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Using Taguchi’ s Method of Experimental Design 
to Control Errors in Layered Perceptrons 

Gerald E. Peterson, Daniel C. St. Clair, Stephen R. Aylward, and William E. Bond zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract-A significant problem in the design and construction 

of an artificial neural network for function approximation is 
limiting the magnitude and the variance of errors when the 
network is used in the field. Network errors can occur when the 
training data does not faithfully represent the required function 
due to noise or low sampling rates, when the network’s flexibility 
does not match the variability of the data, or when the input data 
to the resultant network is noisy. This paper reports on several 
experiments whose purpose was to rank the relative significance 
of these error sources and thereby find neural network design 
principles for limiting the magnitude and variance of network 
errors. 

I. INTRODUCTION 

AGUCHI’ S method of experimental design is widely T used in industry for the purpose of finding those factors 

in a manufacturing process which are most important in 
achieving useful goals. Several factors which are related to 

the goals and are under the user’s control are selected. These 
factors are varied over two or more levels in a systematic 

way and the results analyzed. The analysis reveals which of 

the factors are most effective in reaching the goals. Control 

over achieving the goals will be best obtained by changes in 

these primary factors. This paper applies these methods to the 

control of errors in neural networks. 

For neural networks, one useful goal is to decrease errors 

in the final fielded network and another is to decrease the 

variability of those errors. Factors related to these goals that 

may be under the network builder’s control include the noise in 

the training data, the density of the training data, the network 

architecture, the time at which training is stopped, and the 

noise in the testing data. The result of a Taguchi analysis 

can help provide answers to the following critical design and 

construction issues. 

What is the proper density for training samples in the 
input space? 

When is the best time to stop training to avoid overfitting? 
Which is the best architecture to use? Is it better to use 

a large architecture and stop training optimally or to use 
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an optimum architecture, which probably will not overfit 

the data, but may require more time to train? 
If noise is present in the training data, is it best to reduce 

the amount of noise or gather additional data? 

What is the effect of noise in the testing data on the 

performance of the network? 

This research was undertaken because answers to the above 

questions would be useful for the application of neural net- 

works to engineering problems, but unavailable, except in 

bits and pieces, in the literature. We believe this is the first 

systematic experimental investigation into the causes of errors 

in neural networks. 

Intuitively, the manner in which the above factors could 

help control network errors is as follows. Decreasing training 

noise decreases the opportunity for fitting errors in the training 

data. Increasing training data density increases the amount of 
flexibility necessary to approximate the noise. An optimum 

architecture would have exactly that degree of flexibility 

required to fit the function, but not the noise. Since overfitting 

occurs in the later stages of training, it is possible to exert some 

control over it by stopping training when overfitting begins. 

From the results of the Taguchi experiments, several con- 

clusions were drawn. They are discussed in detail in Section 

VI. These conclusions should be considered somewhat ten- 

tative because they are based on experiments with only two 

functions. We believe, however, these conclusions are correct 

and will withstand further scrutiny. The primary conclusions 

are the following: 

1) For the values of training data noise and data density 

and for the two architectures which were used, reducing 

the size of training data noise had more effect on the 
size and variability of errors than changes in any of the 

other factors. 
2) Training time is significantly reduced for network archi- 

tectures having two hidden layers when compared with 

networks having one hidden layer if both networks have 

a similar number of weights. In general, networks with 

two hidden layers more closely approximate training 

samples than those with one hidden layer. Furthermore, 

if training can be stopped before overfitting starts, then 

architectures with two hidden layers limit the level and 

variability of errors better than those with one hidden 

layer. 

3) If error is plotted versus the number of training iter- 

ations, then overfitting frequently starts at the bottom 

of a steep drop in the training error. The possibility 
I iEE Log Number 9409400. of overfitting decreases with increasing density of the 
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training data, increases with the number of hidden layers 

in the architecture, and increases with increasing training 

data noise. 

4) Increasing training data density will decrease testing 

error. 

Two other observations were made as the research pro- 

gressed. The first is that a wide variety of training and testing 
behaviors were observed. For example, cases were found in 

which the testing error was below the training error for the 

entire training period. In other cases, no error reduction seemed 

possible and both error curves were flat. In most cases, even for 

very large networks, it was not possible to bring the training 

error to zero-it flattened out at some positive error value. 

The second observation is that in some cases, a significant 

increase in the initial random values of the weights improved 

convergence dramatically. From a situation in which no con- 

vergence was occumng, an increase in the initial values of 

the weights produced a situation in which convergence was 

immediate and steep. This was unexpected since many authors 

[ll], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[12], [15] suggest starting with small initial weights. 

It is intended that this work lay a foundation for building 

trust in the operation of neural networks, especially in critical 

applications where the well-being of property or people is 
at stake. Gaining better control over network errors can 

contribute to this goal. 

In the following sections, the type of neural network used 

and the manner in which errors are measured are described 

first. Then an overall description of the experiments is pre- 

sented. This includes a description of the data, the network 

architectures, and the experimental method. The two experi- 

ments are described in detail, including several graphs which 

illustrate the generalization behavior, and tables which rank 

the factors that were effective in reducing errors and their 

variances. Guidelines for error control which were inferred 

from the work are presented in Section VI. Finally, some 

conclusions about the approach and suggestions for further 

research are given in Section VII. 

11. NEURAL NETWORKS 

In this section, notation is fixed and the error measures 

which were used in the experiments are defined. 

A data sample is a set of cases, each case being a pair con- 

sisting of an input vector and the corresponding output vector. 

The sample is drawn from a parent population of all possible 

input-output pairs. For notation, use E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(xi, yi)}K1 for a 
data sample. The components of xi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi are denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xi = (zil, . . . , Z ~ I )  and yi = (yil, . . . , Y ~ M )  where I is the 
number of inputs and M is the number of outputs. The data 

sample used to train a neural network is called the training 

sample or the set of training cases. 

A feedforward neural network with one hidden layer and 

one output is given by the expression 

the positive integer H is the number of hidden nodes, the 

activation functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg and h are given, and the weights wk and 

wkj are variables which are adjusted in a way such that f ( ~ i )  
approximates yi for every training case (xi, yi). A so-called 

sigmoidal function, such as s(x) = t a n h i s ,  is a common 

choice for each of the activation functions. 

The apparent error of a network is the error produced by 

the training sample. The true error is the error on the parent 

population. It is tempting to believe that the true error will be 

close to the apparent error, but experience (see 1171) has shown 

that the true error is often greater than the apparent error and 
in common situations the true error can be very significantly 

greater than the apparent error. 

The true error may be estimated (see [17]) by using a 

separate sample of cases for testing, by using resampling 

techniques such as cross validation or by algebraic estimates 

such as the final prediction error of Akaike [ 11. Four-fold cross 

validation is used in the experiments described here. That is, 

the data sample [ = {(xi, y i ) )E l  is partitioned into four equal 

parts El, 52,  S 3 ,  [4 and the network is trained four times. During 

the 4th training, is used for 

training. The final error is the average of the errors during the 

four trials. The error measure used in this report is the average 

root mean squared error, which is defined as 

is set aside for testing and [ - 

. K  

Even if the average value of the true error of the network 

is of an acceptable size, the network may be unusable if the 

magnitude of the error varies too much. The measure of error 

variability used here is the variance of the ARMSE over the 

last half (see Section 111-D)) of the training iterations. If T is 
the number of training iterations, then this variance is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

rJ2 = - 2 (ARMSE, -m)2 
T 
2 i=T/2+1 
- _  

where ARMSE = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 c:=T,2+1 ARMSE;. In most cases, 

T is a multiple of iY2 

111. DESCRIPTION OF EXPERIMENTS 

The experiments were designed to investigate how to deter- 

mine the proper density of training samples, when to stop 

training to reduce overfitting, the best architecture to use, 
and the effect of noise in the training and testing data. The 

objective of these experiments was to evaluate theory and 

practice to produce a set of guidelines which would be useful 

to practitioners. 

Backpropagation neural networks are usually used in one 

of two situations: to estimate the values of a function or to 

perform classification tasks. The experiments performed in 

this research focused on the use of back propagation neural 

networks to estimate function values. There are a significant 

number of engineering applications related to this capability. 

- . 
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A. Functions 

single variable defined by 

Two functions were used. The first was a function of a 

F l ( z )  = 4.26(eCx - 4eC2” + 3eC3”), 2 E [O, 31 

and shown in the graph of Fig. 1 .  This function was chosen 

because it has been used as an example to test overfitting 

and underfitting of spline curves [16] and because the relative 

simplicity of its graph provided an easy way to observe the 

effects of the various evaluation criteria. 

The second was a function of three variables defined by 

F2(21,22,23) = z1ez2 C O S ( 2 3 ) ;  2 1 , 2 2  E [-1,1]: 

2 3  E [-3,3]. 

This function models a more complex domain than the first 

function due to increases in both nonlinearity and dimension- 

ality. The function F2 is a shortened form of the function 

4 

used in modeling damped vibrations such as those found in 

aircraft components. The shortened form, F2, was used to 

facilitate interpretation of experimental results and to reduce 

the size of the training sets required for the experiments.’ 

Fig. 2 shows graphs of the functions formed from F2 by 

setting a) 2 1  to 1 or b) 2 2  to 1 and illustrates the nonlinearity 

involved. 

B. Experimental Data 

Two factors were considered when generating experimental 

data for each of the functions. The first was the density of the 

data and the second was the amount of noise in the data. 

Data density is associated with the question of how much 

data is necessary to train a BP network. Two classes of data 

density were defined. The first class, DQ1, was chosen to 

represent data sets containing “relatively few” data points. The 

second class, DQ2, was chosen to represent “relatively many” 

data points. Table I shows the number of data points in each 

set for each function. The number of points in each class was 

chosen by looking at one or more graphs of the functions and 

trying to select point densities which were conservative or 

excessive. This was an iterative process. Points were selected 

’ Generating data for a function defined on n-space requires points to be 
generated for an n-dimensional grid. This necessitates extremely large sets of 
training data to adequately model the domain. 

3 

Fig. 2. Graph of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2. 

TABLE I 

and experiments performed to evaluate the effects. Points were 

chosen at equally spaced intervals along the respective axes. 

To determine the effect of noise on network robustness, 

various levels of noise were added to the training sample. 

The approach used was to generate data using the following 
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Noise Class 

TR0,TEO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo2 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF1* o2 for F2' 

0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I TR1,TEl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0.4 I 0.1 I 

I Architecture I F1' F2' 

A0 
A1 

modified functions 

1-30-1 1- 120- 1 

1-10-5- 1 1-30- 15- 1 

where n(O, c') denotes a normal random variable with mean 

0 and variance 02. Similar amounts of noise were added to 

the testing sample. Table I1 shows the values of cr2 used 

in the experiments. Again, these values were determined by 

experimenting with various values and observing parts of the 

graph of each function. 

C. Network Architectures 

Two basic types of network architectures were considered. 

The first, denoted as AO, will represent a network configuration 
of the form I - H - 0  where I is the number of nodes in the 

input layer, H the number of nodes in the single hidden layer, 

and 0 the number of output nodes. The second architecture, 

denoted as A l ,  represents a network configuration of the 

form I -H l -H2-0  with two hidden layers of H1 and H 2  
nodes, respectively. The specific network architectures for 

each function are given in Table 111. 

Theoretical results suggest that any continuous function can 

be approximated to an arbitrary degree of accuracy using 
a single hidden layer neural network [lo]. This work and 

the work of other authors [4] suggests that two-hidden-layer 

networks can often provide solutions with fewer hidden nodes 

and faster training times. The present paper, however, goes on 

to evaluate the robustness of each basic network architecture in 

the presence of noise. Hence, both basic types of architectures 

were included in these experiments. In the tables of Sections 

IV and V, a network with two hidden layers is called a pliable 

architecture, whereas one with one hidden layer is called a 

stiff architecture. 

D. Experimental Method 

The Taguchi Method of Experimental Design: To provide 
scientific discipline to our experimental approach, Taguchi's 

method of experimental design [13] was used. This method 

assesses which of several varying factors have the most effect 

on a desired outcome. Since the goal of this research was 

to decide which of several factors was most effective in 

reducing neural network errors and their variances, it seemed 

appropriate to use the Taguchi approach. In this section the 

Taguchi method is briefly described. 

Suppose an experimental outcome zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 is a function of several 

variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1, . . . , un whose values can be controlled. Write 

'U = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (u1, .  . . , un). The controlled variables u1,. . . , un are 

called factors. The goal is to find those factors which, when 

changed, will have the most beneficial effect on U. This 

can be done by varying each factor independently of the 

others and recording the corresponding change in 71 or by 

varying the factors simultaneously in a disciplined way to 

also determine if the change in II by a particular factor is 

influenced by the values of the other factors. The Taguchi 

methods are disciplined ways of varying two or more factors 

simultaneously. 

In one of the simplest of the Taguchi methods, the indi- 

vidual factors are varied between two values each. In a full 

experimental design, all possible combinations of the values 

of the factors must be tried. In a fractional design, a subset of 
the possible value combinations is used. 

To conduct the experiments required by a full design using 
three factors, Table IV is useful. The factors are denoted by 

X ,  Y and 2, each with a Levl and a Lev2 value. There 

are eight trials of the experiment, each using the Levl, Lev2 

combination depicted by the white boxes in the X ,  Y, and Z 
columns of the row containing the trial number. For example, 

in Trial 5, the value of X is Lev2, Y is Levl, and Z is 

Levl. The value of the experiment for each trial is recorded 

in the Value column and copied to each of the white boxes 

along the row for the trial. Totals and averages are taken of 
white boxes in each column. The values in the Effect row 

are found by subtracting the average outcome for Levl values 

from the average outcome for Lev2 values in the X ,  Y, and 2 
columns and analogously in the other columns. This provides 
a numerical value for the average effect on the outcome of 

moving a factor from its Levl value to its Lev2 value. The 

columns labeled X Y ,  etc. are used for measuring interaction 

effects. For example if the number in the Effect row of the 

X Y  column is large in absolute value, when compared to 

the Effects in the X ,  Y, and Z columns, then X and Y may 

interact in a beneficial or detrimental way. In this case, further 

analysis should be done to decide the best settings for X and 

Y (see [13]). 

If additional factors are to be considered and the number 

of experiments kept at eight, other designs may be chosen. 

For example if there are four factors at two levels each, 

then the design of Table IV may be modified by replacing 

the X Y Z  column with the fourth factor, say W .  The eight 

trials of the table are used with W having the value of the 

column of last white box in the row of the trial. This is 

now a fractional design with only eight of the possible 16 
experiments being used. The drawback in using this fractional 

design is that the interaction column headed X Y  becomes a 

column representing the interaction effects between X and Y 
and also the interaction effects between 2 and W .  Similarly 

the columns headed X Z  and Y Z  also include the interactions 

YW and X W ,  respectively. If the numbers in the Effect row 

of these columns are small compared to the other numbers, 

however, then all these interaction effects are small. 
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I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I 

Description of Experiment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
X Y Z XY xz YZ XYZ 

I 

The Training Process: Backpropagation [ 151 was used for 

training with weights being adjusted after each presentation 

of an input vector. This is called iterative training as opposed 

to epoch training in which weights are adjusted only after a 

complete pass through the training sample. 

A target value for the ARMSE was set. If this value was 

achieved at iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, then training would continue for 

another L iterations. A maximum number of iterations was 

also set which would override the other stopping criterion. 

accurately 
calculate the true error and its variance, four-fold cross 

validation, as described previously in Section 11, was used. 

Test results were then averaged over the four runs. 

The ARMSE training and testing errors were calculated after 

every 10 epochs. At the end of each 10 epochs of training, the 

weights were frozen and the training and testing samples were 

run through the network. The ARMSE was calculated using 

the formula given in Section 11. The graphs of the training and 

testing errors which are shown later were made from these 
values. 

Error variances were calculated from the ARMSE errors 
usually over the last half of the training iterations using the 

formula which is presented in Section 11. Normally the errors 

were no longer decreasing or increasing significantly during 

the last half of training, so the variance would measure the 

variability in the errors during the later stages of training, and 

would approximate the variability present in a fielded network. 

Determination of Over-tting: Overfitting occurs when the 

testing error rises as the training error falls. This indicates that 

noise in the training sample, rather than the underlying func- 

tion, is being fit by the network. Obviously, when overfitting 

occurs, additional training is detrimental rather than beneficial. 

Training should stop at that iteration when overfitting begins, 

assuming that this iteration can be determined. Identification 

of overfitting was made by plotting both training and testing 

ARMSE on a single graph. As expected, no overfitting was 

observed when there was no noise in the training data. 

Calculation of Errors and their Variances: To 

I V .  F1: A FUNCTION OF ONE VARIABLE 

A. Experimental Results 

The single variable function 

Fl*(x)  = 4.26(e-”-4e-2x+3e-3x)+n(0,02), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E [O,3] 

was studied first. Taguchi tables were constructed to evaluate 

the effects the different experimental factors had on ARMSE 

error and its standard deviation. Averages over the four cross 

validation runs were calculated for both training and testing 

errors. The Taguchi table for average ARMSE testing error is 

shown as Table V. 

Columns in the table correspond to various combinations 

of experimental parameters. The columns labeled DQ-TR,TE- 

A, etc. measure the amount of interdependence between the 
experimental factors, with two possible interdependencies con- 

founded (see [13]) into each column. 

The total ARMSE value for each experimental parameter is 

shown in the row labeled “Total.” Experiment numbers marked 

with * denote experiments which were terminated when the 

maximum number of iterations was reached, as opposed to 

reaching the target training ARMSE. 

The row labeled “Effect” can be used to evaluate the results 

of the experiments. For example, Table V indicates that for 

the test ARMSE averaged over the four runs of four-fold 

cross validation, the testing noise level is, by far, the most 

influential factor since the value of Effect is 0.268 which 

is more than double the value of any other value of Effect. 
Therefore, testing data noise is deemed to be a major factor 

influencing the magnitude of testing ARMSE. 

Further evaluation of the Effect values ranks the influences 

of the experimental factors in the following order: TE, TR, 

A, and DQ. These values indicate that noise in testing data 

contributes most to high testing ARMSE values, noise in 

training data is the next largest contributor, architecture the 

next, and the amount of data contributes the least. Analysis of 
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TABLE V 

Data Quantity Training Noise Testing Noise tK-TR.TE-A DQ-TE,TR-A TR-TE,DQ-A Architecture 

DQ1 I DQ2 TRO I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRl TEO I TE1 I A0 A1 

I ARMSE (Test) Average 

Low Tcst Mean 

Low Testing Noise 99 

Low Training Noise 95 

Low Train Mean Low Train Std zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADev 

Low Training Noise 99 High Data Quantity 
High Data Quantity 95 High Testing Noise 95 Stiff Architecture 

Pliable ArChllecNc 90 

Low Test Std Dev 

Low Training Noise 99 

TABLE VI 

variance techniques ([ 14, Chapter 31 or [ 13, Chapter 81) using 

the F-test reveal that testing noise is statistically significant at 

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA99% level and training noise is significant at the 95% level. 

Data quantity and architecture are statistically insignificant. 

The conclusion is that for the settings of the factors which 

were used, decreasing testing data noise and, less significantly, 

decreasing training data noise, will be effective in decreasing 

the testing error; whereas changing the architecture or the data 

quantity will have little effect. The sign of the Effect values, 

however, indicate that using a single-hidden-layer architecture 

or a large data quantity probably would decrease testing errors 

some. 

Table VI summarizes both the training and testing ARMSE 

errors and their standard deviations for all experiments per- 

formed on function PI*. Each column ranks the factors that 

were found effective in obtaining the goal at the top of that 

column. For each column, eight experiments were run and 

a Taguchi table constructed to obtain the results listed. For 

example, Table V was used to obtain the first column. 

B. Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Results 

Effect of Noise in Training: Table VI1 shows the average 

ARMSE values for each of the possible combinations of 
traidtest noise from Table V. For example, the value in the 

TRO, TEO row of Table VI1 is the average of the values for 

Trials 1 and 5 in Table V. Evaluation of the tests confirm what 

one suspects about noise. Noise-free data produced the best 

results while noise in both training and testing data produced 

the worst results. In the presence of testing noise, it appears 

that a slightly lower average ARMSE is obtained with this 

function by training the model with noise-free data. 
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Fig. 3. 
F1* with variance of 0.4. 

Plots of F1 vs Out vs F1* generated by a network trained from 

It is important to note that for these experiments, the noise 

in the training data was quite severe. In fact, the noise in the 

training data essentially dominated the samples and changed 

the problem being modeled. Fig. 3 illustrates this concept. 

Note the graph of the original function, F1, in comparison 

to that of F1* with g2 = 0.4. Noise has made F1* a very 

different function than Fl! The effect of the trained neural 

network is to smooth out the results of F1*. This new function, 

however, is still very different than the original function being 

modeled. 

While an analytical expression for the function of interest is 

usually unknown, the graphing approach provides a valuable 

technique for estimating responses of a trained neural network 

for unseen test data. The approach is to produce a graph 
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Fig. 4. Results of a DQl/TRO/TEl/Al test. 

showing the training data and the network output as shown 

in Fig. 3. If the network does a poor job of fitting the data, as 

is the case in Fig. 3, it is highly likely that it will not perform 

well on unseen data. For multivariate functions, sections of 

the graph in each plane could be reviewed [3]. 
Effect of Noise in Testing: Similar statements can be made 

about noise in the testing data. The more noise in the testing 

data, the less likely the network represents the data being 

tested. Again, plots of training and testing data along with 

neural network output provide an indicator of the type of 

performance that can be expected from the network. Fig. 4 

shows the results of one of the DQl/TRO/TEl/Al tests.2 The 

network learns the training data reasonably well. The noise 
in the test data causes it to appear to be from a different 

model than that represented by the training data. The test error 

remains consistently poor through the training cycle. 

Effect of Data Density: Evaluation of Table V indicates 

that DQ2 data density produces smaller training and testing 

ARMSE's than DQ1. In addition, the DQ2 values have a 

smaller standard deviation. This result suggests that increasing 

training data density decreases testing error. 

Effect of Architecture: For this function, the differences in 

ARMSE averages and standard deviations between the A0 and 

A1 architectures is very small for both testing and training 

data. The single hidden-layer architecture, AO, produced a 

slightly smaller ARMSE average and standard deviation on 

test data. This is not surprising in view of the simple domain 

of the function. 

The amount of training required for each of the architectures 

was approximately the same. Four of the eight test sets did not 

converge. Half of them, however, were architecture A0 while 

the other half were Al .3  
Overfitting: Fig. 5 illustrates a situation in which overfitting 

occurs. The top graph shows training ARMSE while the 

bottom shows testing ARMSE. Training ARh4SE suddenly 

increases at about 2.6E6 iterations through the training data. 

This is possible due to the way in which network training 

2The quadruple represents the combination of experimental factors arranged 
in the form: Data quantityllevel of training noiseflevel of testing noisehetwork 
architecture. 

3Recall that this lack of training convergence was caused by the excessive 
noise in the training data. 
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Fig. 5. Overfitting in a DQl/TRl/TEO/Al test. 

was implemented. After this point, it again begins to decline. 

Throughout this cycle, the testing ARMSE is steadily increas- 

ing. Hence, the network is doing a good job learning the 

training data even though it is not the correct function. 

The differences between noise and overfitting are not always 

distinct. For example, the phenomenon exhibited in Fig. 4 is 

not overfitting. The poor test results are caused by noise in 

the testing data, not the training data. One marked difference 
between the results is that, in overfitting, testing error contin- 

ues to increase as training continues. In cases like that shown 

in Fig. 4, the testing error becomes more and more constant 

as training continues. 

C. An Experiment with Long Training Time 

It was decided to train the network which approximates 

the no-noise version of Fl for a very long time to discover 

changes which may not be observed in the shorter runs. 

The result is shown in Fig. 6. The network trained for over 

13 million iterations, many times the usual run time. The 

following observations are evident from the graph. 

The training error, although initially above the testing 

error, eventually drops below, as expected. Generalizing, 

for a function with no or little noise, if testing error is 

on average better than training error, then a network may 

not have trained long enough. 
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network under the conditions of a more nonlinear mapping and 

a higher dimensional input space. Additionally, this function 
provided a transition of this work to a “real-world’ task. As 

mentioned in Section 111-A, this function is used in modeling 

In an effort to more completely understand, visualize, and 

control the data generated by this function, it was slightly 

reduced and converted to the form 

-- .............................................. j ................................................ 1.. .................................... .,-- 

................................................. i ............................................................................................. .__.__ _ damped vibrations in aircraft components. 

............................................ ! .................................. i .......................... <- 

........................................................................ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ...................................... .__ 

0 i I 

F2*(x1 ,22 ,z3)  = 51ez2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcos(x3) + n(0,cr2), 

I I 0.1 I ! 1 

0.08 -- ....................................... 1.. ....................... ........................ -- 

0.06 _ ___.. ..................................... j .................................................. i.. .................................... 
i 2 

2 0.04 -1 ................................................... .................................................... 1. ......................................... I- 
.................................................. . ~ .  . . . . . . . . . . . . . . .  _ _  0.02 - 

- ’ ” - -  ” ’: 
0 I I I I 

The following tables summarize the results of the Taguchi 

experiments on F2*.  For this function, several Taguchi tables 

were generated. 
Table VI11 was generated from four full three-factor Taguchi 

tables which were each similar to the one shown in Table V 
for F1*. For Table VIII, all combinations of data quantity, 

training noise, and network architecture were evaluated over 

the last 250 000 iterations of the training process. So, if training 

to a 0.02 ARMSE error level required 1 million iterations, 

the training would be continued until 2 million iterations 
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Fig. 7. Training noise variance = 0.2; 125 data points. 

and a network with high flexibility resulted in overfitting. 

Additionally, training noise was the most significant factor 

in both the final testing error and its variance. 

Another significant lesson learned from this data set focuses 

on the magnitude of the noise. Consider Fig. 7. In this run, the 

magnitude of the noise which was added to the training data 

was equivalent to half the magnitude of noise added to the data 

in Experiment 1. There is no noise in the testing data. Notice 

how the testing error significantly increases as the training 

error significantly decreases. 

Fig. 8 represents the training and testing performance when 

the amount of data used for training was increased from 125 

data points to 512 data points. Testing performance is now 

significantly better since the minimum testing error differs 

from the final testing error by -0.17, versus a difference of 

-0.30 for the testing graph of Fig. 7. The training performance 

has diminished, however. Overfitting is not as significant. The 

increase in the number of data points provided additional 

information about the underlying function and allowed the 

network to compensate for the noise. 

Now consider Fig. 9. Here the noise is an order of mag- 

nitude less (a2 = 0.1) and 512 training cases were used. 

The testing performance has again improved while the training 

performance has declined. Overfitting is still present, but its 

effect has decreased to the point where the minimum testing 

error and the final testing error only differ by -0.04. 
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Fig. 8. Training noise variance = 0.2; 512 data points. 
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Fig. 9. Traimng noise vanance = 0.1; 512 data points. 

It was concluded that the effect of noise in Fig. 7 was too 

extreme and so severe that the underlying function was no 

longer a factor in the training data. Testing on a no-noise 

case produced results which were uncorrelated with training 

results, as if one function was being used for training and a 

completely different function was being used for testing. Fig. 8 
shows how additional training data offered some compensation 

for the additional noise, but "acceptable" performance in the 

presence of overfitting was finally achieved by decreasing the 

noise level and including additional training points as shown 

in Fig. 9. A tentative conclusion based on the necessity of 
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reducing the noise level when going from F1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2, is that 
the amount of noise that can be tolerated is inversely related 

to the variability of the function being approximated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Effect of Noise in the Testing Data: These results are sim- 

ilar to those achieved for the first function as would be 

expected, testing noise is positively correlated with the av- 

erage testing error, however higher testing noise was slightly 

negatively correlated with the testing error’s variance. Given 

careful consideration and with the knowledge of hindsight, the 

common sense nature of these results becomes apparent. 

Effect of Data Density: Again, the results are similar to 

those for F1*. Increased data density offered some compensa- 

tion for the existence of noise in the training set by producing 

a lower mean testing error. This fact is key in understanding 

the cause of overfitting and how it can be reduced. 

Effect of Architecture: For this data set, the effect of net- 

work architecture was mainly significant in producing a low 

training mean. The Taguchi tables, however, do not accurately 

represent the relationship between network architecture and 

overfitting, since overfitting was not one of the experimental 

factors. 

Overfitting: It is the general conclusion of the F2* exper- 

iments that several factors must exist for overfitting to occur. 

In turn each of these factors offers a method of reducing 

overfitting. 

First, noise must be present in the training data for over- 

fitting to occur. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs stated earlier, overfitting results from 

learning the nuances of each sample pair which distances 

it from the underlying function being approximated. If the 

sample pairs contain no such abnormalities (i.e., no noise), 

such effects will not occur. In no case and with no amount 

of extended training did the neural network begin to produce 

wild interpolations between the noiseless training points. The 

networks consistently produced approximations which were no 

more nonlinear than the training data. 

Second, for overfitting to occur the network architecture 

must be overly pliable for the function being learned. As with 

any polynomial interpolation technique, the degree of the poly- 

nomial for which the coefficients are being sought, determines 
the smoothness/flexibility of the resulting approximation. For 

neural networks, the number of weights is not the determining 

factor in the flexibility of a network. The arrangement of the 

weights, the architecture of the network, is the deciding factor. 

Drastically differing results were achieved between one and 

two hidden layer networks even though the number of weights 

was equivalent in both cases. The two-hidden-layer network 

was consistently quicker in fitting the training data. In the 

presence of noise, this implies quicker overfitting. 

Third, training data quantity must be low for overfitting to 

occur. Experiments on this function demonstrated a consistent 

tie between data quantity and noise levels. As the tables show, 

increasing the data sampling rate decreased the mean testing 

noise level. When observing only those cases where noise was 

present in the training data and the more pliable architecture 
was used, the effects of data quantity become even more 

obvious. 

Overfitting can be monitored by periodically evaluating a 

network using testing data during the training process. If 
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Wo-hidden-layer approximation for F 1 * with significant noise and 
sparse training data. 

overfitting occurs, these results provide insight into possible 
causes and suggest several possible ways to reduce the effect 

of overfitting. First, reduce training noise if possible. Second, 

reduce the network architecture. Do not simply reduce the 

number of weights, but consider a simpler design. Third, 

increase the number of training samples. Taken together, as 

shown in Figs. 7-9, the improvement in performance can be 

phenomenal. 

VI. GUIDELINES FOR THE DESIGN AND 

CONSTRUCTION OF NEURAL NETWORKS 

Some guidelines for the design and construction of neu- 

ral networks which were suggested by the experiments are 

summarized in the following paragraphs. 

Use a training sample that is as free of noise as possible. 

Some researchers have suggested [9] that better general- 
ization will occur if noise is added to the training data. 

These experiments, however, suggest just the opposite: 

the larger the amount of noise in the training data, the 

larger the testing error and its variance. 

Use dense training data. To decrease errors, dense data 

is better than sparse data. Denser data means more data, 

however, and a penalty is paid in training time. 

For best error control, use networks with two hidden lay- 

ers. This research focused on network architectures with 
a single hidden layer or with two hidden layers. Both 

architectures had nearly the same number of weights. 

For example, a network with one hidden layer of 120 

nodes and another network with two hidden layers of 30 

and 15 nodes, respectively, were used in the experiments 

with F2.  The primary question was which of these is 

better for error control. We found that the network with 

two hidden layers was invariably more flexible than the 

one with one hidden layer. In general this allowed the 

two-hidden layer networks to tit the function closer and 

to give smaller errors. 

For best smoothness of the approximating function, use 

networks with one hidden layer or use a dense training 

sample. Smoothness of the approximating function could 
be sacrificed when two layers were used. For example, 

the two-hidden-layer approximating function for F1* is 

shown in Fig. 10 and the one-hidden-layer approximat- 

ing function for the same function is shown in Fig. 11. 

... 
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Fig. 12. 
and dense training data. 

Two-hidden-layer approximation for F1* with significant noise 

The two-hidden-layer approximation has more abrupt 

changes and much steeper slopes than the one-hidden- 

layer approximation. 
Examination of graphs indicated that when the density 

of points in the training sample for the two-hidden-layer 
approximation was significantly increased, the approxi- 

mation function became smoother as shown in Fig. 12. 

Because of the increased number of data points, the 

network was not flexible enough to move sharply up 

and down fitting the errors, and, therefore, the best fit 

was a smooth interpolation through roughly the center 

of the noise. 

If convergence is not occumng, start over with different, 

perhaps much larger, random initial weights. The initial 

choice of weights is a significant factor in the speed 

of training and, in some cases, whether satisfactory 

convergence takes place at all. Consider Figs. 13 and 

14. In Fig. 13, initial weights between -.l and +.l 
were chosen. Note that decreases in the training error 

did not occur at all. When weights were initialized ran- 

domly between -1.0 and +1.0, as in Fig. 14, however, 

convergence was immediate and steep. 

Stop training when the error on the testing data begins 

to rise. Overfitting occurred when there was significant 

noise in the training data, especially if the data set 

was not very dense. The best results will be obtained 

if training is stopped just at the point that overfitting 

begins. To determine this point, it is best to divide the 

data sample into training and testing portions, perhaps 

using n-fold cross validation. Then the testing error can 

be watched and training stopped when it begins to rise. 
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Fig. 13 F2 training and testing errors with small initial weights 
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Fig. 14. F2 training and testing errors with large initial weights. 

If there is no testing data, stop training at the bottom of 

the initial steep drop. If it is not feasible to have both 

testing and training data, then it may still be possible 

to estimate when overfitting begins. If there is a steep 

drop in the training error, then overfitting frequently 

begins near where the error curve begins to level out. 

Typical training and testing error curves which illustrate 

this phenomenon are shown in Fig. 15. 

To decrease the variance of the testing error, decrease 

the noise in the training sample. The Taguchi tables 

indicated that changing the architecture or even the 

density of the training data had little effect on the 

variance of the testing error. The only effective way 
to decrease it, using the factors considered here, is to 

decrease the noise in the training data. Unfortunately, it 

may not be easy or even possible to control this noise. 

VII. CONCLUSION 

this section there is a brief description of some over- 

all reactions to the approach taken, and mention of some 

suggestions for further research. 

There was an unexpected wide variation of behaviors in 
the neural networks used in the experiments. For example, 

the significant differences between networks with one and two 
hidden layers was unexpected. It was unexpected to see as 

much variability in network errors-for example, testing errors 
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Fig. 15. 
the bottom of a steep drop in the training error. 

F2 training and testing errors illustrating overfitting beginning near 

sometimes below training errors. The profound difference 

in convergence between networks initialized with small and 

large weights was a surprise. In some cases, testing errors 
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would begin to rise as if overfitting was occurring, but later 

known about the capabilities and characteristics of neural trial ADDL Math.. 1990. 

Processing: Explorations in the Microsrructures of Cognition, vol. 1. 

Cambridge, MA: MIT Press, 1986. 
again Thus, the since little is [16] Grace W&ba, Spline Models for  Observational Data. Society Indus- 
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networks, controlled experiments under varying circumstances [ 171 Sholom Weiss and Casimir Kulikowski, Computer Systems that Learn. 
San Mateo, CA: Morgan Kaufmann, 1991. 

must be run since the OutCOme Of a single experiment can be [ i s ]  Andreas s. Weigand, David E. Rumelhart, and Bemardo A. Huberman, 
misleading. 

experiments was beneficial in pinpointing those features of 

the design process that would be most helpful in controlling 

network errors once the levels of the factors had been set. 

Taguchi, however, does not help with the appropriate levels 

to use for the factors. A more sophisticated type of experi- 

mental design such as response surface methodology [2] may 

“Backpropagation, weight-elimination and time series prediction,” in 

Proc. 1990 Connectionist Models Summer School, 1990, pp. 105-1 16. 

change rate prediction,” in Proc. Int. Joinr Con$ Neural Networks, vol. 

I, 1991, pp. 837-841 

The Taguchi method Of design for [ 191 -, “Generalization by weight-elimination applied to currency ex. 

overcome this limitation. 
Perhaps the most significant omission in this research is a 

study of the value of optimal architectures in error control. 

Methods for finding optimal architectures include adding a 

term of the form XQ, where Q measures the complexity 
of the network, to the ARMSE calculation [18], [19], and 

pruning unnecessary weights from a trained network [8], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7 ] .  
Intuitively, a network of optimum size will be just flexible 

enough to learn the function, but not the errors, so overfitting 

should not occur and generalization performance should be 

improved. A Taguchi analysis could consider whether using 

an optimum architecture is better than using a very flexible 

architecture and stopping training when overfitting starts, a 

question which was considered in [SI. Additional studies could 

analyze the effect of weight decay, by varying between two 

levels of X in the complexity term XQ. 
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