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ABSTRACT 
When working on a large software system, a programmer typically 
spends an inordinate amount of time sifting through thousands of 
artifacts to find just the subset of information needed to complete an 
assigned task. All too often, before completing the task the 
programmer must switch to working on a different task. These task 
switches waste time as the programmer must repeatedly find and 
identify the information relevant to the task-at-hand. In this paper, we 
present a mechanism that captures, models, and persists the elements 
and relations relevant to a task. We show how our task context model 
reduces information overload and focuses a programmer’s work by 
filtering and ranking the information presented by the development 
environment. A task context is created by monitoring a programmer’s 
activity and extracting the structural relationships of program 
artifacts. Operations on task contexts integrate with development 
environment features, such as structure display, search, and change 
management. We have validated our approach with a longitudinal 
field study of Mylar, our implementation of task context for the 
Eclipse development environment. We report a statistically 
significant improvement in the productivity of 16 industry 
programmers who voluntarily used Mylar for their daily work.  

Categories and Subject Descriptors 
D.2.6 [Software Engineering]: Programming Environments – 
integrated environments, programmer workbench.  

General Terms 
Algorithms, Experimentation, Human Factors 

Keywords 
IDE, task management, interaction history, program views, degree-
of-interest 

1. INTRODUCTION 
Modularity enables programmers to develop and evolve complex 
software systems. Modularity in programming languages, for 
instance, enables separate compilation [1], making it tractable to 
modify and test a small part of a system. Design modularity enables 
parallel development, making it tractable to develop large systems in 
less time [21]. Development environments use modularity to present 
views of a system in support of a programmer’s tasks, such as bug 
fixes and feature additions. For example, a common way to access 

Java1 code in the Eclipse2 Integrated Development Environment 
(IDE) is through a view of the containment hierarchy called the 
Package Explorer, which shows the modular structure of projects, 
packages, files, and classes. Eclipse also presents search results in 
terms of the system’s hierarchical structure. Current development 
environments, including Eclipse, appear to encode two assumptions: 
a programmer will often be able to find a desired piece of the system 
by traversing the modular structure, and modifications will often fit 
within the modular structure so that once the point of interest is 
identified it will be relatively easy to perform the desired 
modification.  
We have observed two problems with these assumptions. First, many 
modifications to a system are not limited to one module. For 
example, we found that over 90% of the changes committed to the 
Eclipse and Mozilla3 source repositories over a period of one year 
involved changes to more than one file [20]. We then selected 20 
changes from Eclipse and found that 25% of these transactions 
involved significantly non-local changes. Second, even when the 
actual changes related to a modification are within some form of 
module, say one Java package, a programmer often needs to know 
how this module works within the system, requiring them to access 
many other modules and understand their interconnections [24]. The 
result is that a programmer must spend an inordinate amount of time 
navigating around the modularity-based views in an IDE to access 
the information needed to complete a particular task. 
If a programmer worked on only one task at a time, the mismatch 
between the organization of information in the IDE and the 
programmer’s needs might just be annoying. In practice, 
programmers often work on multiple tasks during a typical work day 
[9]. A programmer is constantly looking for the information needed 
to work on a particular task, setting up their workspace, and all too 
often before completing the task must perform similar steps for 
another task, only to again redo the same work when returning to the 
first task. This constant need to re-create the context of the task 
reduces the programmer’s productivity. 
We have been investigating how an explicit representation of the 
information related to a task can alleviate this mismatch and can help 
improve a programmer’s productivity. In an initial exploration, we 
demonstrated how we can transform data about how a programmer 
interacts with system artifacts into a degree-of-interest (DOI) 
weighting for each program element [17]. We showed how to use this 
weighting to complement the way modern IDEs display modular 
structure by focusing views and editors on only the relevant 
modularity instead of displaying the modularity of the system as a 
whole. In a preliminary study we performed of this approach on six 
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industry programmers, we found that despite promising results the 
approach had critical shortcomings: 

• The model needed to incorporate tasks explicitly because a 
programmer often works on, and switches between, multiple 
tasks. 

• The model needed to include related artifacts that were not 
directly accessed by the programmer but that could also be of 
interest for the task-at-hand. 

In this paper, we report on how we overcame these shortcomings by 
expanding and refining the concept of a DOI function based on 
programmer interaction, and by creating and validating a new model 
that includes an explicit representation of task and contexts. A task 
context represents the program elements and relationships relevant to 
completing a particular task. We have progressed from the simple 
weighting model used in our earlier approach and in other tools 
(Section 7) to a more sophisticated weighting based on both direct 
and indirect interactions that occur with program elements, relations 
between elements, and the programming tasks themselves. Previous 
work, including our own, considered only elements and direct 
interactions (see Section 7). 
In this paper we present a generic description of our task context 
model (Section 2) and describe operations that can be performed on 
the model to focus programming tools (Section 3). Our Mylar tool4 
(v0.3 to the current v0.6) implements our approach by extending the 
Eclipse IDE to make task context a first-class abstraction (Section 4). 
We validated our new model through a field study in which 16 
industry Java programmers used Mylar for multiple weeks of their 
daily work (Section 5). We describe how the use of Mylar results in a 
statistically significant increase in a programmer’s edit ratio: a 
measure of the amount of editing versus the number of selections 
performed by the programmer. We conclude the paper by discussing 
the benefits and limitations of our task context model (Section 6) and 
comparing our model to earlier efforts (Section 7). 

1.1 Example 
To give a flavor for our approach, we provide an overview of what it 
is like to use our Mylar tool. The scenario involves a Java 
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programmer using Mylar on a code base with over one thousand 
classes. One task on which the programmer is working is an 
improvement to the code base of the system. 

Task-1: Refactor ResourceStructureBridge 

This task involves identifying, inspecting and changing all of the 
clients of ResourceStructureBridge. In a Mylar-specific 
view, the programmer has named this task and selected it to indicate 
that it is the active task (i.e., in the Task List view the task has a solid 
dot next to it, Figure 1-1). Activating the task causes Mylar to track 
the parts of the system artifacts⎯the program elements and 
relationships⎯that the programmer accesses while working on this 
task. From this interaction, Mylar builds a model of the task context.  
Mylar uses the explicitly modeled task context as a parameter to a 
filtering operation that shows the programmer only the information 
needed to complete the task. For example, even though the code base 
contains over 1000 classes and numerous other kinds of artifacts, 
only the artifacts relevant to the current task context are visible in a 
hierarchical modularity-based view of the system structure (the 
Package Explorer, Figure 1-3); all other elements are elided from the 
view. This view also indicates the relevance of elements to the task 
context by making the most relevant bold. As an example of another 
operation on a task context, Mylar expands the task context to 
include structurally related elements of potential interest (the Active 
Search view, Figure 1-4).  
As the programmer is working on Task-1 a new high priority bug is 
assigned to him that must be attended to immediately. 

Task-2: Fix NPE in SynchronizeReportsAction. 
Using Mylar’s Task List view, the programmer activates the second 
task (view Figure 1-5), causing the context of the first to be stored 
and all files in the context to be closed. As the programmer starts 
working, a context starts building up for the second task. The IDE 
views are now filtered according to the second task context, although 
the underlying system information has not changed. To return to the 
first task, the programmer simply needs to reactivate it, causing the 
views and editors to return to the state visible on the left of Figure 1. 

2. TASK CONTEXT MODEL 
We define a task as “a usually assigned piece of work often to be 
finished within a certain time” [18]. For a programmer, tasks include 
bug fixes, feature additions, and code base explorations. Some of 
these tasks are short-lived, requiring only a few minutes to complete; 

Figure 1: Task context in Mylar while working on Task-1 (left), and shortly after activating Task-2 (right) 
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others are longer-lived, sometimes being worked on each day over 
the course of weeks or months. We focus on this atomic unit of a 
task. Higher-level abstractions and organization of tasks, such as 
hierarchies and sequences of task [2], can be layered on top. 

In our approach, a task context is the information⎯a graph of 
elements and relationships of program artifacts⎯that a programmer 
needs to know to complete that task. Each element and relationship in 
the model corresponds to a weighting of its relevance to that task. For 
example, Task-2 includes the Java class of interest, all methods that 
refer to the class, any tests of the class and the XML elements that 
refer to it. The elements with highest relevance will be those that the 
programmer edited and selected most. We form a task context from 
the interactions that a programmer has with system artifacts and from 
the structure of those artifacts. In this section, we describe the 
interaction stream and algorithm that we apply to the stream to create 
a task context. In Section 3 we sketch operations on and with task 
contexts that can be used to facilitate a programmer’s interaction with 
system artifacts. After presenting the model and operations, we then 
describe how we have realized this model in the Eclipse IDE (Section 
4). 

2.1 Encoding Interaction 
We derive a task context from an interaction history, which is a 
sequence of interaction events that describe accesses of and 
operations performed on a software program’s artifacts. Each event 
captures six pieces of information (Table 1). 

Table 1: Interaction event data 

Time The time of the event occurrence 

Kind Classification of event (Table 2) 

Origin Identifier describing the UI affordance or tool that 
caused the creation of the event  

Content 
Type 

Identifier describing the kind of element operated 
upon. 

Handle Identifier for the target element 

Delta State change that occurred with the event 

Some interaction events are the result of the programmer’s direct 
interactions with program elements. For instance, a programmer may 
select a particular Java method to view its source, edit it, and then 
save the file containing it. Each of these actions corresponds to an 
event of a different kind being appended to the interaction history 
(Table 2).  
Other interaction events are indirect, where program elements and 
relationship are affected without being directly selected or edited by 
the programmer. For example, when working on Task-1, the 
programmer refactors the name of the 
ResourceStructureBridge class, causing all of the elements 
referring to that class to be updated. Each referring element updated 
through the refactoring results in an indirect propagation of the edit 
being appended to the interaction history. When the programmer 
directly selects the getContentType method (Figure 1-2), each 
containing parent of that method (its class, source file, package, 
source folder, and containing project) becomes relevant to the context 
and a propagation of the selection is appended for each parent.  

Table 2: Classification of interaction events 

event kind mode description 

selection 
direct  Editor and view selections via mouse 

or keyboard 

edit Textual and graphical edits  

command Operations such as saving, building, 
preference setting 

propagation Interaction propagates to structurally 
related elements 

prediction 
indirect 

Capture of potential future 
interaction events  

The model also support prediction events, which describe possible 
future interactions that a tool anticipates the programmer might 
perform. An example of prediction is an event describing that a test 
may be of interest to the current task because it references a class in 
the task context. Table 3 sketches the sequence of interaction events 
that result from the programmer’s initial work on Task-1. For 
simplicity, we use an event number to stand in for the time field of an 
interaction event. 

Table 3: Sample interaction history 

event kind origin Target(s) 
1 selection Package 

Explorer 
ResourceStructure 
Bridge class 

2..5 propa-
gation 

Package 
Explorer 

.java file, package, source 
folder, project 

6 com-
mand 

Rename 
refactoring 

ResourceStructure 
Bridge class 

7 edit Java Editor ResourceStructure 
Bridge declaration 

8..16 propa-
gation 

Refactoring 
monitor 

4 XML and 5 Java references 
to Resource 
StructureBridge 

2.2 Constructing a Task Context 
We derive a task’s context by processing an interaction history that 
describes the activity performed for a task. Each event from the 
corresponding portion of the interaction history contributes to a graph 
that represents the task context. If the handle of an event being 
processed refers to an element not yet represented in the graph, a 
node for the element is added to the graph. A selection event from the 
interaction history contributes an edge to the graph when the target 
element of the current selection event is structurally related to the 
target element of the last selection event processed. For example, if a 
programmer navigates from a method call to its declaration, the 
interaction history will contain the selection of the caller followed 
later by a selection of the callee. This results in an edge representing 
the Java reference relation between the two corresponding element 
nodes. The graph of task context can contain cycles (e.g., as a result 
of navigating recursive method calls) and can have multiple edges 
between nodes (e.g., both reference and inheritance). 
We use a task’s interaction history to compute a weighting for each 
element in the task context. The weighting is a real number value 
representing the element’s degree-of-interest (DOI) for the task. This 
DOI value is based on the frequency of interactions with the element 
and a measure of the interactions’ recency. The frequency is 
determined by the number of interaction events that refer to the 
element as a target. Each event kind has a different scaling factor 
constant, resulting in different weightings for different kinds of 
interaction. Recency is defined by a decay that is proportional to the 
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position in the event stream of the first interaction with the element; 
like frequency, recency is also scaled. Algorithm 1 is a naïve but 
clear representation of how we compute a DOI value for an element 
with an interaction history events sequence that contains one or more 
events with the element as the target. We iterate over a subsequence 
consisting of just the events involving the element (line 4), increment 
the interest value of the element based on the kind of the current 
event (line 5) and if the interest has not offset the decay, reset the 
decay to start at the last interaction with the element (lines 7-9). This 
algorithm ensures that elements which have decayed to a negative 
interest have their interest become positive when interacted with 
again. 
DOI(element, events) 
1   elementEvents = WITH-TARGET(element, events)  
2   decayStart = elementEvents[0] 
3   interest = 0 
4   for each event in elementEvents 
5      interest += SCALING(KIND(event)) 
6      currDecay = DECAY(decayStart, event, events) 
7      if interest < currDecay then    
8          decayStart = event                               // reset decay 
9          interest = SCALING(KIND(event))   // reset interest 
10  totalDecay = DECAY(decayStart, LAST(events), events) 
11  return interest – totalDecay 

 
DECAY(fromEvent, toEvent, eventSeq)    
12  decayEvents = SUBSEQ(fromEvent, toEvent, eventSeq) 
13  return |decayEvents| * SCALING(KIND-DECAY) 

Algorithm 1: DOI for Task Context 
The SCALING function returns the constant associated with each 
event kind and with KIND-DECAY. The DECAY function 
computes the decay to be proportional to the size of the SUBSEQ 
subsequence from decayStart to the most recent event, and includes 
events not in elementEvents. As an example, consider how the 
interaction history from Table 3 contributes to the weighting of the 
ResourceStructureBridge element, most recently edited at 
event 7. Assuming SCALING returns 1 for selections, 0 for 
commands, 2 for edits, and 0.1 for KIND-DECAY, and noting that 
there were no propagated events with that element, the three 
iterations through the loop will result in 1+0+2 = 3 for interest, and 
(16-1)(0.1) for totalDecay, resulting in a DOI of 1.5. If 30 more 
interactions happened with another element the DOI value would 
become -1.5. A subsequent selection would cause the DOI to be reset 
to 1 – 0.1 = 0.9. 
A relation in the graph is composed of source and a target element. 
The DOI of a relation is computed using the same DOI algorithm, by 
means of the relation’s target element: 
      DOI-R(relation, events) = DOI(TARGET(relation), events)  
For example, if a programmer navigates repeatedly between a 
method call and its declaration, the DOI of that relation will increase 
from repeated selections of the declaration. If the programmer 
navigates ‘back’ and ‘forward’ between the two several times, the 
two resulting directed edges with both have the same DOI. 
Our construction algorithm for task context takes as input any 
sequential stream of interaction events whether it is being gathered 
on-line or was stored off-line and reloaded. At any point in the 
construction process, each node and edge in the task context’s graph 
can be queried for its DOI value; this value is computed from the 
interaction history associated with the task context available when the 

query is made. Task context can thus be built interactively as a 
programmer works, or recreated by parsing a previously stored 
interaction history.  

2.3 Task Activity Context  
To correlate each context to a particular task and to support multiple 
task contexts, a mechanism for associating interaction events with 
tasks is needed. We achieve this by capturing a separate stream of 
interaction events in which the target elements are tasks instead of 
system artifacts. We use the term task activity context to describe the 
programmer’s interaction with tasks. A task activity context is a 
meta-context over task contexts.  
We process the interaction history for the task activity context the 
same as we do a task context. Interaction events can be direct or 
indirect. For example, a programmer can indicate that work should be 
associated with a particular task by opening a bug report; this action 
causes a selection event on that task. Each task can have a reminder 
date; setting a new reminder causes an edit event on the task and can 
cause a future prediction event. The act of a programmer switching to 
another application window causes a command event that indicates 
work on a task has stopped. Since the model and algorithm for a task 
activity context is identical to that of task contexts, the operations 
discussed in the next section also apply at this meta-level.  

3. TASK CONTEXT OPERATIONS 
We can use the information in a task context as input to various 
operations that help focus the IDE’s display of information and 
automate the retrieval of information specific to completing a 
programming task. These operations fall under two categories: those 
which operate on one or more contexts, and those which use a 
context to operate on the system’s artifacts.  

3.1 Operating on Task Contexts 
Although a task context scopes the amount of information with which 
a developer works, it can still be too large or contain too many 
different kinds of elements and relations to assist with particular 
programming activities, such as unit testing. We use the term slicing 
to refer to an operation that produces a subset of a given task context. 
Sometimes the opposite is true and a single task context may not 
contain all of the relevant information needed for an activity, such as 
a code review. We use the term composition to refer to operations 
that produce a composite task context from individual task contexts. 
To enable a programmer to tailor a task context manually we also 
support manipulation operations. 

3.1.1 Slicing   
Task context slicing is an operation that takes as input a task context 
and outputs all elements and relations of the context that meet a 
particular constraint. A constraint can test the kinds of interactions 
associated with elements or relations in the context (e.g., include 
elements that were edited), DOI values (e.g., include elements and 
relations with a high DOI), or the underlying information (e.g. 
include elements that are Java methods). For example, a slice with 
the constraint to include all interesting files that have interaction 
events of the kind edit can determine which files to include in a 
source code commit.  

3.1.2 Composition  
Each interaction history corresponds to a single task. However, some 
programming activities can require displaying the context of several 
tasks simultaneously. For example, the programmer might want to 
create a composite context from Task-1 and Task-2 (Section 1.1) to 
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perform a code review of programming activity. The composition 
operation takes as input one or more task contexts, and combines 
them to form a single composite context. The operation forms a 
union of all of the interaction events of both contexts, which produces 
a composite context where the DOI function includes interaction 
from each context in computing the value and inclusion of the 
elements and relation.  

3.1.3 Manipulation   
Our DOI function provides an approximation of interest, and can 
produce a value that fails to match the programmer’s expectation 
either by being tuned incorrectly or by failing to monitor a relevant 
interaction (e.g., one performed outside of the Eclipse). We provide a 
mechanism for directly manipulating a task context by allowing the 
programmer to issue command events that result in predictable 
changes in the model. For example, if an element is interesting but 
should not be, a “Make Less Interesting” command can issue the 
interaction events to reduce the interest of that element.  

3.2 Operating with Task Contexts 
The creation of task contexts allows a programmer to build up an 
appropriate set of information needed to work on a task. We can use 
that task context to filter the amount of information presented to a 
programmer by projecting a context onto the system artifacts, and 
can also use it to predict information that may also be relevant to 
completing the task. 

3.2.1 Projection   
We can project a task context onto any data structure containing 
similarly structured elements and relations. A projection operation 
allows us to use the DOI values from the task context to create a 
weighted version of the target data structure. This is the operation 
with which we filter information not relevant to the task in the IDE’s 
views. It can be combined with context slicing if the display 
mechanism is focused on displaying one kind of element or one kind 
of relation. For example, our Mylar tool projects a task context onto a 
hierarchical view of system structure (the Package Explorer, Figure 
1-3) to show only elements with a positive interest in the current task 
context, eliding all uninteresting elements. Similarly, a projection of a 
task context onto a table can be used to sort elements by interest. 

3.2.2 Prediction   
A significant fraction of the commands executed by programmers are 
commands to look for related elements to grow a task context [19]. 
We can use the information in a task context to predict what elements 
might be relevant to completing the task, but with which the 
programmer has not yet interacted directly. For example, if the 
programmer is working on a Java class, and that class is referred by 
an XML element, that XML element can get a predicted interest if a 
tool determines that it is likely to be part of the task context at a 
future time. These predictions come from running automatic searches 
on the programmer’s behalf, and can use context slices as both input 
and scope for the searches. The output of the prediction operation is a 
set of interaction events, each of which corresponds to a search result 
(Section 4.2.1), and each is added to the interaction history as 
prediction. This approach ensures that results are ranked using the 
DOI function, with less frequent results decaying in interest while 
more recent and more frequent results yield a higher interest.  

4. ADDING TASK CONTEXT TO THE IDE 
To support investigations into the effect that an explicit task context 
has on programmer productivity, we needed a high-fidelity 

integration of task context with an IDE. Mylar (v0.3 and later) 
implements the task context model for the Eclipse IDE.5  In this 
section, we describe relevant UI features of Eclipse that have been 
extended or altered with task contexts and present an overview of key 
decisions and implementation details in the implementation of the 
tool. 

4.1 Integration 
The Mylar IDE integration allows programmers to work with task 
context in almost every commonly used [19] part of the Eclipse IDE: 
it provides DOI-based element decoration in all structure views that 
display Java, XML, and files; DOI-based filtering in all applicable 
tree and list views (Package Explorer, Document Outline, Navigator, 
Search, Members and Types); DOI-based ranking of elements and 
relationships in tables views (Content Assist and Problems view); and 
DOI-based folding in the editor. In addition, Mylar adds facilities 
specific to task context, including an Active Search view that shows 
relations and elements of predicted interest, an Active Test Suite that 
creates and runs all unit tests in the task context, and an Active 
Hierarchy view that shows the inheritance context of the task. 

4.1.1 Supporting Task Management 
IDEs provide facilities for working with files and with the structure 
of those files. To integrate tasks and contexts with the way that 
programmers work in the IDE, we added similar facilities for 
working with tasks, including a view for managing tasks (Task List, 
Figure 1-1), mechanisms for sharing and synchronizing tasks 
(Bugzilla6 task/issue tracker integration) and mechanisms for 
working with a personalized view of shared tasks. The task 
management tool support also includes a radio-button style toggle 
that allows the programmer to easily indicate the task on which he is 
currently working, and browser style back/forward lists to facilitate 
multi-tasking. These facilities make it easy to work with tasks within 
Eclipse, where Mylar monitors activity (Figure 1-1).  

4.1.2 Focusing the IDE on Task Context 
To focus the UI of the IDE on the elements relevant to completing 
the programming task, the task context can be projected onto any 
structure view or editor in the IDE. This process involves DOI-based 
filtering and ranking. The example in Section 1.1 describes filtering 
for views. For editors the filtering process is similar, but instead of 
elements being hidden they are folded to hide their contents and only 
elements in the task context are unfolded (Figure 1-2). 
Ranking can be done for views that order elements, and involves 
sorting each element in the view on its DOI value. For example, 
Eclipse’s content assist provides a ranking of suggested completions 
in the editor based on Java heuristics. Mylar projects DOI values onto 
that ranking, adds a separator, and puts the elements contained in the 
task context on top of the content assist list (Figure 1-2). A similar 
mechanism works for table views such as the Problems list, in which 
compiler warnings are sorted by their DOI relevance to the active 
task context.  
Decoration is a form of ranking that uses visual cues, such as text 
style and background highlight color. Schemes for decoration can 
display either a continuous or discrete range of DOI values. Highlight 
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decoration of element backgrounds based on DOI is not on by 
default, but a user can set a different highlighter for each context, and 
specify if the highlighter color gradients should be discrete or 
continuous. Discrete interest decoration of element fonts is always on 
when a task is active, and supports the following interest thresholds 
(visible in Figure 1-3 and Figure 1-4): very interesting elements 
called ‘landmarks’ that appear bold and black, directly interesting 
elements that appear black, indirectly interesting elements that appear 
gray and uninteresting elements that are filtered and that do not 
appear at all. We support this with two interest thresholds: one for 
landmark DOI values, and one for ‘interesting’ values. Threshold 
tuning is discussed in Section 6.2.1. 
In addition to focusing the UI of the IDE, Mylar also uses task 
contexts to focus existing operations in the IDE. For example, it 
extends Eclipse’s search mechanism to provide the option of 
including only the active task context in textual and other searches. 
Mylar also maintains a test suite that slices the active task context to 
include all subtypes of junit.framework.TestCase, enabling 
the programmer to run only the tests relevant to the task.  

4.1.3 Predicting Interest and Active Search 
The Active Search view surfaces the relations and predicted interest 
elements in the task context (Figure 1-4). The input for Active Search 
is a slice of the active task context for elements with a DOI value 
over the landmark threshold. The scopes that Active Search uses are 
slices of the context model; in the UI we refer to the different kinds 
of scopes as degrees-of-separation. This term is indicative of the 
‘distance’ from the highest interest elements, where distance is 
defined both by DOI level and by containment relations. For 
example, Active Search includes the following degrees-of-separation 
for defining search scopes: landmarks, interesting elements, 
interesting files, interesting project and dependencies of interesting 
projects.  
As a context grows, lowering the degree of separation is akin to 
tightening the search scope to decrease the number of results. To 
focus results the Active Search view uses the same ranking and 
decoration mechanism as the other views.  

4.2 Implementation Details 
To test Mylar in an industry setting, the tool needed to scale up to 
handle large systems with many kinds of program artifacts. We 
achieved a suitable level of integration to support work on real 
programming tasks through an architecture that bridges to the 
standard Eclipse development tools. We achieved suitable 
performance through mechanisms for storing and collapsing 
interaction histories.  

4.2.1 Bridge Architecture 
While our task model is defined in terms of a generic set of 
interaction events, the actual events need to be issued by a 
mechanism that understands both domain structure (e.g., Java) and 
the UI of the tool for working with that structure (e.g., the Eclipse UI 
for Java development). We call this mechanism a bridge from the 
context model to the domain structure. Each bridge handles a single 
content type. We have created bridges for Java, two XML dialects 
(Ant and Eclipse plug-in descriptors), generic files, and tasks. 
A structure bridge is responsible for mapping elements and relations 
in the task context to and from the domain structure of a particular 
content type. This involves mapping context elements to domain 
model elements and resolving relations between elements. Structure 
bridges must also update the identity of elements in the model if 

those elements move within the domain structure as a result of 
refactoring. For example, the Java structure bridge integrates with 
Eclipse’s Java model (derived from a Java AST), and is able to map 
between the handle identifiers of Java elements in the task context 
and the objects corresponding to those elements in the IDE. It 
resolves the relations between Java elements including references, 
inheritance, and read/write access of fields. When elements are 
moved or refactored and their handle identifier changes, it notifies the 
context model so that the identity of those elements can be preserved 
and the previous interaction with that element maintained. 
A UI bridge is responsible for monitoring interaction with the parts of 
the IDE that it understands, such as Eclipse’s Java tools in the case of 
the Java UI bridge. It maps the programmer’s interaction with the UI 
to the interaction history schema of selections, edits, and commands. 
These can include keystrokes in the Java editor, refactoring 
commands, and element selections. Each UI bridge also specifies 
which views and editors participate in the interest projection.  
Figure 2 shows the dependency structure of a bridge implemented as 
an Eclipse plug-in. The context plug-in provides the structure and 
UI bridge extension points that the java plug-in uses to map and 
display the concrete Java elements that the programmer is working 
on. Bridges for other languages may exist instead of alongside the 
bridges for Java. Bridges can also be composed.  For example, the 
java structure bridge extends the resource structure bridge (not 
shown in Figure 2), which is responsible for understanding file and 
directory structure.  

Figure 2: Mylar plug-in architecture and Java bridge 

4.2.2 Mapping to Interaction History 
Bridges do not issue interaction events directly. For example, when a 
propagated event needs to be issued for the parent of a selected 
element, the bridge corresponding to the element is asked for the 
identifier of \the parent, and the interaction history facility issues the 
event. The same is true for predicted interest, where the relations may 
be all Java references to a particular method. In this case resolving 
the relation involves performing a Java search, returning the results, 
which are then appended to the interaction history by the interaction 
event facility.  
To support voluntary use of the tool for daily work on real systems, 
we needed to ensure that the interaction event architecture scaled to 
large systems without excessive memory or performance overhead. 
Task context grows with the amount of interaction, not with the 
system size, ensuring scalability for large systems. Since the number 
of propagation events can vary with system size, the number of 
propagation steps is bounded by an exponential drop off that limits 
the number of events issued from each interaction. The search scopes 
used for prediction are proportional to the size of the context. . 

6



4.2.3 Interaction History Storage 
A storage mechanism is required to enable the recall of past contexts. 
Since the interaction history particular to each task encapsulates all of 
the information needed to derive the task context, the task context 
model is not persisted. Instead, when a task is re-activated, the 
corresponding interaction history stream, stored as an XML file, is re-
processed. We also store a single XML file of the same form for the 
task activity context. In memory we maintain the meta-context and a 
single composite context that allows any number of task contexts to 
be loaded concurrently. As the programmer works interaction events 
are appended to the corresponding XML file. If more than one 
context is active the events are distributed evenly among the files 
(Section 6.1.1). The approach of storing only the interaction insulates 
the storage mechanism from the implementation, algorithm, and 
processing method. 
Early benchmarks indicated interaction history file sizes of 1-10MB 
for a full workday of interaction. However, given our field study data 
we estimated that programmers working full time generate roughly 
1MB of interaction history information per month. The difference 
comes from the large redundancy in interaction histories, that results 
from repeated interaction with the same elements. To address this, 
Mylar’s persistence support can collapse the interaction history for 
any context. Collapse can be lossless if it uses run-length encoding, 
or lossy if it produces aggregate events for all interactions of one kind 
with a single element. On average the latter reduces file sizes by 10x. 
Our remaining redundancy comes from storing interaction histories 
as XML text files, and text compression yields another 10x file size 
reduction. Since UI actions such as opening editors are the bottleneck 
on task activation, we only compress contexts when interaction 
histories are transferred over the network. 

5. VALIDATION: FIELD STUDY 
Previously, we reported on a preliminary user study we conducted in 
which six industry programmers used an earlier version of our tool. 
Mylar v0.1 used a primitive DOI weighting across all of a 
programmer’s work [17]. We learned that programmers need 
separate contexts for the different tasks on which they work and that 
a simple weighting of the frequency of element selection is not 
sufficient. Although this earlier study suggested our basic approach 
had potential, we learned it was not ready for daily use in a 
production environment, and lacked specific evidence that it 
improved programmer productivity. 
To answer the question of whether an explicit task context improves 
programmer productivity, we conducted a longitudinal field study. 
We chose a field study because the time-constrained tasks performed 
on medium-sized systems possible in a laboratory setting are not 
representative of the real long-term tasks performed on large systems 
in industry. 

5.1 Participants 
The target subjects for our study were industry Java programmers 
who used the Eclipse IDE. To solicit participation we presented a 
prototype of the Mylar tool at an industry conference (EclipseCon, 
March 2005) and advertised the study on a web page. Early access to 
Mylar was only possible by signing up for our study through a web 
form. 99 individuals signed up for the study over the 8 months 
between the announcement and the conclusion of the study. The 
majority of these individuals were industry programmers, about half 
of them worked in organizations with more than 50 people and most 
identified their industry sector as software manufacturing. A detailed 
breakdown of the demographics of the individuals is available in our 

report on how Java programmers use features of the Eclipse IDE 
[19].  

5.2 Method and Study Framework 
We designed the field study to measure the effects of our tool within-
subjects. A participant joining our study was asked to install a subset 
of the tool, called the Mylar Monitor, whose role is to transparently 
capture and store a programmer’s interaction history without adding 
anything to the Eclipse user interface. The monitor was extended 
with a module that would periodically prompt the participant to 
upload their interaction history as to a server at UBC, along with 
exception logs and feedback. To ensure anonymity each participant 
was assigned a unique identifier. To ensure privacy of the system 
information any part of the interaction history referring to the 
elements of what the participant worked on, such as Java type names, 
was obfuscated using a one-way hash function. We refer to this 
period of a participant’s involvement in the study as their baseline 
period.  
After the participant reached a certain threshold of interaction, which 
we chose to be 1000 edit events7 and no less than two weeks of 
activity, the participant was prompted as to whether they wanted to 
install the Mylar task context and task focused UI features. Installing 
Mylar moved a participant into the treatment phase of the study. As 
before, the monitor periodically prompted the participant to upload 
their interaction history to a server at UBC. A participant was also 
notified when there were updates available for Mylar, including both 
feature additions and bug fixes. We ran the study for four months, 
July 6th to October 28, 2005 using Mylar v0.3. The task context 
model, scaling factors, and UI thresholds were frozen for the duration 
of the study.  

5.3 Subject Acceptance 
To study whether and how Mylar affects programmer productivity, 
we needed to be able to compare activity during a participant’s 
baseline period with their treatment period. For instance, if a 
participant was mostly coding during the baseline period and mostly 
testing during the treatment period, the two interaction histories 
would not be comparable. Since we were interested in comparing 
activity as a participant worked on multiple tasks, we also needed to 
ensure that both periods were long enough to encompass typical 
tasks.  
Based on these goals, we defined criteria for a participant to be 
included in our analysis. The first was to ensure an appropriate 
amount of programming by setting the thresholds on edit events, as 
was done in determining when to move a participant from the 
baseline to the treatment period. The second was to ensure that the 
effects of learning to use Mylar did not overly bias the usage data. To 
meet these criteria, our threshold of acceptance of a participant for 
analysis was 3000 edit events, a tripling of the baseline to treatment 
threshold. We refer to a participant who was accepted for analysis as 
a subject. We standardized on the number of events rather than the 
time spent programming in order to account for variations in the rate 
at which different programmers work.  
Of the 99 initial participants, 16 met the criteria to be considered 
subjects. This 1 in 6 ratio is indicative of the challenge we had in 
recruiting subjects: industry developers have little time to try out new 
                                                                 
 
7 1000 edit events corresponded to approximately 1-3 weeks of full-

time programming based on trials of individuals in our lab. 
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tools unless they perceive an immediate and concrete benefit. The 
minimum 2 week delay in getting the Mylar UI was one contribution 
to the drop-off, as was the need to use Mylar continuously in daily 
work that resulted from the 3000 edit event acceptance criteria.  
Feedback from the cross section of participants indicated that those 
who did not meet the criteria did not program as much during this 
period, did not use Bugzilla which is the only issue tracker Mylar 0.3 
integrated with, or stopped using the tool after they encountered a 
bug or incompatibility with another Eclipse plug-in they were using.  

5.4 Results 
To analyze subjects’ interaction histories we created a reporting 
framework that allowed us to ‘play back’ interaction to reproduce 
usage patterns and gather statistics. We used this framework to 
analyze the effect of Mylar on what programmers did and how they 
did it. The tuning of the scaling factors and thresholds for the study is 
discussed in Section 6.2.1. 

5.4.1 Quantitative Analysis: Edit Ratio 
Our focus for the study was to measure the effect of Mylar on 
programmer productivity. We approximate productivity by 
comparing the amount of code editing that programmers do with the 
amount of browsing, navigating, and searching. To capture this 
behavior, we define the edit ratio [17], which is the relative amount 
of edit vs. selection events in any interaction history (i.e., 
edits/selections). Edit ratio treats interaction with any kind of artifacts 
consistently, whether the artifact type is source code, binary libraries, 
or other kinds of files.  

Table 4: Field study data and percentage improvement (bold) 

id base. treat. delta explorer outline probs. hours tasks
3 2.9 7.8 172.0 25% 7% 0% 91.3 61
8 10.1 26.4 161.4 16% 0% 0% 71.3 30
6 14.1 36.0 155.8 0% 0% 41% 64.7 23
7 2.6 5.4 111.3 18% 5% 3% 44.4 54

12 2.7 5.4 102.3 3% 0% 0% 24.4 5
15 1.7 3.3 91.7 0% 0% 0% 25.3 3
16 8.8 13.0 47.7 30% 14% 0% 35.1 7
10 5.8 8.2 42.1 32% 22% 40% 11.3 6

2 11.3 14.8 30.8 8% 1% 0% 27.5 11
9 6.7 8.7 30.7 27% 0% 0% 43.4 12

13 6.8 7.4 9.7 14% 3% 0% 48.5 4
5 4.1 4.3 5.4 2% 3% 0% 6.5 12

11 2.2 2.2 3.5 6% 0% 6% 12.4 7
1 7.7 6.9 -10.2 25% 5% 0% 62.5 52

14 15.9 13.5 -14.7 0% 0% 0% 66.2 9
4 11.0 8.1 -26.6 0% 0% 0% 17.1 1

filtered  selections activityedit ratio

 
Table 4 shows the edit ratios for each of the subject’s baseline and 
treatment periods and highlights percentage change in the ratio. To 
determine whether there was statistical significance in the changes of 
edit ratios we normalized the edit ratios across individuals by taking 
the log of each, and performed a paired t-test. The result is 
statistically significant with p = 0.003, indicating that the use of our 
Mylar tool improves edit ratio. Given that our choice of acceptance 
criteria for a participant to be considered a subject in the study was 
somewhat arbitrary, we also wanted to verify if there was stability in 
this result for different acceptance criteria. We thus analyzed the edit 
ratios of programmers with both lower and higher thresholds of 
baseline and treatment edit event cut-offs. Statistical significance of 
the t-test (p < 0.05) holds until we include numerous individuals 
whose usage data indicates that they did not use Mylar beyond an 
initial experimentation, and until the threshold is turned up to the 
point where only six subjects remain.  

5.4.2 Qualitative Analysis  
Our main hypothesis is that Mylar improves programmer 
productivity by modeling the appropriate information to complete a 
task. The edit ratio analysis provided in the previous section provides 
evidence that for at least one measure, Mylar improves programmer 
productivity. In this section, we further analyze the content of the 
task contexts created by the programmers to determine whether or 
not the contexts were capturing the appropriate information. We 
consider the following questions: How accurately did the model 
capture the context of programmers’ tasks?  Did the programmers 
create and use multiple tasks that they returned to?  How much and in 
which views was filtering used? 

Accuracy 
Across the 16 subjects, we observed three notable trends in the 
selection of elements: 84.17% of the selections events were of 
elements in the model with a positive DOI (i.e., the elements were 
visible in a filtered view); 5.32% of the selections were of elements 
that had only a propagated or predicted interest (i.e., not previously 
selected or edited, but visible in either a filtered view, Active Search, 
or Active Hierarchy); and 2.06% of the selections were of elements 
with a negative DOI (i.e., the elements that decayed out of visibility 
in a filtered view). 
The first observation is indicative of the trend that programmers work 
on only a subset of the system artifacts, and provides evidence to 
confirm that a task context does capture the majority of the elements 
often used when working on the task. The number of propagated and 
predicted element selections is slightly lower than expected, in part 
due to our decision to not allow subjects to install the Active Search 
view until they had used Mylar for half of the treatment period’s 
threshold (1500 interaction events). We delayed the introduction of 
this view to avoid an overly steep initial learning curve. Once it was 
introduced, Active Search was used repeatedly by only five users. 
Qualitative feedback indicated several reasons for a lack of use 
including a confusing UI, performance bugs, lack of screen real-
estate, and the search reporting too many matches. Although the 
ability to automatically show related elements was promising, these 
problems need to be addressed before such a facility is integrated 
enough for daily use.  
The number of selections of elements with a negative DOI indicates 
that the decay scaling factor may have been tuned too high. In 
contrast, data about the use of the “Make Less Interesting” action 
indicates that at other times too many elements were being shown, 
since two subjects frequently used this action (225 times for user 3, 
210 for user 7, none for all others). This tension between data 
indicating that in some cases too much was shown, while in other 
cases too little was shown, highlights the difficulty of providing a 
fixed set of scaling factors for all tasks and all users (Section 6.2.1).  

Task Activity 
We designed our study around measuring the effects of task contexts, 
and unfortunately did not include sufficiently rich monitoring of the 
task activity meta-context to determine when the subjects recalled a 
specific previously worked-on task. However, we do know how often 
subjects switched tasks (Table 4). Although Mylar is designed around 
facilitating work with multiple tasks, it can be used with one active, 
often long-running task (i.e., subject 4, whose usage data indicates he 
or she worked on with the same task active across eight Eclipse 
sessions). We are encouraged by the fact that most subjects switched 
tasks multiple times during a work day (on average 2.3 tasks switches 
per active hour). Those with the largest improvement in edit ratio 
used tasks most heavily. Time active is an indication of how long the 
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subject worked with a task active, approximated by issuing a time out 
event when no interaction events had been observed for 3 minutes. 

View Filtering Usage 
Whenever a task was active in the treatment period, a task context 
was being formed and the UI of the IDE would show which elements 
were interesting through decoration (Section 4.1.2). To inform and 
guide the effectiveness of UI mechanisms by which we project the 
interest model onto the IDE, we also analyzed usage trends related to 
the view filtering and predicted interest facilities. The percentages of 
selections made with the view in filtered mode are visible in Table 4 
(for Package Explorer, Outline, and Problems views). Unfiltered 
selections result from either no task being active, or the task being 
active but the view in unfiltered mode. The regular use of the 
Package Explorer, the most used Eclipse view [19], by half of the 
subjects is encouraging. When a view is in unfiltered mode, many 
more selections are required to find the same information than when 
filtered due to the need to expand and collapse tree nodes.  This 
causes the percentage of selections in filtered mode appear lower 
than a programmer might actually perceive.  

5.5 Threats 
One threat to the accuracy of the study results is that the subjects are 
not representative of typical industry programmers. The incentive to 
participate in the study was gaining access to a preview release of 
Mylar, and as such this selection process was likely biased to early 
adopters of new programming technologies. Our study results must 
be viewed in terms of this potential weakness. Another threat is that 
we had no control over the tasks performed by subjects between 
baseline and treatment periods so their activity may have varied 
widely. This threat is addressed in part by the large amount of both 
baseline and treatment interaction we had for each subject, and 
consistency that we observed in interaction behavior between 
baseline and treatment periods (e.g., command and selection usage 
patterns). If programmers had worked on a single task across the 
baseline and treatment periods, changes in the edit ratio across the 
lifecycle of a single task could have been a problem. However, we 
have evidence of frequent task switching. Finally, bugs in interaction 
history creation, parsing, and analysis could skew results. Our 
bootstrapping, testing, ongoing use of the Mylar Monitor framework 
by ourselves and others is continuing to harden it against such errors.  
An objective and generic measure of industry programmers’ 
productivity is difficult as it depends on how a developer works (i.e., 
their process), what they work on (i.e., their domain) and how quality 
is measured in that domain. While a definitive measure of 
productivity is elusive, edit ratio provides us with a measure of effort 
spent writing code vs. effort spent looking for the information needed 
to write code. Since programmers chose to use the tool voluntarily, 
their choice to continue using it is also a positive indicator that the 
edit ratio metric approximates programmer productivity. 

6. DISCUSSION 
Mylar is now used daily by thousands of programmers8. The usage 
data and large volume of ongoing user feedback9 since the study have 
pointed out the following shortcomings. The usage has also 
uncovered surprises and misconceptions we had about the features 
that programmers need to work with task context. 
                                                                 
 
8 3150 average monthly installs recorded in first 6 months of 2006 
9 536 hundred bug and enhancement reports filed for 0.3.0-0.4.10 

6.1 Shortcomings 
6.1.1 Related Tasks 
Our model currently treats a task as an independent atomic unit. In 
practice, tasks are often related. Consider a programmer working on 
fixing a bug. The programmer creates and activates a task for the 
bug. As work progresses on the bug, the programmer identifies and 
begins work on a related bug before the first bug can be resolved. 
With our current model, the programmer has two choices: deactivate 
the first task and be forced to recreate the context when starting on 
the second bug, or do both tasks under the context of the first. Both 
choices are problematic, and while the latter is easier it is also more 
costly as the programmer cannot return to the context for just the 
second bug. Addressing this problem requires extending the model to 
support schemas for tasks (e.g., subtasks, sequences), and allowing 
the programmer to work on all or on the component tasks grouped by 
a parent context. 

6.1.2 Task Context Lifecycle 
Our model is oblivious to the lifecycle of a task. We use the same 
scaling factors and apply the same algorithms for operations whether 
a task is near its start and has a sparse context, or near its completion 
with a rich context. Making the model sensitive to a task’s lifecycle 
could further improve accuracy. For example, at the beginning of a 
task it may be beneficial to have a slower rate of decay, and 
suggestions for related structure could come from a broader degree of 
separation when the task context is small. Near the end of a task, the 
core set of information in the context has stabilized and the context 
contains more information. The size of the task context could be used 
to adapt the DOI function, scaling factors and degrees of separation, 
helping tailor the contents of the model to the task’s lifecycle. 

6.1.3 Forgetting Decay 
All of the user study release features used the same projection of the 
task context without modifying the DOI algorithm listed in Section 
2.2. However, this turned out to be insufficient for slicing operations 
pertaining to source revisions. To support a programmer committing 
only the changes for a particular task to the source code repository, 
the post-study Mylar 0.4 release provided Active Change Sets, which 
include all of the modified files in the task context (Figure 1-6). This 
allows the programmer to perform file synchronizations, updates and 
commits per-task. In order to ensure that modified files do not to 
disappear from the context, this slice only tests the events for each 
element without including decay, and as a result needs to compensate 
for the decay factor. A better parameterization of decay will provide 
additional flexibility needed by such slices. 

6.2 Surprises 
6.2.1 Scaling Factors 
A concern we had prior to starting the field study was that poorly 
tuned scaling factors could prevent the context model from capturing 
the information programmers needed, and that scaling factors might 
need to be personalized for different tasks types, programmers, and 
display resolutions. We decided not to expose a mechanism for a 
programmer to change the scaling factors because we believed that 
the problem of information overload was so severe for large system 
development that an approximate tuning would suffice. We chose an 
order of magnitude value for each setting (scaling factors: 1 for 
selections, 0.1, 0.01 for decay; interest thresholds: 0 for interesting, 
10 for landmark interest) and used it in our daily programming with 
Mylar. This resulted in slight variations within those orders of 
magnitude being set for release versions of Mylar (v0.3 and later). 
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Although we expected to change the scaling factors and thresholds 
based on feedback from the study participants, the values continue to 
work and remain unchanged (up to the current v0.6 release). As a 
result, we believe that a substantial improvement may require a more 
sophisticated tuning approach that adapts to properties such as the 
task’s lifecycle, the type of task and programming domains, and the 
user’s profile. Further study is necessary to determine how varying 
and adapting scaling factors affects the accuracy and precision of the 
context model.  

6.2.2 Multiple Active Tasks 
Our preliminary study data indicated that programmers needed 
support for working on multiple tasks concurrently. We interpreted 
this input as programmers needing to have multiple tasks active, and 
implemented support for this in Mylar (v0.2) by distributing 
interaction events among all active tasks. Feedback from the Mylar 
user community has indicated that our interpretation was wrong. 
Although our existing user base needs support for easily switching 
between tasks, they do not need support for working with tasks in 
parallel. The latter capability was removed in Mylar (v0.4), and 
instead we have focused on making task switching and recall easier. 

7. RELATED WORK 
The idea of using a DOI function to control which parts of a large set 
of structured data should be displayed to the user originated with 
Focus+Context and fisheye views [8], and was applied to tree views 
by Card [3]. Our motivation is similar. However, our DOI function 
differs as it is not a measure of proximity to a point of focus, but a 
measure of the frequency and recency of activity on specific 
elements and relations within the interaction history. In this section, 
we focus our comparison of related efforts to approaches for 
managing concerns that span module boundaries, approaches for 
monitoring programmer productivity, and task-centric information 
management.  

7.1 Concern Management 
Programmers have long used various forms of query tools, from grep 
to program databases [26], to locate code relevant to a task. More 
recently, several efforts have focused on the capture and persistence 
of descriptions of concerns, non-localized pieces of source required 
to perform a task, based on modularity properties, annotations in the 
code, or an external specification. For example, a Concern Graph 
[23] represents the key structure of code contributing to a concern, 
whereas JQuery [15] and CAT [10] refer to concerns in terms of 
queries across the code. In each of these cases, the burden to define 
the relevant structure is on the programmer. In contrast, Mylar 
captures the program elements relevant to a task (or concern) 
implicitly, reducing the cost and effort of using the approach. 

7.2 Monitoring Programmer Activity 
Many IDE tools can show the programmer structural context for the 
currently selected element, starting perhaps with Interlisp’s 
Masterscope [26]. Providing a richer context than the currently 
selected element involves monitoring the user’s interaction. In the 
document editing domain, the Edit and Read Wear tool was one of 
the first to do this by highlighting editing and selection patterns 
across a set of documents [13]. Just-in-time information retrieval 
agents provide a mechanism for searching information related to a 
user’s context [22]. Hilbert has described a framework for collecting 
interaction history data by monitoring application events [12]. Mylar 
v0.1 [17] and subsequently Wear-Based Filtering expanded this to 
the programming domain by using interaction frequency to highlight 

the elements of interest in the IDE UI [5]. Team Tracks builds on this 
by using interaction with program elements to drive a recommender 
that can suggest to other members of the team which program 
elements may be of interest [4]. Context can also be inferred from 
analyzing navigation paths through a concern graph [24]. Recent 
Focus+Context UML visualization, in which “A class is displayed at 
a particular level of detail using a degree of interest (DOI) function 
based on the frequency of access to a particular class and its distance 
from the current object in focus”, capture a notion of interaction [14].  
In contrast, we make tasks a first class part of both interaction and 
context, support direct and indirect interaction for both artifacts and 
tasks themselves, and enable novel operations such as propagation, 
prediction, slicing, and projection. Our task context model captures 
an interaction-based DOI for both elements and relations, and can be 
mapped to any domain structure. 

7.3 Task-centric information management 
Some of the foundations on managing the context of documents in a 
task-centric way come from the Placeless and Presto projects from 
Xerox PARC [6]. However, these systems required people to 
manually categorize their files rather than building up context 
implicitly. The most directly related task management system is 
UMEA, which monitors user activities in a desktop environment to 
create “project spaces” [16]. The Task Tracer system is similar, 
categorizing each event with the Microsoft Windows and Office 
system according to a task, and using this to build up a profile for the 
task [7]. This profile captures the number of interactions with a 
resource, at the granularity of files and URLs. In contrast, Mylar 
supports structured data and provides a task context model and DOI 
ranking. More recent work on Task Tracer has demonstrated the 
ability to automatically infer task switches, and to use Bayesian 
learning to predict the user’s context [25]. Although the task context 
model may provide a useful input to such approaches, this and other 
machine learning mechanisms to inferring context [11] are different 
from our approach of making context a direct and predictable 
translation of user behavior and structural relations. 

8. CONCLUSION 
Development environments have provided programmers with the 
compiler’s view of the system: displaying the current file being 
edited and compiled, providing browsing views of the entire 
containment hierarchy, and allowing navigation of the type 
hierarchy. While these approaches are sufficient for small systems 
with good modularity, they are not sufficient for the moderate and 
large systems on which many programmers work. Although the 
complexity of systems continues to increase, the ability of 
programmers to handle complexity does not. To address this 
mismatch we provide a model of task context that can be layered 
over the existing structure models in the IDE and alongside with 
integrated task management facilities. We have tested the model on 
industry programmers, finding both quantitative and qualitative 
evidence that the use of task context can make programmers more 
productive.  

9. ACKNOWLEDGEMENTS 
This work was supported by IBM CAS and NSERC. We thank 
Christopher Dutchyn, Leah Findlater and Thomas Fritz for their 
reviews, the study subjects for their participation, and the Mylar users 
for their ongoing input.  

10



10. REFERENCES 
[1] Backus, J.W. Automatic programming: properties and 

performance of FORTRAN systems I and II. Proceedings of the 
Symposium on the Mechanisation of Thought Processes, The 
National Physical Laboratory, 1958. 

[2] Bellotti, V., Dalal, B., Good, N., Bobrow, D. G., Ducheneaut, 
N. What a to-do: studies of task management towards the design 
of a personal task list manager. Proceedings of the Conference 
on Human Factors in Computing Systems. p. 735-742. 2004. 

[3] Card, S. K. and D. Nation. Degree-of-Interest Trees: A 
Component of an Attention-Reactive User Interface. Advanced 
Visual Interfaces Conference, 2002. 

[4] DeLine, R., Czerwinski, C. and Robertson, G. Easing program 
comprehension by sharing navigation data.  Proceedings of 
IEEE Symposium on Visual Languages & Human-Centered 
Computing. p. 241-248, 2005. 

[5] DeLine, R. Khella, A. Czerwinski, M. Robertson, G. 
Visualization frameworks and empirical evaluation: Towards 
understanding programs through wear-based filtering. 
Proceedings of the 2004 ACM Symposium on Software 
Visualization. p. 183-192, 2005. 

[6] Dourish, P., Edwards, W. K., LaMarca, A., Salisbury, M. Using 
properties for uniform interaction in the Presto document 
system. Proceedings of the 12th Annual ACM Symposium on 
User Interface Software and Technology. p. 55-64. 1999.  

[7] Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin, 
M., Li, L., Herlocker, J.L.. TaskTracer: A Desktop Environment 
to Support Multi-tasking Knowledge Workers. International 
Conference on Intelligent User Interfaces. p. 75-82, 2005. 

[8] Furnas, G.W. Generalized fisheye views. Proceedings of the 
Conference on Human Factors in Computing Systems. p.16-23, 
1986. 

[9] Gonzales, V.M., Mark, G. Constant, constant, multi-tasking 
craziness: managing multiple working spheres. Proceedings of 
the Conference on Human Factors in Computing Systems.  
p. 113-120, 2004. 

[10] Harrison, W., Ossher, H., Tarr, P., Kruskal, V. and Tip, F. CAT: 
A Toolkit for Assembling Concerns. Research Report 
RC22686, IBM, Yorktown Heights, NY, Dec. 2002. 

[11] Hijikata, Y. User modeling II: Implicit user profiling for on 
demand relevance feedback. Proceedings of the 9th 
international conference on Intelligent User Interfaces. p. 198-
205, 2004. 

[12] Hilbert, D. M., Redmiles, D.F. Separating the wheat from the 
chaff in Internet-mediated user feedback expectation-driven 
event monitoring. ACM SIGGROUP Bulletin. p. 35-40,1999. 

[13] Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless, T. 
Edit wear and read wear. Proceedings of the Conference on 
Human Factors and Computing Systems, p. 2-9. 1992. 

[14] Jacobs, T. Musial, B. Debugging and finding faults: Interactive 
visual debugging with UML. Proceedings of the 2003 ACM 
Symposium on Software Visualization. p. 115-122, 2003. 

[15] Janzen, D. and de Volder, K. Programming With Crosscutting 
Effective Views, Proceedings of the European Conference on 
Object-Oriented Programming. p. 195-218, 2004. 

[16] Kaptelinin, V. Integrating tools and tasks: UMEA: translating 
interaction histories into project contexts. Proceedings of the 
Conference on Human Factors in Computing System. p. 353-
360, 2003. 

[17] Kersten, M., Murphy, G. C., Mylar: a degree-of-interest model 
for IDEs. Proceedings of the 4th international conference on 
Aspect-Oriented Software Development. p. 159-168, 2005. 

[18] Merriam-Webster’s collegiate dictionary (11th ed.), Springfield, 
MA: Merriam-Webster. 2003. 

[19] Murphy, G. C., Kersten, M., Findlater, L., How are Java 
Software Developers using the Eclipse IDE?  IEEE Software. 
Vol. 23, No. 5. 2006. 

[20] Murphy, G., Kersten, M., Robillard, M. and Cubranic, D. The 
Emergent Structure of Development Tasks. Proceedings of the 
European Conference on Object-Oriented Programming. p. 33-
48, 2005. 

[21] Parnas D. L., On the Criteria to be Used in Decomposing 
Systems into Modules, Communications of the ACM, Vol. 15, 
No. 12, 1972. 

[22] Rhodes, B. and Maes, P. Just-in-time information retrieval 
agents. IBM Systems Journal special issue on the MIT Media 
Laboratory, 39(3-4):685-704, 2000. 

[23] Robillard, M. P., and Murphy, G.C.. Concern Graphs: Finding 
and Describing Concerns Using Structural Program 
Dependencies. IEEE 24th International Conference on Software 
Engineering. p. 406-416, 2002. 

[24] Robillard, M.P., Automatic Generation of Suggestions for 
Program Investigation. Proceedings of the Joint European 
Software Engineering Conference and ACM Symposium on the 
Foundations of Software Engineering, p. 11-20, 2005. 

[25] Shen, J., Li, L., Dietterich, T.G., Herlocker, J.L., A hybrid 
learning system for recognizing user tasks from desk activities 
and email messages. International Conference on Intelligent 
User Interfaces. p. 86-92, 2006. 

[26] Teitelman, W. and Masinter, L. The Interlisp programming 
environment. IEEE Computer, vol. 14, 25-34, 1981. 

 

11


