatives for
network pruning: Optimal brain surgeon,” Neural Inform. Processing
Syst., vol. 4, 1992.

[9] Lasse Holmstrom, “Using additive noise in backpropagation training,”
IEEE Trans. Neural Networks, vol. 3 , no. 1, pp. 24-38, Jan. 1992.

[IO] Kurt Homik, “Multilayer feedforward networks are universal approxi-
mators,” Neural Networks, vol. 2, pp. 359-366, 1989.

[1 I] Kevin Knight, “Connectionist ideas and algorithms,” Commun. ACM,
vol. 33, no. 11, pp. 59-74, Nov. 1990.

[12] Richard P. Lippmann, “An introduction to computing with neural nets,”
ZEEE ASSP Mag., pp. 4-22, Apr. 1987.

[13] Robert H. Lochner and Joseph E. Matar, Designing for Qualify, An
Introduction to the Best of Taguchi and Western Methods of Statistical
Experimental Design

[14] Phillip J. Ross, Taguchi Techniques for Quality Engineering, Loss Func-
tion, Orthogonal Experiments, Parameter and Tolerance Design. New

York: McGraw-Hill, 1988.
[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed

Milwaukee, WS: ASQC Quality Press, 1990.

~~

would begin to rise as if overfitting was occurring, but later

known about the capabilities and characteristics of neural trial ADDL Math.. 1990.

Processing: Explorations in the Microsrructures of Cognition, vol. 1.

Cambridge, MA: MIT Press, 1986.
again Thus, the since little is [16] Grace W&ba, Spline Models for Observational Data. Society Indus-

L L

networks, controlled experiments under varying circumstances [171 Sholom Weiss and Casimir Kulikowski, Computer Systems that Learn.
San Mateo, CA: Morgan Kaufmann, 1991.

must be run since the OutCOme Of a single experiment can be [i s] Andreas s. Weigand, David E. Rumelhart, and Bemardo A. Huberman,
misleading.

experiments was beneficial in pinpointing those features of

the design process that would be most helpful in controlling

network errors once the levels of the factors had been set.

Taguchi, however, does not help with the appropriate levels

to use for the factors. A more sophisticated type of experi-

mental design such as response surface methodology [2] may

“Backpropagation, weight-elimination and time series prediction,” in

Proc. 1990 Connectionist Models Summer School, 1990, pp. 105-1 16.

change rate prediction,” in Proc. Int. Joinr Con$ Neural Networks, vol.

I, 1991, pp. 837-841

The Taguchi method Of design for [191 -, “Generalization by weight-elimination applied to currency ex.

overcome this limitation.
Perhaps the most significant omission in this research is a

study of the value of optimal architectures in error control.

Methods for finding optimal architectures include adding a

term of the form XQ, where Q measures the complexity
of the network, to the ARMSE calculation [18], [19], and

pruning unnecessary weights from a trained network [8], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7] .
Intuitively, a network of optimum size will be just flexible

enough to learn the function, but not the errors, so overfitting

should not occur and generalization performance should be

improved. A Taguchi analysis could consider whether using

an optimum architecture is better than using a very flexible

architecture and stopping training when overfitting starts, a

question which was considered in [SI. Additional studies could

analyze the effect of weight decay, by varying between two

levels of X in the complexity term XQ.

REFERENCES

H. Akaike, “Statistical predictor identification,” Ann. Inst. Statist. Math.,
vol. 22, pp. 203-217, 1970.
G. E. P. Box and N. R. Draper, Empirical Model-Building and Response
Surjiaces. New York: Wiley, 1987.
John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul
A. Tukey, Graphical Methods for Data Analysis Pacific Grove, CA:
Wadsworth and BrooksKole, 1983.
Daniel L. Chester, “Why two hidden layers are better than one,” in Proc.
Int. Joint Conf Neural Networks, vol. 1, 1990, pp. 265-268.

Gerald E. Peterson received the B S , M A , and
Ph.D degrees in mathematics from the University
of Utah, Salt Lake City, in 1961, 1963, and 1965,
respectively.

He was an Associate Professor in the Depart-
ment of Mathematics and Computer Science at
the University of Missoun-St Louis from 1975
to 1983 From 1983 to 1986 he was Professor of
Computer Science at Southem Illinois University
at Edwardsville. In 1986 he joined the McDonnell
Douglas Corporation and is currently a Senior Pnn-

cipal Technical Specialist. His research interests include online identification
of aerodynamic coefficients using memory-based and neural techniques, and
techniques for improving the accuracy of denvatives of neural networks He
is the author of a two-volume IEEE tutorial, Object Orzented Computing

chine learning and neur

Daniel C. St. Clair received the B.S. degree in
mathematics from Culver-Stockton College, Canton,
MO, in 1965, the M.S. degree in mathematics from
the College of William and Mary, Williamsburg,
VA, in 1969, and the Ph.D. degree in mathematics
with emphasis in computer science from the Uni-
versity of Missouri-Rolla, St. Louis, in 1975.

He is Professor of Computer Science at the Uni-
versity of Missouri-Rolla’s Engineering Education
Center in St. Louis. His research interests include
the development of intelligent systems through ma-

al network algorithms.

PETERSON et al.: USING TAGUCHI'S METHOD OF EXPERIMENTAL DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA961 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Stephen R. Aylward received the B.S. degree in

computer science from Purdue University, West
Lafayette, IN, in 1988, and the M.S. degree in

computer science from the Georgia Institute of
Technology, Atlanta, in 1989.

He worked in the Neural Network Support Labo-
ratory at the McDonnell Douglas Corporation in St.
Louis from 1989 to 1993. He is currently a Ph.D.
student in the Department of Computer Science at
the University of North Carolina at Chapel Hill
as part of an educational leave of absence from

McDonnell Douglas. His research interests include image processing, seg-
mentation, and object recognition for medical imaging systems.

Mr. Aylward is President of the Tnangle Area Neural Network Society.

William E. Bond received the B S., M.Eng., and
Ph.D. degrees in structural engineenng from Rens-
selaer Polytechnic Institute, Troy, NY, in 1975,

1976, and 1980, respectively.
He has worked for McDonnell Douglas since

1979 and on artificial intelligence applications since
1986. He is a Senior Pllncipal Technical Specialist
in the New Aircraft and Missile Products division of

McDonnell Douglas Aerospace. His work focuses
on the development and application of techtuques
in machme learning and neural networks to aircraft

subsystems.

	Using Taguchi''s Method of Experimental Design to Control Errors in Layered Perceptrons
	Recommended Citation

	Using Taguchi''s method of experimental design to control errors in layered perceptrons

