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Abstract— Reduction of electrical parameter variation is essential 

to achieve high yield and reliability in semiconductor devices. 

However, variation depends on a large number of process factors, 

which are often interdependent. In this work, well-calibrated 

Technology Computer-Aided-Design process and device 

simulations were performed in a designed experiment to develop 

an efficient, surrogate response surface model (RSM) of the 

device parameters as a function of key process factors. Monte 

Carlo simulations were performed with the RSM to estimate 

variation and design systems to reduce variation. The approach, 

illustrated here specifically for peripheral n-type field-effect 

transistors in a dynamic random-access-memory process flow, is 

general, easy-to-implement, and a cost-effective way to 

systematically identify, model, and analyze process variation. 
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I.  INTRODUCTION 

Scaling has resulted in increasingly complex and difficult-
to-control unit processes, and the ensuing variation in electrical 
parameters has become a key issue in maintaining device yield 
and reliability.  Variation due to the discrete nature of matter is 
fundamental; however, extrinsic variation, due to deviations in 
processing conditions of multiple factors may be reduced [1]. A 
systematic analysis of process variation requires a large number 
of experiments, and it becomes prohibitively expensive, even 
with an optimized design, if one wishes to use real Si data. This 
cost can be reduced by using process and device simulations 
from properly calibrated Technology Computer-Aided-Design 
(TCAD) software [2]. However, the computational load 
remains very high and analytic functions developed to serve as 
surrogate models are best suited for a cost-effective study. 
Several such integration schemes with different methods and 
scopes of operation have been proposed [3-6].   

For illustrating the methodology in this work, we chose 
peripheral transistors in the stacked-capacitor dynamic random-
access-memory (DRAM) process flow. Here, the processes are 
optimized to improve the retention time of memory cells [7]. 
For simplicity, in this article we restrict the target electrical 
parameter to threshold voltage (VT) only, and show results from 
n-type MOS (nMOS) field-effect transistors (FET) having 
channel length (Lch) of 95 nm.  

II. TCAD PROCESS AND DEVICE SIMULATIONS  

A. Input process factors for screening  

The output electrical parameter (here VT) is, in general, a 
non-linear function of the input process parameters. This non-

linearity can be modeled by a second order polynomial if the 
PF variation remains small, (within 5-10% of nominal value). 
The parameters mostly vary in a normal distribution, and 
metrology data, wherever available, indicates that typically the 

µ ± 3σ value falls well within the nominal ± 5−10% range (µ− 

mean, σ− standard deviation). Therefore, the smaller of these 
two available ranges of input parameters was selected, so that 
within the tight realistic process bounds, the input-output 
model would be comparatively more accurate. 

The input PFs, listed in Table I, were chosen from three 
broad categories – structural, thermal and doping-related. 
Multiple sources of variation were investigated within each of 
these processes, e.g. ramp-rates and final temperatures for the 
anneal steps, variations in dose and energy for the implantation 
steps. Physical insights went into choosing the parameter sets, 
and the control levels for the simulation, e.g., the thermal 
parameters comprised of two high temperature (>1000 ˚C) 
short time processes, anneal after borophosphosilicate glass 
(BPSG) deposition, and a rapid thermal process (RTP) for 
tetraethylorthosilicate (TEOS) film densification and activation 
of  polySilicon plug contacts. While the final peak temperature 
in the single wafer spike anneal furnaces are difficult to control 
and measure, the nitridation processes, typical in a stacked-
DRAM process to build buried digit lines and cell capacitors, 
are relatively well controlled, long time span (~ 1 hour), lower  
temperature (~ 750 ˚C) processes. However, there often exists a 
temperature gradient across the nitridation furnaces, resulting 
in an across-the-wafer temperature variation, which was 
accounted for as a source of variation. 

B. Screening of  input PFs for multivariate study  

We employed a simple three point experiment to screen the 
input PFs, where the PF of interest was varied to the low (-3σ), 
nominal, and high (+3σ) operating point. The slope of output 
parameter vs. input PF was calculated as an average of the 
forward (high to nominal) and backward (nominal to low) 
slopes, to account for the non-linearity of VT with respect to the 
input PF variation. For a process factor with nominal parameter 
value P, a normalized sensitivity parameter was defined as –  

 ( ) ( )  T TS dV V dP P= . (1) 

The dimension-less S allowed us to uniformly compare the 
effect of different types of parameter such as Lch and TBPSG. In 
Fig. 1 we show the absolute value of S for two each of the 
different categories of PF variation. By comparing |S| for the 
individual PF variations, we narrowed our PF space to a six-
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TABLE I.  PROCESS FACTORS CONSIDERED 

Parameter 

Category 
Process Factor (PF) 

Structural Gate oxide thickness (Tox) 

 Channel length (Lch) 

 Spacer thickness (Tspcr) 

 Source/Drain epi-Si thickness (Tepi) 

Thermal Borophosphosilicate glass (BPSG) deposition  

 Tetraethylorthosilicate (TEOS) film densification 

 Buried digit line nitridation 

 Cell capacitor nitridation 

Implant Halo  

 Lightly doped drain (LDD) 

 Source/Drain 
 

 
Figure1. Absolute sensitivity index for six individual process factor (PF) 

variation for peripheral n-type MOSFET in a standard DRAM process flow. 

 

TABLE II      ESTIMATES OF COEFFICIENTS OF THE RSM TERMS 

Term Unit1 Value 

Constant  0.0867 
Tox 1 nm 0.222 

Lch 1 nm 1.5x10-3 

TBPSG 1 ˚C -3.8x10-4 
Halo 1013 cm-2 0.0862 

LDDDs 1014 cm-2 0.0268 

LDDEn 1 keV -0.0118 
(Tox – Tox0)(Lch –Lch0)  9.12x10-4 

(Lch –Lch0)
2  -7.51x10-5 

(Lch – Lch0)(Halo – Halo0)  -3.27x10-4 
(Lch – Lch0)(LDDDs – LDDDs0)  1.23x10-3 

(Tox –Tox0)(LDDEn – LDDEn0)  -9.3x10-3 

(Lch – Lch0)(LDDEn – LDDEn0)  4.08x10-4 
(Halo – Halo0)(LDDEn – LDDEn0)  -2.64x10-3

(LDDDs – LDDDs0)(LDDEn – LDDEn0)  -6.56x10-3

(LDDEn – LDDEn0)
2  3.589x10-3 

1Units serve as normalization factors, e.g., for an LDD Dose of 3x1014 
cm-2, the value of LDDDs is 3. The subscript 0, as in Tox0 denotes the nominal 

or quiescent point. 

 

Figure 2. Actual VT (from TCAD) vs. predicted VT (from RSM) showing

good fit of the response surface model. The center line is the perfect fit (45˚)
line. The spatial location of the points in the 6-D PF space is also shown.

R2=0.996 confirms an excellent fit (R2=1 for perfect fit). 

dimensional space consisting of Tox, Lch, peak BPSG 
temperature (TBPSG), halo dose (Halo), LDD dose (LDDDs), and 
LDD energy (LDDEn).  

In choosing these PFs for a multivariate study, it is better to 
include PFs from all three categories, as then it becomes 
possible to design for systems that reduce variation by utilizing 
the correlation of these variables (see Section III). If one 
restricts to choosing the variables which give maximum |S|, one 
may end up with too many identical type of PFs in the model, 
e.g. for PMOS, the thermal parameters all result in high |S| 
because of high diffusivity of B. However, this does not result 
in a feature-rich model useful for design.   

C. Response surface model and design of  experiment 

Response surface models are polynomial functions that 
approximate a true, but complex and possibly unknowable 
Response. The degree of the polynomial required for a good fit 
of the data dictates the design of experiment (DoE) required for 
data collection. To fit a 2nd

 order polynomial, a DoE with at 
least 3 levels is required. For optimal performance, we chose a 

central composite design, involving 2k
 +2k+1 runs (k− number 

of PFs), as opposed to a full factorial design (3
k
) [8].   

Since VT response for some PFs (e.g. Tox) is linear in the 
narrow range of variation of the PFs, a full second order 
polynomial RSM is not necessary. We constructed the model in 
a stepwise regression manner where each of the (k+1)(k+2)/2 
terms entered into the model if they had a Probability-to-Enter 

of less than 0.05, and they remained in the final model with a 
Probability-to-Remove of less than 0.20. This keeps the model 
simple by trimming non-significant factors [91].  

Table II gives the terms in our final model of VT for nMOS 
devices. An excellent match of the actual VT (TCAD) to 
predicted VT (RSM) was obtained (see Fig. 2). The predicted 
and the actual values were usually within 5mV of each other. 
The goodness of the fit is estimated from the coefficient of 
determination (R2

). Our model gave R
2
 = 0.996 (R

2 
=1 for a 

perfect fit). As a further check, we selected several random 
points within our six-dimensional (6-D) PF space, and 
performed full TCAD process and device simulations to 
calculate VT at those points, and compared the values with 
predictions from the model. Fig. 2 shows good match of the 
predicted and actual VT for these random points (denoted by 
star). In practice, carefully selected random points in the PF 
space can serve as additional inputs to the predictor to improve 
the accuracy of the RSM over the entire PF space. These 
random points can be generated based on input PF statistic. In 
addition, Latin hypercube sampling can be employed instead of 
rudimentary truly random sampling to optimally represent the 
entire PF space [10].  

978-1-4244-3947-8/09/$25.00 ©2009 IEEE 254



 

 

Figure 4. Baseline distribution of VT showing lower and upper specification
limits. Tox, Lch and TBPSG follow normal distribution (see Table III). 

 

Figure 3a. Snapshot of the Monte Carlo simulation of the RSM from the 
JMP software, showing in top left, the functional dependence of VT on the 

input PFs, and in top right, VT distribution, when Tox Lch and TBPSG vary 

according to a normal distribution (bottom left). 

 
 

 

Figure 3b. Tighter distribution of Tox and TBPSG result in a comparatively 
narrow VT distribution that is slightly asymmetrical. 

 

 

TABLE III VARIATION OF VT  DUE TO INPUT PF VARIATION 

σ for Input PFs  Output σ Comments 

Tox (nm) 
Lch 

(nm) 

TBPSG 

(˚C) 
VT (mV)  

0.04 4.5 4 11.6 
Baseline 

distribution 

0.06 4.5 4 15.2  

0.06 2 1 13.5  

0.03 3 1 8.1 

 

   Tox (nm)           Lch (nm)           TBPSG (˚C) 

µ    2.7     µ    95       µ   985  

σ 0.02    σ   4.5      σ       2 

µ     0.591 V 
CL  ± 20 mV 

σ       8.3 mV  

III. APPLICATIONS OF RSM  

A. Estimation of variation for generating  corner models 

The response surface model, being an analytic function that 
is accurate within the range of the input 6-D PF space modeled, 
can be used to quickly generate a distribution of VT by feeding 
in thousands of sets of PFs from a Monte Carlo (MC) 
simulator. For this purpose, we used the statistical tool JMP 
[11]. The result is shown in Table III, where we fixed the three 
implant parameters to their nominal values, other PFs were 
distributed normally around the nominal values (standard 

deviation− σ of each is listed in Table III). In Fig. 3 is shown a 
snapshot of this calculation from JMP along with the functional 
dependence of VT on the input PFs. The histogram of VT for the 
baseline case (based on metrology data) is shown in greater 
detail in Fig. 4. We would like to mention that this is tighter 

(σVT =11.6 mV) than production data, since not all sources of 
variation have been taken into account in the RSM.  

The use of JMP allowed us to easily a) specify a variety of 
distributions (Gaussian, Weibull, exponential, triangular, etc.) 
and b) specify a multivariate correlation structure between the 
PFs. Correlations between PFs can exist (e.g., the authors have 
seen a slight negative correlation between Lch and Tspcr) and the 
input MC distributions will change accordingly. In such cases, 
the variation of VT can be inferred from the functional 
dependence curves in Fig. 3, e.g., VT increases on increasing 
Tox, and decreases on increasing TBPSG, so that a negative 
correlation between Tox and TBPSG leads to an increase in 
variation of VT. For illustrative purpose only, we assumed that 
there is a correlation between Tox and TBPSG. Keeping rest of the 
distributions identical to the baseline, for a correlation between 

Tox and TBPSG  equal to −0.5 (+0.5) σVT increases (decreases) to 
12.1(10.1) mV from the baseline value of 11.6 mV. 

The effect of tightening or loosening an input PF 
distribution is shown in Table III for various Tox, Lch and TBPSG. 
Combining the versatile MC simulator of JMP and the fast 
RSM, one gets a very efficient tool to estimate device level 

variation due to PF variation. This approach is particularly 
useful to construct pre-Si corner models, with the anticipated 
distributions of the key PFs serving as key inputs.  

B. Optimizing PF space for low defect rate 

There are a variety of ways to search the PF space to obtain 
a quiescent point that matches one or more preset criteria and 
yet is comparatively insensitive to input PF variations [12]. In 
this work, our goal is to keep VT within a range of the target 
VT0; therefore, we defined a defect rate (DR), which estimates 
the percentage of VT that lie outside the defined upper and 
lower specification limits (USL and LSL respectively, see Fig. 

4), selected as +/− 20 mV from VT0. For the baseline process, 
DR turned out to be 8.88%.  

A designed experiment was then performed, where the 
entire 6D PF space was covered, using Latin hypercube 
sampling to have an efficient, representative coverage. At each 
of these 128 points, 104

 MC simulations were run to obtain the 
DR. Subsequently, the overall DR surface was approximated 
by a Gaussian Process model, a popular fitting technique for 
computer simulation, where each point on the DR surface is 
predicted from a weighted average of the neighboring points 
[13]. The minima of this surface (expressed in Table IV in 
terms of change of PFs from the nominal values) gave us the 
operating condition that minimized DR. For this optimized 

point, DR went down to 4.42%, σVT reduced to 9.7 mV.  The 
construction of the DR surface through the Gaussian Process 
model and finding minima on that surface ensures that one gets 
the true local minima of the PF space, and is not restricted to 
the sample points of the initial LHC design experiment. 

The DR approach has certain advantages over modeling 

and minimizing σVT. It allows for asymmetric specification 
limits for situations where, for example, occurrence of a low VT 

978-1-4244-3947-8/09/$25.00 ©2009 IEEE 255



 

 

Figure 5. Distribution of VT for the same input PFs as in the baseline case 
(Fig. 4), except the halo dose (Halo), which has been adjusted through feed 

forward design. Adjustment of halo dose for deviations of Tox and Lch 

results in a very narrow distribution.  

TABLE IV.    MOVEMENT OF THE PF PARAMETERS FROM THE 

NOMINAL VALUES TO OBTAIN A LOW DR OPERATING POINT 

 

Term Unit1 Change of PF values from the 

nominal value ( baseline)  

σ 

Tox 1 nm -0.03 0.04 

Lch 1 nm +7.2 4.5 

TBPSG 1 ˚C +2.4 4 
Halo 1013 cm-2 -0.24  

LDDDs 1014 cm-2 +0.24  

LDDEn 1 keV -0.89  
VT 1 mV  9.6 

is more troublesome than a high VT. The DR used in this study 
was a step function (0 if within the spec limits, 1 if outside). A 
DR based on a customized Loss Function could also be 
employed. It is worthwhile to note that, in practice, careful 
consideration of the impact of the process change on other 
aspects of device performance and reliability should 
accompany any optimization. 

C. Design of a feed forward system 

To keep VT at a target value (VT0), a system can be 

developed to feed forward upstream process variation, e.g., 

that in Tox and Lch, to modify a downstream process such as B 

Halo dose (Halo). To illustrate how upstream metrology 

information could be used to adjust the B Halo dose to correct 

for the effects of an off-target Tox and Lch, we modeled Halo as 

a function of predicted VT from the RSM in absence of halo 

dose correction, Tox and Lch to obtain:  

0 0 0 0

 = 4.79 2.28 0.014 10.24

  0.03( )( ) 0.11( )( )

ox ch T

ox ox ch ch ch ch T T

Halo T L V

T T L L L L V V

− − +

− − − + − −
. (2) 

For the 5000 points in the baseline data set, if the halo dose 

was adjusted (for each pair of off-target Tox and Lch) according 

to (2), we would get an extremely narrow VT distribution, with 

σVT of only 3 mV, and DR = 0. This is demonstrated in the VT 

distribution in Fig. 5. 

This process demonstrates the efficacy of a simple feed-

forward system to reduce variation in output parameters. 

However, it should be noted that this analysis assumes each VT 

could be adjusted at the die-level, whereas in practice, the 

adjustment would probably take place at the wafer level, and 

therefore, would be less effective. 

IV. CONCLUSION 

Properly calibrated TCAD simulations were used to build a 
simple, analytic response surface model to serve as a surrogate 
model to estimate the effect of process variation on VT of n-
type MOSFETs in a DRAM process flow. A simple and 
intuitive normalized sensitivity index was used to identify the 
PFs which cause maximum VT variation. Monte Carlo 
simulations were performed on the surrogate model to estimate 
variations in VT for different input PF distributions and 
optimize process factors to reduce variation. A simple feed-
forward model developed using regression analysis, exhibits 
the benefit of that can be gained from design and analysis with 
a representative analytic model.  
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