
Using Task Context to Improve Programmer Productivity
Mik Kersten and Gail C. Murphy

University of British Columbia
201-2366 Main Mall, Vancouver, BC V6T 1Z4 Canada

{beatmik, murphy} at cs.ubc.ca

ABSTRACT
When working on a large software system, a programmer typically
spends an inordinate amount of time sifting through thousands of
artifacts to find just the subset of information needed to complete an
assigned task. All too often, before completing the task the
programmer must switch to working on a different task. These task
switches waste time as the programmer must repeatedly find and
identify the information relevant to the task-at-hand. In this paper, we
present a mechanism that captures, models, and persists the elements
and relations relevant to a task. We show how our task context model
reduces information overload and focuses a programmer’s work by
filtering and ranking the information presented by the development
environment. A task context is created by monitoring a programmer’s
activity and extracting the structural relationships of program
artifacts. Operations on task contexts integrate with development
environment features, such as structure display, search, and change
management. We have validated our approach with a longitudinal
field study of Mylar, our implementation of task context for the
Eclipse development environment. We report a statistically
significant improvement in the productivity of 16 industry
programmers who voluntarily used Mylar for their daily work.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
integrated environments, programmer workbench.

General Terms
Algorithms, Experimentation, Human Factors

Keywords
IDE, task management, interaction history, program views, degree-
of-interest

1. INTRODUCTION
Modularity enables programmers to develop and evolve complex
software systems. Modularity in programming languages, for
instance, enables separate compilation [1], making it tractable to
modify and test a small part of a system. Design modularity enables
parallel development, making it tractable to develop large systems in
less time [21]. Development environments use modularity to present
views of a system in support of a programmer’s tasks, such as bug
fixes and feature additions. For example, a common way to access

Java1 code in the Eclipse2 Integrated Development Environment
(IDE) is through a view of the containment hierarchy called the
Package Explorer, which shows the modular structure of projects,
packages, files, and classes. Eclipse also presents search results in
terms of the system’s hierarchical structure. Current development
environments, including Eclipse, appear to encode two assumptions:
a programmer will often be able to find a desired piece of the system
by traversing the modular structure, and modifications will often fit
within the modular structure so that once the point of interest is
identified it will be relatively easy to perform the desired
modification.
We have observed two problems with these assumptions. First, many
modifications to a system are not limited to one module. For
example, we found that over 90% of the changes committed to the
Eclipse and Mozilla3 source repositories over a period of one year
involved changes to more than one file [20]. We then selected 20
changes from Eclipse and found that 25% of these transactions
involved significantly non-local changes. Second, even when the
actual changes related to a modification are within some form of
module, say one Java package, a programmer often needs to know
how this module works within the system, requiring them to access
many other modules and understand their interconnections [24]. The
result is that a programmer must spend an inordinate amount of time
navigating around the modularity-based views in an IDE to access
the information needed to complete a particular task.
If a programmer worked on only one task at a time, the mismatch
between the organization of information in the IDE and the
programmer’s needs might just be annoying. In practice,
programmers often work on multiple tasks during a typical work day
[9]. A programmer is constantly looking for the information needed
to work on a particular task, setting up their workspace, and all too
often before completing the task must perform similar steps for
another task, only to again redo the same work when returning to the
first task. This constant need to re-create the context of the task
reduces the programmer’s productivity.
We have been investigating how an explicit representation of the
information related to a task can alleviate this mismatch and can help
improve a programmer’s productivity. In an initial exploration, we
demonstrated how we can transform data about how a programmer
interacts with system artifacts into a degree-of-interest (DOI)
weighting for each program element [17]. We showed how to use this
weighting to complement the way modern IDEs display modular
structure by focusing views and editors on only the relevant
modularity instead of displaying the modularity of the system as a
whole. In a preliminary study we performed of this approach on six

1 http://java.sun.com/reference verified 01/09/06
2 http://www.eclipse.org verified 01/09/06
3 http://www.mozilla.org verified 01/09/06

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright ACM 2006 1-59593-468-5/06/0011…$5.00.

1

industry programmers, we found that despite promising results the
approach had critical shortcomings:

• The model needed to incorporate tasks explicitly because a
programmer often works on, and switches between, multiple
tasks.

• The model needed to include related artifacts that were not
directly accessed by the programmer but that could also be of
interest for the task-at-hand.

In this paper, we report on how we overcame these shortcomings by
expanding and refining the concept of a DOI function based on
programmer interaction, and by creating and validating a new model
that includes an explicit representation of task and contexts. A task
context represents the program elements and relationships relevant to
completing a particular task. We have progressed from the simple
weighting model used in our earlier approach and in other tools
(Section 7) to a more sophisticated weighting based on both direct
and indirect interactions that occur with program elements, relations
between elements, and the programming tasks themselves. Previous
work, including our own, considered only elements and direct
interactions (see Section 7).
In this paper we present a generic description of our task context
model (Section 2) and describe operations that can be performed on
the model to focus programming tools (Section 3). Our Mylar tool4
(v0.3 to the current v0.6) implements our approach by extending the
Eclipse IDE to make task context a first-class abstraction (Section 4).
We validated our new model through a field study in which 16
industry Java programmers used Mylar for multiple weeks of their
daily work (Section 5). We describe how the use of Mylar results in a
statistically significant increase in a programmer’s edit ratio: a
measure of the amount of editing versus the number of selections
performed by the programmer. We conclude the paper by discussing
the benefits and limitations of our task context model (Section 6) and
comparing our model to earlier efforts (Section 7).

1.1 Example
To give a flavor for our approach, we provide an overview of what it
is like to use our Mylar tool. The scenario involves a Java

4 http://eclipse.org/mylar, verified 01/09/06

programmer using Mylar on a code base with over one thousand
classes. One task on which the programmer is working is an
improvement to the code base of the system.

Task-1: Refactor ResourceStructureBridge

This task involves identifying, inspecting and changing all of the
clients of ResourceStructureBridge. In a Mylar-specific
view, the programmer has named this task and selected it to indicate
that it is the active task (i.e., in the Task List view the task has a solid
dot next to it, Figure 1-1). Activating the task causes Mylar to track
the parts of the system artifacts⎯the program elements and
relationships⎯that the programmer accesses while working on this
task. From this interaction, Mylar builds a model of the task context.
Mylar uses the explicitly modeled task context as a parameter to a
filtering operation that shows the programmer only the information
needed to complete the task. For example, even though the code base
contains over 1000 classes and numerous other kinds of artifacts,
only the artifacts relevant to the current task context are visible in a
hierarchical modularity-based view of the system structure (the
Package Explorer, Figure 1-3); all other elements are elided from the
view. This view also indicates the relevance of elements to the task
context by making the most relevant bold. As an example of another
operation on a task context, Mylar expands the task context to
include structurally related elements of potential interest (the Active
Search view, Figure 1-4).
As the programmer is working on Task-1 a new high priority bug is
assigned to him that must be attended to immediately.

Task-2: Fix NPE in SynchronizeReportsAction.
Using Mylar’s Task List view, the programmer activates the second
task (view Figure 1-5), causing the context of the first to be stored
and all files in the context to be closed. As the programmer starts
working, a context starts building up for the second task. The IDE
views are now filtered according to the second task context, although
the underlying system information has not changed. To return to the
first task, the programmer simply needs to reactivate it, causing the
views and editors to return to the state visible on the left of Figure 1.

2. TASK CONTEXT MODEL
We define a task as “a usually assigned piece of work often to be
finished within a certain time” [18]. For a programmer, tasks include
bug fixes, feature additions, and code base explorations. Some of
these tasks are short-lived, requiring only a few minutes to complete;

Figure 1: Task context in Mylar while working on Task-1 (left), and shortly after activating Task-2 (right)

2

others are longer-lived, sometimes being worked on each day over
the course of weeks or months. We focus on this atomic unit of a
task. Higher-level abstractions and organization of tasks, such as
hierarchies and sequences of task [2], can be layered on top.

In our approach, a task context is the information⎯a graph of
elements and relationships of program artifacts⎯that a programmer
needs to know to complete that task. Each element and relationship in
the model corresponds to a weighting of its relevance to that task. For
example, Task-2 includes the Java class of interest, all methods that
refer to the class, any tests of the class and the XML elements that
refer to it. The elements with highest relevance will be those that the
programmer edited and selected most. We form a task context from
the interactions that a programmer has with system artifacts and from
the structure of those artifacts. In this section, we describe the
interaction stream and algorithm that we apply to the stream to create
a task context. In Section 3 we sketch operations on and with task
contexts that can be used to facilitate a programmer’s interaction with
system artifacts. After presenting the model and operations, we then
describe how we have realized this model in the Eclipse IDE (Section
4).

2.1 Encoding Interaction
We derive a task context from an interaction history, which is a
sequence of interaction events that describe accesses of and
operations performed on a software program’s artifacts. Each event
captures six pieces of information (Table 1).

Table 1: Interaction event data

Time The time of the event occurrence

Kind Classification of event (Table 2)

Origin Identifier describing the UI affordance or tool that
caused the creation of the event

Content
Type

Identifier describing the kind of element operated
upon.

Handle Identifier for the target element

Delta State change that occurred with the event

Some interaction events are the result of the programmer’s direct
interactions with program elements. For instance, a programmer may
select a particular Java method to view its source, edit it, and then
save the file containing it. Each of these actions corresponds to an
event of a different kind being appended to the interaction history
(Table 2).
Other interaction events are indirect, where program elements and
relationship are affected without being directly selected or edited by
the programmer. For example, when working on Task-1, the
programmer refactors the name of the
ResourceStructureBridge class, causing all of the elements
referring to that class to be updated. Each referring element updated
through the refactoring results in an indirect propagation of the edit
being appended to the interaction history. When the programmer
directly selects the getContentType method (Figure 1-2), each
containing parent of that method (its class, source file, package,
source folder, and containing project) becomes relevant to the context
and a propagation of the selection is appended for each parent.

Table 2: Classification of interaction events

event kind mode description

selection
direct Editor and view selections via mouse

or keyboard

edit Textual and graphical edits

command Operations such as saving, building,
preference setting

propagation Interaction propagates to structurally
related elements

prediction
indirect

Capture of potential future
interaction events

The model also support prediction events, which describe possible
future interactions that a tool anticipates the programmer might
perform. An example of prediction is an event describing that a test
may be of interest to the current task because it references a class in
the task context. Table 3 sketches the sequence of interaction events
that result from the programmer’s initial work on Task-1. For
simplicity, we use an event number to stand in for the time field of an
interaction event.

Table 3: Sample interaction history

event kind origin Target(s)
1 selection Package

Explorer
ResourceStructure
Bridge class

2..5 propa-
gation

Package
Explorer

.java file, package, source
folder, project

6 com-
mand

Rename
refactoring

ResourceStructure
Bridge class

7 edit Java Editor ResourceStructure
Bridge declaration

8..16 propa-
gation

Refactoring
monitor

4 XML and 5 Java references
to Resource
StructureBridge

2.2 Constructing a Task Context
We derive a task’s context by processing an interaction history that
describes the activity performed for a task. Each event from the
corresponding portion of the interaction history contributes to a graph
that represents the task context. If the handle of an event being
processed refers to an element not yet represented in the graph, a
node for the element is added to the graph. A selection event from the
interaction history contributes an edge to the graph when the target
element of the current selection event is structurally related to the
target element of the last selection event processed. For example, if a
programmer navigates from a method call to its declaration, the
interaction history will contain the selection of the caller followed
later by a selection of the callee. This results in an edge representing
the Java reference relation between the two corresponding element
nodes. The graph of task context can contain cycles (e.g., as a result
of navigating recursive method calls) and can have multiple edges
between nodes (e.g., both reference and inheritance).
We use a task’s interaction history to compute a weighting for each
element in the task context. The weighting is a real number value
representing the element’s degree-of-interest (DOI) for the task. This
DOI value is based on the frequency of interactions with the element
and a measure of the interactions’ recency. The frequency is
determined by the number of interaction events that refer to the
element as a target. Each event kind has a different scaling factor
constant, resulting in different weightings for different kinds of
interaction. Recency is defined by a decay that is proportional to the

3

position in the event stream of the first interaction with the element;
like frequency, recency is also scaled. Algorithm 1 is a naïve but
clear representation of how we compute a DOI value for an element
with an interaction history events sequence that contains one or more
events with the element as the target. We iterate over a subsequence
consisting of just the events involving the element (line 4), increment
the interest value of the element based on the kind of the current
event (line 5) and if the interest has not offset the decay, reset the
decay to start at the last interaction with the element (lines 7-9). This
algorithm ensures that elements which have decayed to a negative
interest have their interest become positive when interacted with
again.
DOI(element, events)
1 elementEvents = WITH-TARGET(element, events)
2 decayStart = elementEvents[0]
3 interest = 0
4 for each event in elementEvents
5 interest += SCALING(KIND(event))
6 currDecay = DECAY(decayStart, event, events)
7 if interest < currDecay then
8 decayStart = event // reset decay
9 interest = SCALING(KIND(event)) // reset interest
10 totalDecay = DECAY(decayStart, LAST(events), events)
11 return interest – totalDecay

DECAY(fromEvent, toEvent, eventSeq)
12 decayEvents = SUBSEQ(fromEvent, toEvent, eventSeq)
13 return |decayEvents| * SCALING(KIND-DECAY)

Algorithm 1: DOI for Task Context
The SCALING function returns the constant associated with each
event kind and with KIND-DECAY. The DECAY function
computes the decay to be proportional to the size of the SUBSEQ
subsequence from decayStart to the most recent event, and includes
events not in elementEvents. As an example, consider how the
interaction history from Table 3 contributes to the weighting of the
ResourceStructureBridge element, most recently edited at
event 7. Assuming SCALING returns 1 for selections, 0 for
commands, 2 for edits, and 0.1 for KIND-DECAY, and noting that
there were no propagated events with that element, the three
iterations through the loop will result in 1+0+2 = 3 for interest, and
(16-1)(0.1) for totalDecay, resulting in a DOI of 1.5. If 30 more
interactions happened with another element the DOI value would
become -1.5. A subsequent selection would cause the DOI to be reset
to 1 – 0.1 = 0.9.
A relation in the graph is composed of source and a target element.
The DOI of a relation is computed using the same DOI algorithm, by
means of the relation’s target element:
 DOI-R(relation, events) = DOI(TARGET(relation), events)
For example, if a programmer navigates repeatedly between a
method call and its declaration, the DOI of that relation will increase
from repeated selections of the declaration. If the programmer
navigates ‘back’ and ‘forward’ between the two several times, the
two resulting directed edges with both have the same DOI.
Our construction algorithm for task context takes as input any
sequential stream of interaction events whether it is being gathered
on-line or was stored off-line and reloaded. At any point in the
construction process, each node and edge in the task context’s graph
can be queried for its DOI value; this value is computed from the
interaction history associated with the task context available when the

query is made. Task context can thus be built interactively as a
programmer works, or recreated by parsing a previously stored
interaction history.

2.3 Task Activity Context
To correlate each context to a particular task and to support multiple
task contexts, a mechanism for associating interaction events with
tasks is needed. We achieve this by capturing a separate stream of
interaction events in which the target elements are tasks instead of
system artifacts. We use the term task activity context to describe the
programmer’s interaction with tasks. A task activity context is a
meta-context over task contexts.
We process the interaction history for the task activity context the
same as we do a task context. Interaction events can be direct or
indirect. For example, a programmer can indicate that work should be
associated with a particular task by opening a bug report; this action
causes a selection event on that task. Each task can have a reminder
date; setting a new reminder causes an edit event on the task and can
cause a future prediction event. The act of a programmer switching to
another application window causes a command event that indicates
work on a task has stopped. Since the model and algorithm for a task
activity context is identical to that of task contexts, the operations
discussed in the next section also apply at this meta-level.

3. TASK CONTEXT OPERATIONS
We can use the information in a task context as input to various
operations that help focus the IDE’s display of information and
automate the retrieval of information specific to completing a
programming task. These operations fall under two categories: those
which operate on one or more contexts, and those which use a
context to operate on the system’s artifacts.

3.1 Operating on Task Contexts
Although a task context scopes the amount of information with which
a developer works, it can still be too large or contain too many
different kinds of elements and relations to assist with particular
programming activities, such as unit testing. We use the term slicing
to refer to an operation that produces a subset of a given task context.
Sometimes the opposite is true and a single task context may not
contain all of the relevant information needed for an activity, such as
a code review. We use the term composition to refer to operations
that produce a composite task context from individual task contexts.
To enable a programmer to tailor a task context manually we also
support manipulation operations.

3.1.1 Slicing
Task context slicing is an operation that takes as input a task context
and outputs all elements and relations of the context that meet a
particular constraint. A constraint can test the kinds of interactions
associated with elements or relations in the context (e.g., include
elements that were edited), DOI values (e.g., include elements and
relations with a high DOI), or the underlying information (e.g.
include elements that are Java methods). For example, a slice with
the constraint to include all interesting files that have interaction
events of the kind edit can determine which files to include in a
source code commit.

3.1.2 Composition
Each interaction history corresponds to a single task. However, some
programming activities can require displaying the context of several
tasks simultaneously. For example, the programmer might want to
create a composite context from Task-1 and Task-2 (Section 1.1) to

4

perform a code review of programming activity. The composition
operation takes as input one or more task contexts, and combines
them to form a single composite context. The operation forms a
union of all of the interaction events of both contexts, which produces
a composite context where the DOI function includes interaction
from each context in computing the value and inclusion of the
elements and relation.

3.1.3 Manipulation
Our DOI function provides an approximation of interest, and can
produce a value that fails to match the programmer’s expectation
either by being tuned incorrectly or by failing to monitor a relevant
interaction (e.g., one performed outside of the Eclipse). We provide a
mechanism for directly manipulating a task context by allowing the
programmer to issue command events that result in predictable
changes in the model. For example, if an element is interesting but
should not be, a “Make Less Interesting” command can issue the
interaction events to reduce the interest of that element.

3.2 Operating with Task Contexts
The creation of task contexts allows a programmer to build up an
appropriate set of information needed to work on a task. We can use
that task context to filter the amount of information presented to a
programmer by projecting a context onto the system artifacts, and
can also use it to predict information that may also be relevant to
completing the task.

3.2.1 Projection
We can project a task context onto any data structure containing
similarly structured elements and relations. A projection operation
allows us to use the DOI values from the task context to create a
weighted version of the target data structure. This is the operation
with which we filter information not relevant to the task in the IDE’s
views. It can be combined with context slicing if the display
mechanism is focused on displaying one kind of element or one kind
of relation. For example, our Mylar tool projects a task context onto a
hierarchical view of system structure (the Package Explorer, Figure
1-3) to show only elements with a positive interest in the current task
context, eliding all uninteresting elements. Similarly, a projection of a
task context onto a table can be used to sort elements by interest.

3.2.2 Prediction
A significant fraction of the commands executed by programmers are
commands to look for related elements to grow a task context [19].
We can use the information in a task context to predict what elements
might be relevant to completing the task, but with which the
programmer has not yet interacted directly. For example, if the
programmer is working on a Java class, and that class is referred by
an XML element, that XML element can get a predicted interest if a
tool determines that it is likely to be part of the task context at a
future time. These predictions come from running automatic searches
on the programmer’s behalf, and can use context slices as both input
and scope for the searches. The output of the prediction operation is a
set of interaction events, each of which corresponds to a search result
(Section 4.2.1), and each is added to the interaction history as
prediction. This approach ensures that results are ranked using the
DOI function, with less frequent results decaying in interest while
more recent and more frequent results yield a higher interest.

4. ADDING TASK CONTEXT TO THE IDE
To support investigations into the effect that an explicit task context
has on programmer productivity, we needed a high-fidelity

integration of task context with an IDE. Mylar (v0.3 and later)
implements the task context model for the Eclipse IDE.5 In this
section, we describe relevant UI features of Eclipse that have been
extended or altered with task contexts and present an overview of key
decisions and implementation details in the implementation of the
tool.

4.1 Integration
The Mylar IDE integration allows programmers to work with task
context in almost every commonly used [19] part of the Eclipse IDE:
it provides DOI-based element decoration in all structure views that
display Java, XML, and files; DOI-based filtering in all applicable
tree and list views (Package Explorer, Document Outline, Navigator,
Search, Members and Types); DOI-based ranking of elements and
relationships in tables views (Content Assist and Problems view); and
DOI-based folding in the editor. In addition, Mylar adds facilities
specific to task context, including an Active Search view that shows
relations and elements of predicted interest, an Active Test Suite that
creates and runs all unit tests in the task context, and an Active
Hierarchy view that shows the inheritance context of the task.

4.1.1 Supporting Task Management
IDEs provide facilities for working with files and with the structure
of those files. To integrate tasks and contexts with the way that
programmers work in the IDE, we added similar facilities for
working with tasks, including a view for managing tasks (Task List,
Figure 1-1), mechanisms for sharing and synchronizing tasks
(Bugzilla6 task/issue tracker integration) and mechanisms for
working with a personalized view of shared tasks. The task
management tool support also includes a radio-button style toggle
that allows the programmer to easily indicate the task on which he is
currently working, and browser style back/forward lists to facilitate
multi-tasking. These facilities make it easy to work with tasks within
Eclipse, where Mylar monitors activity (Figure 1-1).

4.1.2 Focusing the IDE on Task Context
To focus the UI of the IDE on the elements relevant to completing
the programming task, the task context can be projected onto any
structure view or editor in the IDE. This process involves DOI-based
filtering and ranking. The example in Section 1.1 describes filtering
for views. For editors the filtering process is similar, but instead of
elements being hidden they are folded to hide their contents and only
elements in the task context are unfolded (Figure 1-2).
Ranking can be done for views that order elements, and involves
sorting each element in the view on its DOI value. For example,
Eclipse’s content assist provides a ranking of suggested completions
in the editor based on Java heuristics. Mylar projects DOI values onto
that ranking, adds a separator, and puts the elements contained in the
task context on top of the content assist list (Figure 1-2). A similar
mechanism works for table views such as the Problems list, in which
compiler warnings are sorted by their DOI relevance to the active
task context.
Decoration is a form of ranking that uses visual cues, such as text
style and background highlight color. Schemes for decoration can
display either a continuous or discrete range of DOI values. Highlight

5 Earlier versions did not support task context. This section describes

v0.3: http://eclipse.org/mylar/doc/new.php verified 01/09/06
6 http://bugzilla.org verified 01/09/06

5

decoration of element backgrounds based on DOI is not on by
default, but a user can set a different highlighter for each context, and
specify if the highlighter color gradients should be discrete or
continuous. Discrete interest decoration of element fonts is always on
when a task is active, and supports the following interest thresholds
(visible in Figure 1-3 and Figure 1-4): very interesting elements
called ‘landmarks’ that appear bold and black, directly interesting
elements that appear black, indirectly interesting elements that appear
gray and uninteresting elements that are filtered and that do not
appear at all. We support this with two interest thresholds: one for
landmark DOI values, and one for ‘interesting’ values. Threshold
tuning is discussed in Section 6.2.1.
In addition to focusing the UI of the IDE, Mylar also uses task
contexts to focus existing operations in the IDE. For example, it
extends Eclipse’s search mechanism to provide the option of
including only the active task context in textual and other searches.
Mylar also maintains a test suite that slices the active task context to
include all subtypes of junit.framework.TestCase, enabling
the programmer to run only the tests relevant to the task.

4.1.3 Predicting Interest and Active Search
The Active Search view surfaces the relations and predicted interest
elements in the task context (Figure 1-4). The input for Active Search
is a slice of the active task context for elements with a DOI value
over the landmark threshold. The scopes that Active Search uses are
slices of the context model; in the UI we refer to the different kinds
of scopes as degrees-of-separation. This term is indicative of the
‘distance’ from the highest interest elements, where distance is
defined both by DOI level and by containment relations. For
example, Active Search includes the following degrees-of-separation
for defining search scopes: landmarks, interesting elements,
interesting files, interesting project and dependencies of interesting
projects.
As a context grows, lowering the degree of separation is akin to
tightening the search scope to decrease the number of results. To
focus results the Active Search view uses the same ranking and
decoration mechanism as the other views.

4.2 Implementation Details
To test Mylar in an industry setting, the tool needed to scale up to
handle large systems with many kinds of program artifacts. We
achieved a suitable level of integration to support work on real
programming tasks through an architecture that bridges to the
standard Eclipse development tools. We achieved suitable
performance through mechanisms for storing and collapsing
interaction histories.

4.2.1 Bridge Architecture
While our task model is defined in terms of a generic set of
interaction events, the actual events need to be issued by a
mechanism that understands both domain structure (e.g., Java) and
the UI of the tool for working with that structure (e.g., the Eclipse UI
for Java development). We call this mechanism a bridge from the
context model to the domain structure. Each bridge handles a single
content type. We have created bridges for Java, two XML dialects
(Ant and Eclipse plug-in descriptors), generic files, and tasks.
A structure bridge is responsible for mapping elements and relations
in the task context to and from the domain structure of a particular
content type. This involves mapping context elements to domain
model elements and resolving relations between elements. Structure
bridges must also update the identity of elements in the model if

those elements move within the domain structure as a result of
refactoring. For example, the Java structure bridge integrates with
Eclipse’s Java model (derived from a Java AST), and is able to map
between the handle identifiers of Java elements in the task context
and the objects corresponding to those elements in the IDE. It
resolves the relations between Java elements including references,
inheritance, and read/write access of fields. When elements are
moved or refactored and their handle identifier changes, it notifies the
context model so that the identity of those elements can be preserved
and the previous interaction with that element maintained.
A UI bridge is responsible for monitoring interaction with the parts of
the IDE that it understands, such as Eclipse’s Java tools in the case of
the Java UI bridge. It maps the programmer’s interaction with the UI
to the interaction history schema of selections, edits, and commands.
These can include keystrokes in the Java editor, refactoring
commands, and element selections. Each UI bridge also specifies
which views and editors participate in the interest projection.
Figure 2 shows the dependency structure of a bridge implemented as
an Eclipse plug-in. The context plug-in provides the structure and
UI bridge extension points that the java plug-in uses to map and
display the concrete Java elements that the programmer is working
on. Bridges for other languages may exist instead of alongside the
bridges for Java. Bridges can also be composed. For example, the
java structure bridge extends the resource structure bridge (not
shown in Figure 2), which is responsible for understanding file and
directory structure.

Figure 2: Mylar plug-in architecture and Java bridge

4.2.2 Mapping to Interaction History
Bridges do not issue interaction events directly. For example, when a
propagated event needs to be issued for the parent of a selected
element, the bridge corresponding to the element is asked for the
identifier of \the parent, and the interaction history facility issues the
event. The same is true for predicted interest, where the relations may
be all Java references to a particular method. In this case resolving
the relation involves performing a Java search, returning the results,
which are then appended to the interaction history by the interaction
event facility.
To support voluntary use of the tool for daily work on real systems,
we needed to ensure that the interaction event architecture scaled to
large systems without excessive memory or performance overhead.
Task context grows with the amount of interaction, not with the
system size, ensuring scalability for large systems. Since the number
of propagation events can vary with system size, the number of
propagation steps is bounded by an exponential drop off that limits
the number of events issued from each interaction. The search scopes
used for prediction are proportional to the size of the context. .

6

4.2.3 Interaction History Storage
A storage mechanism is required to enable the recall of past contexts.
Since the interaction history particular to each task encapsulates all of
the information needed to derive the task context, the task context
model is not persisted. Instead, when a task is re-activated, the
corresponding interaction history stream, stored as an XML file, is re-
processed. We also store a single XML file of the same form for the
task activity context. In memory we maintain the meta-context and a
single composite context that allows any number of task contexts to
be loaded concurrently. As the programmer works interaction events
are appended to the corresponding XML file. If more than one
context is active the events are distributed evenly among the files
(Section 6.1.1). The approach of storing only the interaction insulates
the storage mechanism from the implementation, algorithm, and
processing method.
Early benchmarks indicated interaction history file sizes of 1-10MB
for a full workday of interaction. However, given our field study data
we estimated that programmers working full time generate roughly
1MB of interaction history information per month. The difference
comes from the large redundancy in interaction histories, that results
from repeated interaction with the same elements. To address this,
Mylar’s persistence support can collapse the interaction history for
any context. Collapse can be lossless if it uses run-length encoding,
or lossy if it produces aggregate events for all interactions of one kind
with a single element. On average the latter reduces file sizes by 10x.
Our remaining redundancy comes from storing interaction histories
as XML text files, and text compression yields another 10x file size
reduction. Since UI actions such as opening editors are the bottleneck
on task activation, we only compress contexts when interaction
histories are transferred over the network.

5. VALIDATION: FIELD STUDY
Previously, we reported on a preliminary user study we conducted in
which six industry programmers used an earlier version of our tool.
Mylar v0.1 used a primitive DOI weighting across all of a
programmer’s work [17]. We learned that programmers need
separate contexts for the different tasks on which they work and that
a simple weighting of the frequency of element selection is not
sufficient. Although this earlier study suggested our basic approach
had potential, we learned it was not ready for daily use in a
production environment, and lacked specific evidence that it
improved programmer productivity.
To answer the question of whether an explicit task context improves
programmer productivity, we conducted a longitudinal field study.
We chose a field study because the time-constrained tasks performed
on medium-sized systems possible in a laboratory setting are not
representative of the real long-term tasks performed on large systems
in industry.

5.1 Participants
The target subjects for our study were industry Java programmers
who used the Eclipse IDE. To solicit participation we presented a
prototype of the Mylar tool at an industry conference (EclipseCon,
March 2005) and advertised the study on a web page. Early access to
Mylar was only possible by signing up for our study through a web
form. 99 individuals signed up for the study over the 8 months
between the announcement and the conclusion of the study. The
majority of these individuals were industry programmers, about half
of them worked in organizations with more than 50 people and most
identified their industry sector as software manufacturing. A detailed
breakdown of the demographics of the individuals is available in our

report on how Java programmers use features of the Eclipse IDE
[19].

5.2 Method and Study Framework
We designed the field study to measure the effects of our tool within-
subjects. A participant joining our study was asked to install a subset
of the tool, called the Mylar Monitor, whose role is to transparently
capture and store a programmer’s interaction history without adding
anything to the Eclipse user interface. The monitor was extended
with a module that would periodically prompt the participant to
upload their interaction history as to a server at UBC, along with
exception logs and feedback. To ensure anonymity each participant
was assigned a unique identifier. To ensure privacy of the system
information any part of the interaction history referring to the
elements of what the participant worked on, such as Java type names,
was obfuscated using a one-way hash function. We refer to this
period of a participant’s involvement in the study as their baseline
period.
After the participant reached a certain threshold of interaction, which
we chose to be 1000 edit events7 and no less than two weeks of
activity, the participant was prompted as to whether they wanted to
install the Mylar task context and task focused UI features. Installing
Mylar moved a participant into the treatment phase of the study. As
before, the monitor periodically prompted the participant to upload
their interaction history to a server at UBC. A participant was also
notified when there were updates available for Mylar, including both
feature additions and bug fixes. We ran the study for four months,
July 6th to October 28, 2005 using Mylar v0.3. The task context
model, scaling factors, and UI thresholds were frozen for the duration
of the study.

5.3 Subject Acceptance
To study whether and how Mylar affects programmer productivity,
we needed to be able to compare activity during a participant’s
baseline period with their treatment period. For instance, if a
participant was mostly coding during the baseline period and mostly
testing during the treatment period, the two interaction histories
would not be comparable. Since we were interested in comparing
activity as a participant worked on multiple tasks, we also needed to
ensure that both periods were long enough to encompass typical
tasks.
Based on these goals, we defined criteria for a participant to be
included in our analysis. The first was to ensure an appropriate
amount of programming by setting the thresholds on edit events, as
was done in determining when to move a participant from the
baseline to the treatment period. The second was to ensure that the
effects of learning to use Mylar did not overly bias the usage data. To
meet these criteria, our threshold of acceptance of a participant for
analysis was 3000 edit events, a tripling of the baseline to treatment
threshold. We refer to a participant who was accepted for analysis as
a subject. We standardized on the number of events rather than the
time spent programming in order to account for variations in the rate
at which different programmers work.
Of the 99 initial participants, 16 met the criteria to be considered
subjects. This 1 in 6 ratio is indicative of the challenge we had in
recruiting subjects: industry developers have little time to try out new

7 1000 edit events corresponded to approximately 1-3 weeks of full-

time programming based on trials of individuals in our lab.

7

tools unless they perceive an immediate and concrete benefit. The
minimum 2 week delay in getting the Mylar UI was one contribution
to the drop-off, as was the need to use Mylar continuously in daily
work that resulted from the 3000 edit event acceptance criteria.
Feedback from the cross section of participants indicated that those
who did not meet the criteria did not program as much during this
period, did not use Bugzilla which is the only issue tracker Mylar 0.3
integrated with, or stopped using the tool after they encountered a
bug or incompatibility with another Eclipse plug-in they were using.

5.4 Results
To analyze subjects’ interaction histories we created a reporting
framework that allowed us to ‘play back’ interaction to reproduce
usage patterns and gather statistics. We used this framework to
analyze the effect of Mylar on what programmers did and how they
did it. The tuning of the scaling factors and thresholds for the study is
discussed in Section 6.2.1.

5.4.1 Quantitative Analysis: Edit Ratio
Our focus for the study was to measure the effect of Mylar on
programmer productivity. We approximate productivity by
comparing the amount of code editing that programmers do with the
amount of browsing, navigating, and searching. To capture this
behavior, we define the edit ratio [17], which is the relative amount
of edit vs. selection events in any interaction history (i.e.,
edits/selections). Edit ratio treats interaction with any kind of artifacts
consistently, whether the artifact type is source code, binary libraries,
or other kinds of files.

Table 4: Field study data and percentage improvement (bold)

id base. treat. delta explorer outline probs. hours tasks
3 2.9 7.8 172.0 25% 7% 0% 91.3 61
8 10.1 26.4 161.4 16% 0% 0% 71.3 30
6 14.1 36.0 155.8 0% 0% 41% 64.7 23
7 2.6 5.4 111.3 18% 5% 3% 44.4 54

12 2.7 5.4 102.3 3% 0% 0% 24.4 5
15 1.7 3.3 91.7 0% 0% 0% 25.3 3
16 8.8 13.0 47.7 30% 14% 0% 35.1 7
10 5.8 8.2 42.1 32% 22% 40% 11.3 6

2 11.3 14.8 30.8 8% 1% 0% 27.5 11
9 6.7 8.7 30.7 27% 0% 0% 43.4 12

13 6.8 7.4 9.7 14% 3% 0% 48.5 4
5 4.1 4.3 5.4 2% 3% 0% 6.5 12

11 2.2 2.2 3.5 6% 0% 6% 12.4 7
1 7.7 6.9 -10.2 25% 5% 0% 62.5 52

14 15.9 13.5 -14.7 0% 0% 0% 66.2 9
4 11.0 8.1 -26.6 0% 0% 0% 17.1 1

filtered selections activityedit ratio

Table 4 shows the edit ratios for each of the subject’s baseline and
treatment periods and highlights percentage change in the ratio. To
determine whether there was statistical significance in the changes of
edit ratios we normalized the edit ratios across individuals by taking
the log of each, and performed a paired t-test. The result is
statistically significant with p = 0.003, indicating that the use of our
Mylar tool improves edit ratio. Given that our choice of acceptance
criteria for a participant to be considered a subject in the study was
somewhat arbitrary, we also wanted to verify if there was stability in
this result for different acceptance criteria. We thus analyzed the edit
ratios of programmers with both lower and higher thresholds of
baseline and treatment edit event cut-offs. Statistical significance of
the t-test (p < 0.05) holds until we include numerous individuals
whose usage data indicates that they did not use Mylar beyond an
initial experimentation, and until the threshold is turned up to the
point where only six subjects remain.

5.4.2 Qualitative Analysis
Our main hypothesis is that Mylar improves programmer
productivity by modeling the appropriate information to complete a
task. The edit ratio analysis provided in the previous section provides
evidence that for at least one measure, Mylar improves programmer
productivity. In this section, we further analyze the content of the
task contexts created by the programmers to determine whether or
not the contexts were capturing the appropriate information. We
consider the following questions: How accurately did the model
capture the context of programmers’ tasks? Did the programmers
create and use multiple tasks that they returned to? How much and in
which views was filtering used?

Accuracy
Across the 16 subjects, we observed three notable trends in the
selection of elements: 84.17% of the selections events were of
elements in the model with a positive DOI (i.e., the elements were
visible in a filtered view); 5.32% of the selections were of elements
that had only a propagated or predicted interest (i.e., not previously
selected or edited, but visible in either a filtered view, Active Search,
or Active Hierarchy); and 2.06% of the selections were of elements
with a negative DOI (i.e., the elements that decayed out of visibility
in a filtered view).
The first observation is indicative of the trend that programmers work
on only a subset of the system artifacts, and provides evidence to
confirm that a task context does capture the majority of the elements
often used when working on the task. The number of propagated and
predicted element selections is slightly lower than expected, in part
due to our decision to not allow subjects to install the Active Search
view until they had used Mylar for half of the treatment period’s
threshold (1500 interaction events). We delayed the introduction of
this view to avoid an overly steep initial learning curve. Once it was
introduced, Active Search was used repeatedly by only five users.
Qualitative feedback indicated several reasons for a lack of use
including a confusing UI, performance bugs, lack of screen real-
estate, and the search reporting too many matches. Although the
ability to automatically show related elements was promising, these
problems need to be addressed before such a facility is integrated
enough for daily use.
The number of selections of elements with a negative DOI indicates
that the decay scaling factor may have been tuned too high. In
contrast, data about the use of the “Make Less Interesting” action
indicates that at other times too many elements were being shown,
since two subjects frequently used this action (225 times for user 3,
210 for user 7, none for all others). This tension between data
indicating that in some cases too much was shown, while in other
cases too little was shown, highlights the difficulty of providing a
fixed set of scaling factors for all tasks and all users (Section 6.2.1).

Task Activity
We designed our study around measuring the effects of task contexts,
and unfortunately did not include sufficiently rich monitoring of the
task activity meta-context to determine when the subjects recalled a
specific previously worked-on task. However, we do know how often
subjects switched tasks (Table 4). Although Mylar is designed around
facilitating work with multiple tasks, it can be used with one active,
often long-running task (i.e., subject 4, whose usage data indicates he
or she worked on with the same task active across eight Eclipse
sessions). We are encouraged by the fact that most subjects switched
tasks multiple times during a work day (on average 2.3 tasks switches
per active hour). Those with the largest improvement in edit ratio
used tasks most heavily. Time active is an indication of how long the

8

subject worked with a task active, approximated by issuing a time out
event when no interaction events had been observed for 3 minutes.

View Filtering Usage
Whenever a task was active in the treatment period, a task context
was being formed and the UI of the IDE would show which elements
were interesting through decoration (Section 4.1.2). To inform and
guide the effectiveness of UI mechanisms by which we project the
interest model onto the IDE, we also analyzed usage trends related to
the view filtering and predicted interest facilities. The percentages of
selections made with the view in filtered mode are visible in Table 4
(for Package Explorer, Outline, and Problems views). Unfiltered
selections result from either no task being active, or the task being
active but the view in unfiltered mode. The regular use of the
Package Explorer, the most used Eclipse view [19], by half of the
subjects is encouraging. When a view is in unfiltered mode, many
more selections are required to find the same information than when
filtered due to the need to expand and collapse tree nodes. This
causes the percentage of selections in filtered mode appear lower
than a programmer might actually perceive.

5.5 Threats
One threat to the accuracy of the study results is that the subjects are
not representative of typical industry programmers. The incentive to
participate in the study was gaining access to a preview release of
Mylar, and as such this selection process was likely biased to early
adopters of new programming technologies. Our study results must
be viewed in terms of this potential weakness. Another threat is that
we had no control over the tasks performed by subjects between
baseline and treatment periods so their activity may have varied
widely. This threat is addressed in part by the large amount of both
baseline and treatment interaction we had for each subject, and
consistency that we observed in interaction behavior between
baseline and treatment periods (e.g., command and selection usage
patterns). If programmers had worked on a single task across the
baseline and treatment periods, changes in the edit ratio across the
lifecycle of a single task could have been a problem. However, we
have evidence of frequent task switching. Finally, bugs in interaction
history creation, parsing, and analysis could skew results. Our
bootstrapping, testing, ongoing use of the Mylar Monitor framework
by ourselves and others is continuing to harden it against such errors.
An objective and generic measure of industry programmers’
productivity is difficult as it depends on how a developer works (i.e.,
their process), what they work on (i.e., their domain) and how quality
is measured in that domain. While a definitive measure of
productivity is elusive, edit ratio provides us with a measure of effort
spent writing code vs. effort spent looking for the information needed
to write code. Since programmers chose to use the tool voluntarily,
their choice to continue using it is also a positive indicator that the
edit ratio metric approximates programmer productivity.

6. DISCUSSION
Mylar is now used daily by thousands of programmers8. The usage
data and large volume of ongoing user feedback9 since the study have
pointed out the following shortcomings. The usage has also
uncovered surprises and misconceptions we had about the features
that programmers need to work with task context.

8 3150 average monthly installs recorded in first 6 months of 2006
9 536 hundred bug and enhancement reports filed for 0.3.0-0.4.10

6.1 Shortcomings
6.1.1 Related Tasks
Our model currently treats a task as an independent atomic unit. In
practice, tasks are often related. Consider a programmer working on
fixing a bug. The programmer creates and activates a task for the
bug. As work progresses on the bug, the programmer identifies and
begins work on a related bug before the first bug can be resolved.
With our current model, the programmer has two choices: deactivate
the first task and be forced to recreate the context when starting on
the second bug, or do both tasks under the context of the first. Both
choices are problematic, and while the latter is easier it is also more
costly as the programmer cannot return to the context for just the
second bug. Addressing this problem requires extending the model to
support schemas for tasks (e.g., subtasks, sequences), and allowing
the programmer to work on all or on the component tasks grouped by
a parent context.

6.1.2 Task Context Lifecycle
Our model is oblivious to the lifecycle of a task. We use the same
scaling factors and apply the same algorithms for operations whether
a task is near its start and has a sparse context, or near its completion
with a rich context. Making the model sensitive to a task’s lifecycle
could further improve accuracy. For example, at the beginning of a
task it may be beneficial to have a slower rate of decay, and
suggestions for related structure could come from a broader degree of
separation when the task context is small. Near the end of a task, the
core set of information in the context has stabilized and the context
contains more information. The size of the task context could be used
to adapt the DOI function, scaling factors and degrees of separation,
helping tailor the contents of the model to the task’s lifecycle.

6.1.3 Forgetting Decay
All of the user study release features used the same projection of the
task context without modifying the DOI algorithm listed in Section
2.2. However, this turned out to be insufficient for slicing operations
pertaining to source revisions. To support a programmer committing
only the changes for a particular task to the source code repository,
the post-study Mylar 0.4 release provided Active Change Sets, which
include all of the modified files in the task context (Figure 1-6). This
allows the programmer to perform file synchronizations, updates and
commits per-task. In order to ensure that modified files do not to
disappear from the context, this slice only tests the events for each
element without including decay, and as a result needs to compensate
for the decay factor. A better parameterization of decay will provide
additional flexibility needed by such slices.

6.2 Surprises
6.2.1 Scaling Factors
A concern we had prior to starting the field study was that poorly
tuned scaling factors could prevent the context model from capturing
the information programmers needed, and that scaling factors might
need to be personalized for different tasks types, programmers, and
display resolutions. We decided not to expose a mechanism for a
programmer to change the scaling factors because we believed that
the problem of information overload was so severe for large system
development that an approximate tuning would suffice. We chose an
order of magnitude value for each setting (scaling factors: 1 for
selections, 0.1, 0.01 for decay; interest thresholds: 0 for interesting,
10 for landmark interest) and used it in our daily programming with
Mylar. This resulted in slight variations within those orders of
magnitude being set for release versions of Mylar (v0.3 and later).

9

Although we expected to change the scaling factors and thresholds
based on feedback from the study participants, the values continue to
work and remain unchanged (up to the current v0.6 release). As a
result, we believe that a substantial improvement may require a more
sophisticated tuning approach that adapts to properties such as the
task’s lifecycle, the type of task and programming domains, and the
user’s profile. Further study is necessary to determine how varying
and adapting scaling factors affects the accuracy and precision of the
context model.

6.2.2 Multiple Active Tasks
Our preliminary study data indicated that programmers needed
support for working on multiple tasks concurrently. We interpreted
this input as programmers needing to have multiple tasks active, and
implemented support for this in Mylar (v0.2) by distributing
interaction events among all active tasks. Feedback from the Mylar
user community has indicated that our interpretation was wrong.
Although our existing user base needs support for easily switching
between tasks, they do not need support for working with tasks in
parallel. The latter capability was removed in Mylar (v0.4), and
instead we have focused on making task switching and recall easier.

7. RELATED WORK
The idea of using a DOI function to control which parts of a large set
of structured data should be displayed to the user originated with
Focus+Context and fisheye views [8], and was applied to tree views
by Card [3]. Our motivation is similar. However, our DOI function
differs as it is not a measure of proximity to a point of focus, but a
measure of the frequency and recency of activity on specific
elements and relations within the interaction history. In this section,
we focus our comparison of related efforts to approaches for
managing concerns that span module boundaries, approaches for
monitoring programmer productivity, and task-centric information
management.

7.1 Concern Management
Programmers have long used various forms of query tools, from grep
to program databases [26], to locate code relevant to a task. More
recently, several efforts have focused on the capture and persistence
of descriptions of concerns, non-localized pieces of source required
to perform a task, based on modularity properties, annotations in the
code, or an external specification. For example, a Concern Graph
[23] represents the key structure of code contributing to a concern,
whereas JQuery [15] and CAT [10] refer to concerns in terms of
queries across the code. In each of these cases, the burden to define
the relevant structure is on the programmer. In contrast, Mylar
captures the program elements relevant to a task (or concern)
implicitly, reducing the cost and effort of using the approach.

7.2 Monitoring Programmer Activity
Many IDE tools can show the programmer structural context for the
currently selected element, starting perhaps with Interlisp’s
Masterscope [26]. Providing a richer context than the currently
selected element involves monitoring the user’s interaction. In the
document editing domain, the Edit and Read Wear tool was one of
the first to do this by highlighting editing and selection patterns
across a set of documents [13]. Just-in-time information retrieval
agents provide a mechanism for searching information related to a
user’s context [22]. Hilbert has described a framework for collecting
interaction history data by monitoring application events [12]. Mylar
v0.1 [17] and subsequently Wear-Based Filtering expanded this to
the programming domain by using interaction frequency to highlight

the elements of interest in the IDE UI [5]. Team Tracks builds on this
by using interaction with program elements to drive a recommender
that can suggest to other members of the team which program
elements may be of interest [4]. Context can also be inferred from
analyzing navigation paths through a concern graph [24]. Recent
Focus+Context UML visualization, in which “A class is displayed at
a particular level of detail using a degree of interest (DOI) function
based on the frequency of access to a particular class and its distance
from the current object in focus”, capture a notion of interaction [14].
In contrast, we make tasks a first class part of both interaction and
context, support direct and indirect interaction for both artifacts and
tasks themselves, and enable novel operations such as propagation,
prediction, slicing, and projection. Our task context model captures
an interaction-based DOI for both elements and relations, and can be
mapped to any domain structure.

7.3 Task-centric information management
Some of the foundations on managing the context of documents in a
task-centric way come from the Placeless and Presto projects from
Xerox PARC [6]. However, these systems required people to
manually categorize their files rather than building up context
implicitly. The most directly related task management system is
UMEA, which monitors user activities in a desktop environment to
create “project spaces” [16]. The Task Tracer system is similar,
categorizing each event with the Microsoft Windows and Office
system according to a task, and using this to build up a profile for the
task [7]. This profile captures the number of interactions with a
resource, at the granularity of files and URLs. In contrast, Mylar
supports structured data and provides a task context model and DOI
ranking. More recent work on Task Tracer has demonstrated the
ability to automatically infer task switches, and to use Bayesian
learning to predict the user’s context [25]. Although the task context
model may provide a useful input to such approaches, this and other
machine learning mechanisms to inferring context [11] are different
from our approach of making context a direct and predictable
translation of user behavior and structural relations.

8. CONCLUSION
Development environments have provided programmers with the
compiler’s view of the system: displaying the current file being
edited and compiled, providing browsing views of the entire
containment hierarchy, and allowing navigation of the type
hierarchy. While these approaches are sufficient for small systems
with good modularity, they are not sufficient for the moderate and
large systems on which many programmers work. Although the
complexity of systems continues to increase, the ability of
programmers to handle complexity does not. To address this
mismatch we provide a model of task context that can be layered
over the existing structure models in the IDE and alongside with
integrated task management facilities. We have tested the model on
industry programmers, finding both quantitative and qualitative
evidence that the use of task context can make programmers more
productive.

9. ACKNOWLEDGEMENTS
This work was supported by IBM CAS and NSERC. We thank
Christopher Dutchyn, Leah Findlater and Thomas Fritz for their
reviews, the study subjects for their participation, and the Mylar users
for their ongoing input.

10

10. REFERENCES
[1] Backus, J.W. Automatic programming: properties and

performance of FORTRAN systems I and II. Proceedings of the
Symposium on the Mechanisation of Thought Processes, The
National Physical Laboratory, 1958.

[2] Bellotti, V., Dalal, B., Good, N., Bobrow, D. G., Ducheneaut,
N. What a to-do: studies of task management towards the design
of a personal task list manager. Proceedings of the Conference
on Human Factors in Computing Systems. p. 735-742. 2004.

[3] Card, S. K. and D. Nation. Degree-of-Interest Trees: A
Component of an Attention-Reactive User Interface. Advanced
Visual Interfaces Conference, 2002.

[4] DeLine, R., Czerwinski, C. and Robertson, G. Easing program
comprehension by sharing navigation data. Proceedings of
IEEE Symposium on Visual Languages & Human-Centered
Computing. p. 241-248, 2005.

[5] DeLine, R. Khella, A. Czerwinski, M. Robertson, G.
Visualization frameworks and empirical evaluation: Towards
understanding programs through wear-based filtering.
Proceedings of the 2004 ACM Symposium on Software
Visualization. p. 183-192, 2005.

[6] Dourish, P., Edwards, W. K., LaMarca, A., Salisbury, M. Using
properties for uniform interaction in the Presto document
system. Proceedings of the 12th Annual ACM Symposium on
User Interface Software and Technology. p. 55-64. 1999.

[7] Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin,
M., Li, L., Herlocker, J.L.. TaskTracer: A Desktop Environment
to Support Multi-tasking Knowledge Workers. International
Conference on Intelligent User Interfaces. p. 75-82, 2005.

[8] Furnas, G.W. Generalized fisheye views. Proceedings of the
Conference on Human Factors in Computing Systems. p.16-23,
1986.

[9] Gonzales, V.M., Mark, G. Constant, constant, multi-tasking
craziness: managing multiple working spheres. Proceedings of
the Conference on Human Factors in Computing Systems.
p. 113-120, 2004.

[10] Harrison, W., Ossher, H., Tarr, P., Kruskal, V. and Tip, F. CAT:
A Toolkit for Assembling Concerns. Research Report
RC22686, IBM, Yorktown Heights, NY, Dec. 2002.

[11] Hijikata, Y. User modeling II: Implicit user profiling for on
demand relevance feedback. Proceedings of the 9th
international conference on Intelligent User Interfaces. p. 198-
205, 2004.

[12] Hilbert, D. M., Redmiles, D.F. Separating the wheat from the
chaff in Internet-mediated user feedback expectation-driven
event monitoring. ACM SIGGROUP Bulletin. p. 35-40,1999.

[13] Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless, T.
Edit wear and read wear. Proceedings of the Conference on
Human Factors and Computing Systems, p. 2-9. 1992.

[14] Jacobs, T. Musial, B. Debugging and finding faults: Interactive
visual debugging with UML. Proceedings of the 2003 ACM
Symposium on Software Visualization. p. 115-122, 2003.

[15] Janzen, D. and de Volder, K. Programming With Crosscutting
Effective Views, Proceedings of the European Conference on
Object-Oriented Programming. p. 195-218, 2004.

[16] Kaptelinin, V. Integrating tools and tasks: UMEA: translating
interaction histories into project contexts. Proceedings of the
Conference on Human Factors in Computing System. p. 353-
360, 2003.

[17] Kersten, M., Murphy, G. C., Mylar: a degree-of-interest model
for IDEs. Proceedings of the 4th international conference on
Aspect-Oriented Software Development. p. 159-168, 2005.

[18] Merriam-Webster’s collegiate dictionary (11th ed.), Springfield,
MA: Merriam-Webster. 2003.

[19] Murphy, G. C., Kersten, M., Findlater, L., How are Java
Software Developers using the Eclipse IDE? IEEE Software.
Vol. 23, No. 5. 2006.

[20] Murphy, G., Kersten, M., Robillard, M. and Cubranic, D. The
Emergent Structure of Development Tasks. Proceedings of the
European Conference on Object-Oriented Programming. p. 33-
48, 2005.

[21] Parnas D. L., On the Criteria to be Used in Decomposing
Systems into Modules, Communications of the ACM, Vol. 15,
No. 12, 1972.

[22] Rhodes, B. and Maes, P. Just-in-time information retrieval
agents. IBM Systems Journal special issue on the MIT Media
Laboratory, 39(3-4):685-704, 2000.

[23] Robillard, M. P., and Murphy, G.C.. Concern Graphs: Finding
and Describing Concerns Using Structural Program
Dependencies. IEEE 24th International Conference on Software
Engineering. p. 406-416, 2002.

[24] Robillard, M.P., Automatic Generation of Suggestions for
Program Investigation. Proceedings of the Joint European
Software Engineering Conference and ACM Symposium on the
Foundations of Software Engineering, p. 11-20, 2005.

[25] Shen, J., Li, L., Dietterich, T.G., Herlocker, J.L., A hybrid
learning system for recognizing user tasks from desk activities
and email messages. International Conference on Intelligent
User Interfaces. p. 86-92, 2006.

[26] Teitelman, W. and Masinter, L. The Interlisp programming
environment. IEEE Computer, vol. 14, 25-34, 1981.

11

