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Abstract—All over the world Global System for Mobile Commu-
nication (GSM) cellular mobile networks have been upgraded to
support the “always-on” general packet radio service (GPRS). De-
spite the apparent availability of levels of bandwidth not dissimilar
to that provided by conventional fixed-wire telephone modems, the
user experience using GPRS is still considerably poor.

In this paper, we examine the performance of protocols such as
transmission control protocol (TCP) over GPRS, and show how
certain network characteristics interact badly with TCP to yield
problems such as: link underutilization for short-lived flows, excess
queueing for long-lived flows, acknowledgment bunching, poor loss
recovery, and gross unfairness between competing flows.

We present the design and implementation of a transparent
TCP proxy that mitigates many of these problems without re-
quiring any changes to the TCP implementations in either mobile
or fixed-wire end systems. The proxy is interposed in the cellular
provider’s network, and splits TCP connections transparently into
two halves—the wired and wireless sides. Connections destined
for the same mobile host are treated as an aggregate due to their
statistical dependence. We demonstrate packet scheduling and
flow control algorithms that use information shared between the
connections to maximize performance of the wireless link, while
interworking with unmodified TCP peers. We also demonstrate
how fairness between flows and response to loss is improved, and
that queueing and, hence, network latency is reduced. We discuss
how TCP enhancing proxies could be transparently deployed, and
conclude that installing such a proxy into GPRS network would
be of significant benefit to users.

Index Terms—General packet radio service (GPRS), proxy,
third-generation (3G), transmission control protocol (TCP), uni-
versal mobile telecommunications system (UMTS), wireless.

I. INTRODUCTION

W
ORLD over, global system for mobile communication

(GSM) cellular networks are being upgraded to support

the general packet radio service (GPRS). GPRS offers “always

on” connectivity to mobile users, with wide-area coverage and

data rates comparable to that of conventional fixed-line tele-

phone modems. This holds the promise of making ubiquitous
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mobile access to Internet protocol (IP)-based applications and

services a reality.

However, despite the momentum behind GPRS, surprisingly

little has been done to evaluate transmission control protocol/In-

ternet protocol (TCP/IP) performance over GPRS. There are

some interesting simulation studies [1], [4], but we have found

actual deployed network performance to be somewhat different.

Some of the performance issues observed with GPRS

are shared with wireless local area networks (WLANs) like

802.11b, satellite systems, and other wide-area wireless

schemes such as Metricom Ricochet and cellular digital

packet data (CDPD). However, GPRS presents a particu-

larly challenging environment for achieving good application

performance.

In this paper, we present our practical experiences using

GPRS networks, and our attempts to improve the performance

seen by users. In Section II, we briefly report on work to char-

acterize GPRS link behavior (see [35] for a fuller treatment).

Section III identifies particular problems experienced by TCP

running over GPRS, and examines how these are exacerbated

by application-layer protocols such as HTTP.

In Section IV, we introduce the design of our TCP proxy,

which is inserted into the network near the wired-wireless

border and aims to transparently improve the performance of

TCP flows running over the network without requiring modifi-

cations to either the wired or wireless end systems. In particular,

we demonstrate how there are significant advantages to treating

all TCP flows to a particular mobile host as an aggregate, taking

advantage of the flows’ statistical dependence to perform

better scheduling and flow control in order to maximize link

utilization, reduce latency, and improve fairness between flows.

Sections V and VI describe the experimental test setup and

present an evaluation of our proxy’s performance. Section VII

examines how TCP proxies can be transparently deployed in

GPRS network, along with some discussion on the impact of use

of proxies on end-to-end protocol semantics. This paper goes on

to discuss related work, and concludes with a brief outline about

on-going research.

II. GPRS NETWORK CHARACTERIZATION

GPRS [1], [3], like other wide-area wireless networks, ex-

hibits many of the following characteristics: low and fluctu-

ating bandwidth, high and variable latency, and occasional link

“blackouts” [7], [9]. To gain clear insight into the characteristics

of the GPRS link, we have conducted a series of link charac-

terization experiments. These have been repeated under a wide

range of conditions, using different models and manufacturer

0733-8716/$20.00 © 2005 IEEE
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Fig. 1. Single packet time-in-flight delay distribution plots showing
(a) downlink delay and (b) uplink delay distribution for 1000 packets of size
1024 bytes each.

of handsets, and different network operators located in several

European countries. We have found no major performance dif-

ferences between the network operators, and variation between

different handsets of similar GPRS device class is minimal. Note

that details of how these tests were conducted (e.g., uplink and

downlink latency measurements, radio conditions, tools used

etc.) can be found in [9]. Reference [35] also gives a compre-

hensive description on GPRS link characterization in the form

of a separate technical report. Below, we enunciate some key

findings.

High and Variable Latency: GPRS link latency is very high

and variable: 600–3000 ms for the downlink and 400–1300 ms

on the uplink. Round-trip latencies of 1000 ms or more are typ-

ical. The delay distribution is shown in Fig. 1. The link also has

a strong tendency to “bunch” packets; the first packet in a burst

is likely to be delayed and experience more jitter than following

packets.

The additional latency for the first packet is typically due

to the time taken to allocate the temporary block flow (TBF)

[30], [34]. Since most current GPRS terminals allocate and

release TBFs immediately (implementation based on GPRS

1997 release), protocols (such as TCP) that can transfer data

(and ACK) packets spaced in time may end up creating many

small TBFs that can each add some delay (approximately

100–200 ms) during data transfer.

The latest release (GPRS 1999) does consider an extended

TBF lifetime; however, this optimization can lead to inefficient

scheduling at the base station controller (BSC), with some

improvement ( ms) in the overall RTTs). However, un-

like relatively stable indoor 802.11b-based WLANs, wireless

cellular networks have to cope with the harsh-outdoor mobile

environments—GPRS typically requires use of sophisticated

signal processing, interleaving, FEC/link-layer ARQ, etc. The

net effect of this is that cellular links like GPRS typically

suffer from high and variable RTTs, link outages, and burst

losses, e.g., during deep fading or cell handovers. In [16], Chan

and Ramjee show latencies of the order of 179 ms to over

1 s for code-division multiple-access (CDMA)-based 3G1X

networks.

Fluctuating Bandwidth: We observe that signal quality

leads to significant (often sudden) variations in perceivable

bandwidth by the receiver. Sudden signal quality fluctuations

(good or bad) commensurately impact GPRS link performance.

Using a “ ” GPRS phone such as the Ericsson T39 (three

downlink channels, one uplink), we observed a maximum

raw downlink throughput of about 4.15 kB/s, and an uplink

throughput of 1.4 kB/s. Using a “ ” phone, the Motorola

T280, we measured an improved maximum bandwidth, to

5.5 kB/s in the downlink direction. Conducting these tests at

various times of the day and at different locations revealed no

evidence of network (channel) contention occurring. This is

perhaps to be expected due to the currently small number of

GPRS users and the generous time slot provisioning employed

by most operators.

Packet Loss: The radio link control (RLC) layer in GPRS

uses an automatic repeat request (ARQ) scheme that works ag-

gressively to recover from link layer losses. Thus, higher level

protocols (like IP) rarely experience noncongestive losses.

Link Outages: Link outages are common while moving at

speed or, obviously, when passing through tunnels or other

radio obstructions. Nevertheless, we have also noticed outages

during stationary conditions. The observed outage interval will

typically vary between 5 and 40 s [9]. Sudden signal quality

degradation, prolonged fades, and intrazone handovers (cell

reselections) can lead to such link blackouts. When link outages

are of small duration, packets are justly delayed and are lost

only in few cases. In contrast, when outages are of higher

duration there tend to be burst losses.

Occasionally, we also observed downlink transfers to stop

altogether during transfers. We believe this to be a specific

case of link-reset, where a mobile terminal would stall and stop

listening to its TBF. We believe this to be due to inconsistent

timer implementations within mobile terminals and BSCs.

Recovering from such cases required the PPP session to be

terminated and restarted.

III. TCP PERFORMANCE OVER GPRS

In this section, we discuss TCP performance problems over

GPRS. In particular, we concentrate on connections where the

majority of data is being shipped in the downlink direction,

as this corresponds to the prevalent behavior of mobile appli-

cations, such as web browsing, file download, reading e-mail,

news, etc. We provide a more complete treatment on such TCP

problems over GPRS in [7].
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Fig. 2. (a) Shows that slow-start takes over 6 s to expand the congestion
window sufficiently to enable the connection to utilize the full link bandwidth.
(b) Shows the characteristic exponential congestion window growth due to
slow-start (SS). Maximum segment size (MSS) was set at 1400 bytes.

TCP Startup Performance: Fig. 2(a) shows a close up of

the first few seconds of a connection, displayed alongside an-

other connection under slightly worse radio conditions. An esti-

mate of the effective link bandwidth delay product (BDP) is also

marked, approximately 10 kB. The actual value of BDP based

on bandwidth and RTT of GPRS downlink may be somewhat

less, around 5 kB to qualify it as a long-thin link [31]. However,

experiments over GPRS reveal (we shall discuss this further in

Section VI-C) that this effective BDP of 10 kB for a “ ”
phone is approximately correct, under both good and bad (fluc-

tuating) radio conditions, as although the link bandwidth drops

under poor conditions the RTT tends to rise. For a TCP con-

nection to fully utilize the available effective link bandwidth, its

congestion window must be equal or exceed the effective BDP

of the link. We can observe that in the case of good radio condi-

tions, it takes about 6 s from the initial connection request (TCP

SYN) to ramp the congestion window up to the effective link

BDP. Hence, for transfers shorter than about 18 kB, TCP fails

to even exploit the meagre bandwidth that GPRS makes avail-

able to it. Since many HTTP objects are smaller than this size,

the effect on web browsing performance can be substantial.

ACK Compression: A further point to note in Fig. 2(b) is that

the sender releases packets in bursts in response to groups of

Fig. 3. Case of timeout due to DupAcks. (a) Shows the sender sequence trace.
(b) Shows corresponding outstanding data. MSS was set at 1400 bytes.

four ACKs arriving in quick succession. Receiver-side traces

show that the ACKs are generated in a smooth fashion in re-

sponse to arriving packets. The “bunching” on the uplink is

due to the GPRS link layer (see, [9]). This effect is not un-

common, and appears to be an unfortunate interaction that can

occur even when the mobile terminal has data to send and re-

ceive concurrently. ACK bunching or compression [17] not only

skews upwards the TCP’s RTO measurement but also affects its

self-clocking strategy. Sender side packet bursts can further im-

pair RTT measurements.

Excess Queueing: Due to its low bandwidth, the GPRS link

is almost always the bottleneck of any TCP connection, hence,

packets destined for the downlink get queued at the gateway

onto the wireless network (known as the CGSN node in GPRS

terminology, see Fig. 8). However, we found that the existing

GPRS infrastructure offers substantial buffering: user datagram

protocol (UDP) burst tests indicate that over 120 kB of buffering

(at IP level) is available in the downlink direction. For long-

lived sessions, TCP’s congestion control algorithm could fill the

entire router buffer before incurring packet loss and reducing

its window. Typically, however, the window is not allowed to

become quite so excessive due to the receiver’s flow control

window, which in most TCP implementations is limited to 64 kB

unless window scaling is explicitly enabled. Even so, this still

amounts to several times the BDP of unnecessary buffering,

leading to grossly inflated RTTs due to queueing delay. Fig. 3(b)
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Fig. 4. Sequence plots for two concurrent file transfers over GPRS, where flow
f2 (shown in close-up) was initiated 10 s after f1. Because of the excess data
buffering caused by f1, flow f2 fails to initiate sufficiently until f1 terminates.
MSS in this case was set at 1400 bytes.

shows a TCP connection in such a state, where there is 40 kB of

outstanding data leading to a measured RTT of tens of seconds.

Excess queueing causes other problems.

• RTT inflation: Higher queueing delays can severely de-

grade TCP performance [10]. A second TCP connection

established over the same link is likely to have its initial

connection request timeout [5].

• Inflated retransmit timer value: RTT inflation results in

an inflated retransmit timer value that impacts TCP perfor-

mance, for instance, in cases of multiple loss of the same

packet [5].

• Problems of leftover (stale) data: For downlink chan-

nels, the queued data may become obsolete when a user

aborts a web download and abnormally terminates the

connection. Draining leftover data from such a link may

take many seconds.

• Higher recovery time: Recovery from timeouts due to

DupAcks (or sacks) or coarse timeouts in TCP over a sat-

urated GPRS link takes many seconds. This is depicted in

Fig. 3(a), where the drain time is about 30 s.

Excess data buffering also plague other cellular data net-

works. Experiments conducted over CDMA-based 3G1X

networks reveal ten times more buffering than the band-

width-delay product of the third–generation (3G) downlink

[16]. Schemes like TCP ACK regular have been devised,

which uses per-TCP-flow queue to regulate ACKs to the TCP

source—this scheme can be used to mitigate the impact of

excess network buffering in 3G [16]. In Section IV, we shall

discuss a receiver window based adaptation scheme for GPRS

to overcome this problem.

TCP Loss Recovery Over GPRS: Fig. 3(a) and (b) depicts

TCP’s performance during recovery due to reception of a

DupAck (in this case, a SACK). Note the long time it takes

TCP to recover from the loss, on account of the excess quan-

tity of outstanding data. Fortunately, use of SACKs ensures

that packets transferred during the recovery period are not

discarded, and the effect on throughput is minimal. This em-

phasizes the importance of SACKs in the GPRS environment.

In this particular instance, the link condition happened to im-

prove significantly just after the packet loss, resulting in higher

available bandwidth during the recovery phase.

Fairness Between Flows: Excess queueing can lead to gross

unfairness between competing flows. Fig. 4 shows a file transfer

(f2) initiated 10 s after transfer (f1). When TCP transfer (f2)

is initiated, it struggles to get going. In fact it times out twice

on initial connection setup (SYN) before being able to send

data. Even after establishing the connection, the few initial data

packets of f2 are queued at the CGSN node behind a large

number of f1 packets. As a result, packets of f2 perceive very

high RTTs (16–20 s) and bear the full brunt of excess queueing

delays due to f1. Flow f2 continues to badly underperform

until f1 terminates. Flow fairness turns out to be an important

issue for web browsing performance, since most browsers open

multiple concurrent HTTP connections [21]. The implicit fa-

voring of long-lived flows often has the effect of delaying the

“important” objects that the browser needs to be able to start

displaying the partially downloaded page, leading to decreased

user perception of performance.

IV. IMPROVING TCP PERFORMANCE WITH

AN INTERPOSED PROXY

A. Design Objectives and Motivation

Having identified the causes of poor TCP performance over

GPRS, we set out to determine whether the situation could be

improved. Our fundamental constraint was that we wanted to

improve performance without requiring any changes to be made

to the network protocol stacks of either the fixed or mobile

TCP end systems. Experience shows that the vast majority of

schemes that require such changes are doomed to never see

widespread deployment.

Instead, we focused on what could be achieved through the

use of a proxy located close to the wired-wireless network

boundary, able to see all traffic heading to and from the mobile

host. A “split TCP” [6] approach was adopted, whereby the

proxy transparently divides the connection into two halves: one

from the fixed host to the proxy and the other from the proxy

to the mobile host. The TCP stacks on both the mobile and

wired-facing sides of the proxy can be modified as necessary,

providing they can still communicate with conventional imple-

mentations. We can exploit the fact that the packet-input code

in all TCP stacks we have encountered will accept and process

all validly formed TCP packets it receives without concern as

to whether the transmitter is actually operating the congestion

control algorithms mandated in the various TCP RFCs.

Concentrating on the critical mobile downlink direction, the

goals for such a proxy are as follows.

• Improved utilization: Failing to utilize the available

bandwidth on “long-thin” links when there is data to send

is clearly wasteful.

• Fairness: A “fair”’ allocation of bandwidth to competing

flows regardless of their age or RTT.

• Error detection and recovery: GPRS link performance

is characterized by occasional link stalls during handoffs

and the occurrence of burst losses. A loss detection and re-

covery scheme tailored for this environment might avoid

unnecessary backing-off or packet retransmission.
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Fig. 5. Proxy-based TCP flow aggregation scheme.

• Effective flow control mechanism: The proxy should

avoid the problems of excessive data buffering at the

wired-wireless gateway, and also take responsibility for

effective buffer management using “smart” techniques.

We now describe the key concepts behind TCP flow

aggregation.

B. TCP Flow Aggregation Mechanism

In conventional TCP implementations, every connection is

independent, and separate state information (such as srtt,

cwnd, ssthresh, etc.) is kept for each. However, since all

TCP connections to a mobile host are statistically dependent

(they all share the same wireless communication link), certain

TCP state information might best be shared between flows to

the same mobile host. On the wireless-facing side, our proxy

treats flows to the same mobile host as a single aggregate. The

scheme is depicted in Fig. 5.

Past research has made use of this concept for wired net-

works. In [13], Balakrishnan et al. show that flows can learn

from each other and share information about the congestion

state along the network path, which they term as shared state

learning. Sharing state information across different TCP flows

that use the same wireless communication channel to a mobile

device such as in GPRS can exploit this statistical dependence.

Our proxy shares state information including a single conges-

tion window and RTT estimates across all TCP connections

within the aggregate. Sharing state information enables all the

connections in an aggregate to have better, reliable, and more re-

cent knowledge of the wireless link. We, therefore, take all the

state information and group it together into one structure that

we call an aggregate control block (ACB). All individual TCP

connections reference this structure as part of their local state.

Details of this structure are given in Fig. 6.

Fig. 6. Sample logical aggregate in the proxy for a given mobile host.

The wired-facing side of our proxy is known as the aggre-

gate TCP (ATCP) client, while the mobile-facing side is called

the ATCP sender. The ATCP client receives packets into small

per-connection queues, that feed into a scheduler operating on

behalf of the whole aggregate. Note that a single congestion

window for the whole aggregate is maintained, and whenever

the level of unacknowledged data on the wireless link drops one

maximum segment size (MSS) below the size of the current con-

gestion window the scheduler selects a connection with queued

data from which a further segment will be sent. While making

the selection the scheduler respects the mobile host’s receive

window for each of the individual flows. Once transmitted, seg-

ments are kept in a queue of unacknowledged data until ACK’ed

by the mobile host. The ATCP sender can perform retransmis-

sions from this queue in the event of loss being signalled by the

mobile host, or from the expiry of the aggregate’s retransmis-

sion timer.

The ATCP client employs “early ACKing”—acknowledging

most packets it receives from hosts as soon as they are accepted

into the per-flow queues, before the destination end system re-

ceives them. Notice that the practical effect this has on TCP’s
end-to-end semantics is mitigated by never using early acknowl-

edgment for FINs. Since the per-connection queues contain re-

assembled data, the proxy sometimes coalesce multiple small
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packets from the sender into a single segment by the time it is

sent over the wireless link. This helps to reduce protocol header

overhead.

The proxy can employ different connection scheduling strate-

gies depending on the nature of the incoming traffic. Presently,

we use a combination of priority-based and ticket-based stride

scheduling [11] to select which connection to transmit from.

This enables us to give strict priority to interactive flows (such

as Telnet) while, for example, sharing out the remaining band-

width in a fixed ratio between WWW and FTP flows.

Within this framework, the proxy optimizes GPRS link

performance using three key mechanisms described in the

following sections.

C. ATCP Sender Congestion Window Strategy

A major cause of poor performance with TCP over GPRS is

link under utilization during the first few seconds of a connec-

tion due to the pessimistic nature of the slow start algorithm.

Slow start is an appropriate mechanism for the Internet in gen-

eral, but within the proxy, information is available with which

we can make better informed decisions as to congestion window

size.

The ATCP Sender uses a fixed size congestion window

(cwnd), shared across all connections in the aggregate. The

size is fixed to a relatively static estimate of the effective BDP of

the link. Thus, slow start is eliminated, and further unnecessary

growth of the congestion window beyond the BDP is avoided.

We call this TCP cwnd clamping.

The underlying GPRS network ensures that bandwidth is

shared fairly amongst different users (or according to some

other QoS policy), and hence there is no need for TCP to

be trying to do the same based on less accurate information.

Ideally, the CGSN could provide feedback to the proxy about

current radio conditions and time slot contention, enabling it to

adjust the “fixed” size congestion window, but in practice this

is currently unnecessary.

Once the mobile proxy is successful in sending

amount of data it goes into a self-clocking state in which

it clocks out one segment (from whatever connection the

scheduler has selected) each time its receives an ACK for an

equivalent amount of data from the receiver. With an ideal value

of , the link should never be under utilized if there is

data to send, and there should only ever be minimal queueing at

the CGSN gateway. Typically, the ideal ends up being

around 20% larger than the effective link BDP. This excess is

required due to link jitter, use of delayed ACKs by the TCP

receiver in the mobile host, and ACK compression occurring

due to the link layer.

While starting with a fixed value of cwnd, the proxy needs

to ensure that any initial packet burst does not overrun CGSN

buffers. Since the effective BDP of current GPRS links is small

( kB), this is not a significant problem at this time. Future

GPRS (even EDGE or 3G) devices supporting more downlink

channels may require the proxy to employ traffic shaping to

smooth the initial burst of packets to a conservative estimate

of the link bandwidth. The error detection and recovery mecha-

nisms used by the ATCP sender are discussed in Section IV-E.

TABLE I
FLOW CONTROL ALGORITHM

D. ATCP Client Flow Control Scheme

When the proxy “early ACKs” a packet from a client it is

committing buffer space that can not be released until the packet

is successfully delivered to the mobile host. Hence, the proxy

must be careful how much data it accepts on each connection if

it is to avoid being swamped. Fortunately, the proxy can control

the amount of this data it accepts through the receive window it

advertises to hosts.

The proxy must also try to ensure that sufficient data from

connections is buffered so that the link is not left to go idle un-

necessarily (for example, it may need to buffer more data from

senders with long RTTs—perhaps other mobile hosts), but also

limit the total amount of buffer space committed to each mobile

host. Furthermore, we wish to control the window advertised to

the sending host in as smooth a fashion as possible. Hence, we

use zero window advertisements only as a last resort, for ex-

ample, during an extended wireless link stall.

Previous research studies have investigated similar receiver

advertised window adaptation schemes. In [19], Kalampoukas

et al. present explicit window adaptation (EWA), which con-

trols the end-to-end receiver advertised window size in TCP to

correspond to the delay-bandwidth product of the link. In this

scheme, active TCP connections are allowed to adapt automat-

ically to the traffic load, the buffer size and bandwidth-delay

product of the network without maintaining any per-connection

state. Likewise, Andrew et al. [20] propose a TCP flow-control

scheme that takes feedback available from an access router to

set the TCP receiver advertised window. Analysis in [20] show

that the scheme can achieve a higher utilization for TCP flows

while still preserving system stability. Following a similar ap-

proach, we build a simple flow control scheme, by utilizing

feedback available from the aggregate about the wireless link

performance.

The pseudocode for the flow control scheme is given in

Table I. Note that the algorithm used during connection startup

(denoted by Connection Start Phase) is different from that used

during the later phase. During the connection start-phase, each
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received packet is ACKed as early as possible and the adver-

tised window is calculated as follows. Consider to be

current average sending rate of the aggregate per connection and

the running average of the sending rates over the wireless

link for connection . The proxy calculates as a sliding

window averaging function given by

where is the window over which the average is calculated. By

controlling the value of , we achieve the desired “smoothing”
estimate for the sending rate. For GPRS links, this averaging

window is typically small.

We consider the case of a single (first) TCP connection in an

aggregate. To start with, we can use an initial value of advertised

window of , where

corresponds to the effective bandwidth-delay product of

the GPRS downlink. A fixed GPRS-specific value can

be used initially, and then later estimated (using appropriate es-

timation filters [24]). Similarly, —the initial sending rate

is also initially estimated. is the overprovision factor, which

gives control over an aggregate’s buffer target set-point. In our

experiments, we over-provision the aggregate buffer by more

than 20% of the effective link BDP, which ensures that there is

always sufficient data to avoid any underutilization of the GPRS

link.

However, when more new TCP connections join the aggre-

gate (as typically happens in web sessions), any new connection

“ ” will likely satisfy the condition

and the advertised window will be set at

where is a function of MSS, and is calculated as

, where is number of connections in

the aggregate at time . For the first advertised window value

for any connection, and, hence, .

This ensures that new and short-lived TCP flows are never dis-

criminated against during the initial startup phase by bringing

the connection up to the average sending rate of the aggregate

so that it achieves parity with other already “established” con-

nections. For those TCP flows that eventually have a sending

rate equal to or exceeding the average sending rate over the

GPRS link, the flow control algorithm described below takes

over.

The steady-state flow control algorithm advertises a window

size for connection “ ” calculated using

(1)

where is the instant when the last packet was sent over the

wireless link for the th connection. is the constant rate at

which the window increases and is the overall queue oc-

cupancy of the aggregate buffer (shown as Queue Occupancy)

at time instant .

Also, the cost function is calculated as

(2)

where and are parameters which control the steady state

queue size. It can be shown through analysis that equilibrium

queue size (see, [20]). The scheme works

as follows: whenever a packet for a particular aggregate is re-

ceived, the overall queue occupancy for that aggregate

is sampled. The scheme then dynamically computes the adver-

tised window size (using (1)) such that as more connections join,

overall aggregate queue occupancy starts to gradually

increase, while average sending rate for that connection

starts to go down (recall that connections are fairly scheduled

in the aggregate). However, at some point, overall queue occu-

pancy in the aggregate starts to dominate, and as a consequence,

lower values of window size are advertised. Thus, (1) allows ad-

vertised window to grow at a constant rate , whereas the

overall aggregate queue occupancy terms and sending

rate for a connection in the aggregate reduce it. The

whole process achieves equilibrium (for all connections) in the

steady state with a constant window size that balances queue oc-

cupancy with a constant growth rate. This in turn ensures avail-

ability of packets to send without ever congesting the proxy.

The scheme is slightly modified to make use of the feedback

from the wireless link to a particular mobile host from the

aggregate. So in the case of link stalls, a timeout at the wireless

side (shown as Wireless Link Timeout) would result in the

advertised window being set to zero. Upon recovery, we

restore the previously advertised window size. Normal flow

control takes over after recovery and brings the system state

to equilibrium. This flow control scheme works effectively

to control the proxy’s buffer utilization, and although a little

elaborate for that required by current GPRS networks should

scale to much higher bandwidths, and can be easily applied

to other split TCP applications.

E. ATCP Sender Error Detection and Recovery

Packet losses over a wireless link like GPRS can usually

occur due to two reasons: 1) bursty radio losses that persist for

longer than the link-layer is prepared to keep retransmitting

a packet and 2) during cell reselections due to cell update

procedure (or even routing area update in GSM) that can lead

to a “link-stall” condition from few to many seconds [9]. In

both cases, consecutive packets in a window are frequently lost.

TCP detects these losses through duplicate ACKs, or timeouts

in the extreme case. Not knowing the “nature” of the loss, it

reacts by invoking congestion control measures such as fast

retransmit or slow start. However, since the link frequently

returns to a healthy state after the loss, unnecessary backoff is

often employed resulting in underutilization.

The split TCP aggregate approach of our proxy affords us

the opportunity of improved detection of the nature of wireless

losses, and hence make a better job of recovery. The aim is to

recover aggressively from transient losses, keeping the link at

full utilization, but be careful during extensive stalls or black-

outs not to trigger unnecessary retransmission.

Fortunately, TCP-SACK enables the receiver to inform the

sender of packets which it has received out of order. The sender
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Fig. 7. Skipack scheme for error recovery (per-mobile as seen from the proxy).

can then selectively retransmit in order to fill in the gaps. Re-

cently, empirical study involving large-scale passive analysis for

TCP traces over different GPRS networks has shown that use

of TCP-SACK leads to much higher per-TCP connection uti-

lization for all-size flow types [15]. When this SACK feature

is used along with the flow aggregation concept, it gives us an

elegant mechanism to discover sequence gaps across the entire

gamut of packets sent by the aggregate TCP sender, and thereby

improves our ability to determine the nature of the loss. This

improved diagnosis coupled with a recovery strategy fine tuned

for the wireless link results in good utilization. The scheme is

described further below, and Fig. 7 depicts a snapshot of it in

action.

Normal ACK: The ACB maintains a list of unacknowledged

packets. Associated with each packet in the list is a field called

skipack (shown as sk in Fig. 7). Whenever an ACK is received

for a packet in the list it is removed. The skipack variable of

packets which were sent before the acknowledged packet are

then incremented. We do this based on the observation that due

to the nature of the GPRS link-layer, packet reordering does not

occur. We assume packets belonging to the same connection are

processed by the mobile host in typical FIFO order. Thus, an

ACK received for a newer packet implies loss or corruption of

older packets in the same connection.

Bursty Error Period: When there is a bursty error period on

the wireless link, multiple packets will be lost. This will result

in the generation of duplicate ACKs with SACK information.

Packets which are SACKed are marked so that they are not re-

transmitted later by setting (shown as sa in Fig. 7).

UnSACKed packets sent before the packet which was

SACKed have their skipack counterincremented. The key point

is that this is done in the proxy not for the packets of just that

particular connection, but for the whole list of unacknowledged

packets for the aggregate. Thus, when a DupAck with SACK is

received for a particular connection the skipack counter for the

packets of all connections which were sent before that packet

and have not been SACKed are incremented. This is justified

since sending order is maintained during reception of ACKs.

However, care must be taken since TCP connections to a mo-

bile host are independent, so ACKs of packets for connections

sent later to the host might arrive before packets that were sent

earlier. This is not unusual as connections may be employing

delayed ACKs. However, if further such “early ACKs” are re-

ceived, it is increasingly indicative of a transient loss necessi-

tating recovery. Our recovery strategy retransmits aggressively

during a transient loss: We wait for the skipack counter to reach

three, then retransmit all packets having this value in the list.

Note that a higher skipack retransmit counter value would make

the recovery scheme less agile, while lowering its value would

result in redundant retransmissions. We have conducted pre-

liminary investigation of this scheme for a reasonable value of

skipack retransmit counter. For this, we used about 200 min of

packet traces1 involving file downloads over three different cel-

lular GPRS networks in two different conditions: 1) driving at

variable speed (10–40 km/hr) and 2) while stationary at different

locations from the base station. Initial investigation by analyzing

these traces for packet loss patterns for the skipack scheme show

that, empirically, a value of 3 for the restransmit counter suits

the characteristics of current GPRS networks and terminal de-

vices. Results from the analysis will be available in a separate

technical report. We intend to further refine this scheme based

on TCP packet-loss patterns from the evaluation of large-scale

GPRS traffic traces we are collecting.

1These TCP traces (including visual trace close-ups) are available:
http://www.cl.cam.ac.uk/users/rc277/traces.html
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Fig. 8. Experimental testbed setup.

Timeouts: Bursty error periods tend to be short compared to

RTTs. As described above, if the skipack counter reaches three,

we can recover from a loss without resorting to an expensive

timeout. Hence, by keeping the timeout value relatively conser-

vative, we can avoid timeouts after bursty error periods. Thus,

timeouts only occur during extensive blackouts or link stalls.

It would be highly wasteful to keep transmitting during a link

blackout (e.g., due to deep fading or during cell-reselection)

since a large proportion of the packets will likely be lost. Hence,

after a timeout the cwnd is reduced to one. A single packet is

transmitted until an ACK is received. Once an ACK is received

the cwnd is set back to the original size since the reception of

the ACK implies restoration of the link. Hence, after the first

timeout, the timeout value is made aggressive by setting it to

. After a timeout, the single packet being transmitted

is effectively a “probe” packet, and we should resume normal

operation as soon as the link recovers. Hence, instead of expo-

nentially backing off, a more aggressive timeout value (linear

backoff) is used to enable quick detection of link recovery.

Recovery Strategy: In normal TCP, three duplicate ACKs

trigger fast retransmit. On our link, reception of duplicate ACKs

signifies that the link is currently in an operational state. Ap-

plication of fast retransmit would result in unnecessary backoff

and, hence, underutilization. Hence, we maintain cwnd at the

same value—packets whose skipack counter has reached three

are simply retransmitted.

V. EXPERIMENTAL TEST SETUP

Our experimental test bed for evaluating the transparent TCP

proxy2 is shown in Fig. 8. The mobile terminal was connected

to the GPRS network via a Motorola T260 GPRS phone (three

downlink channels, one uplink). Tests were performed with dif-

ferent mobile terminals, using Linux 2.4, Windows 2000, and

2The GPL’ed proxy source code is available: http://www.cl.cam.ac.uk/
users/rc277/soft.html

Fig. 9. Results of the download transfers conducted over the GPRS network.
Plot shows the transfer times for different transfer sizes with and without the
TCP enhancing proxy. The error bars correspond to the standard deviation.
Each transfer test was repeated 25 times for a given size. The MSS was set at
1400 bytes in this experiment.

WinCE 3.0. Vodafone U.K.’s GPRS network was used as the

infrastructure.

In this setup, base stations are linked to the serving GPRS

support node (SGSN), which is connected to a gateway GPRS

support node (GGSN). Both the SGSN and GGSN nodes are

co-located in a combined GPRS support node (CGSN) in the

current Vodafone configuration [36].

Since we were unable to install equipment next to the CGSN,

we made use of a well provisioned IPSec VPN tunnel to route

all traffic via the Computer Laboratory. The proxy was then lo-

cated at the end of the tunnel, with routing configured so that all

packets flowing to and from the mobile host are passed to it for

processing. Packets arriving at the proxy that are to/from hosts

in the mobile host address range are passed to the user-space

proxy daemon by means of Linux’s netfilter [37] module.
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Fig. 10. (a) and (b) Shows the TCP sender side sequence and ack-sequence number time plot for 200 kB transfer, with a second connection of 50 kB initiated
after 30 s, without using the proxy. (c) and (d) Shows the outstanding data plot of each connection. Shows sequence trace and the outstanding data for similar
transfers but using our proxy. MSS was set at 1400 bytes.

In the test described, a number of different remote “fixed”

hosts were used, some located in the Laboratory, some else-

where on the public Internet, and others were in fact other mo-

bile hosts.

VI. EXPERIMENTAL RESULTS

In this section, we discuss results from experiments con-

ducted over the GPRS testbed using our proxy. We evaluate

how our transparent proxy achieves its goals of: faster flow

startup; higher downlink utilization; improved fairness (and

controllable priority); reduced queueing delays; and better loss

recovery.

A. Higher Downlink Utilization

To quantify the benefits of avoiding slow-start for short TCP

sessions, we performed a series of short (5–30 kB) downloads

from a test server that reflect web session behavior. Each transfer

for a given size was repeated 25 times, with traces recorded

using tcpdump and later analyzed.

Fig. 9 plots the transfer times with and without the mobile

proxy. The times shown include the full TCP connection es-

tablishment and termination overhead, which constitutes a sig-

nificant fraction of the overall time for shorter transfers. Even

using a large MSS of 1400 bytes, the proxy can be seen to

yield clear performance benefits through better link utilization.

If smaller MSSs are used, the speedup is more marked, due to

the greater number of RTTs that slow-start takes to achieve full

link utilization.

Note that when using a Linux 2.4 client, the performance im-

provement was not better than using Windows 2000 or WinCE

clients. This is due to Linux offering an initial receive window of

just 5392 bytes. When used with a normal TCP sender, Linux

expands the window sufficiently quickly for it to never be the

limiting factor. However, since we skip slow start, there is no

time for the window to grow and it, thus, limits the quantity of

data we can initially inject into the network and, hence, we do

not quite achieve our goal of full link utilization. We considered

sending further data “optimistically,” but rejected the idea as dis-

tasteful, and also a potential source of compatibility problems.

Even with the Linux 2.4 receiver, the proxy provides signif-

icant performance gains for short-lived flows as are prevalent

with HTTP/1.0 transfers. This benefit is maintained and even

enhanced when using HTTP/1.1 persistent TCP connections [8].

When using persistent connections it is normally the case that

the server has to let the TCP connection go idle between object

transfers since “pipelining” is rarely supported. Normally, this

results in the congestion window being set back to its initial two

segment value. The proxy avoids this, and the resultant benefit
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is more pronounced due to the lack of connection establishment

and termination phases.

B. Achieving Fairness and Flow Control Between Connections

We configured the proxy to distribute equal tickets to in-

coming flows and, hence, demonstrate that fairness can be

achieved between multiple connections. In the following ex-

periments, we initiated one transfer, then started a second about

30 s later.

Without the proxy, Fig. 10(a) and (b) shows the second flow

taking a long time to connect, and then suffering very poor

performance; it makes little progress until the first flow termi-

nates at about 60 s. During this time, the amount of outstanding

data for the first transfer remains the same; however, the second

struggles to get going and is unable to initiate sufficiently until

the first one terminates.

With the proxy, the second short flow of 50 kB connects

quickly in presence of the first, then receives a fair share of the

bandwidth. Fig. 10(c) and (d) shows the bandwidth of the first

flow being halved during the duration of the second flow. The

figure shows how our proxy advertisers updated value of the re-

ceiver window, to bring down the amount of outstanding data

for the first flow to about half of its initial value (set at slightly

more than 20% of effective downlink BDP). Furthermore, our

proxy also quickly brings the second flow to its full-utilization.

Thus, the proxy works as expected, enabling interactive applica-

tions to make progress in the face of background bulk transfers

such as FTP.

C. Reduced Queueing

In these tests, we demonstrate how the proxy can achieve

reduced queueing (and, hence, RTT), while maintaining high

throughput. A 600 kB file is downloaded with and without the

proxy. To demonstrate the effect the congestion window has on

performance, the experiment has been repeated with the proxy

configured such that it uses a static window of various nomi-

nated sizes. The experiments were performed under ideal radio

conditions so as to minimize chances of packet loss.

Fig. 11(a) shows that under these conditions the transfer takes

155 s with any window size greater than equal to 10 kB. Below

this size, the link is underutilized and throughput drops. If the

window size is increased beyond 10 kB the level of queueing

increases, approaching that of the case without the proxy for

a window size of 32 kB. Fig. 11(b) shows how these queues

translate into elevated RTT.

D. Faster Recovery

In Fig. 12, we show the implementation’s response to a simple

loss scenario. Around 90 s into a file transfer, the link stalls due

to a cell handoff. A single retransmission occurs, and then the

link recovers swiftly. This should be compared with the sim-

ilar scenario without the proxy previously shown in Fig. 3—re-

covery is now significantly quicker due to the aggressive (linear)

backoff mechanism.

In the presence of multiple flows, applying TCP-SACKs to

the entire aggregate can further improve response to loss. To

Fig. 11. (a) Outstanding (in-flight) TCP data and (b) sender perceived RTTs
during a 600 kB file transfer. Queueing delay can be reduced by clamping the
congestion window (cwnd) without effecting throughput. However, a cwnd of
less than 10 kB leads to underutilization, validating use of effective BDP. The
numbers highlighted in the plots give different sizes of cwnd (in kilobytes) used
with the proxy. MSS was set at 1400 bytes.

quantify the benefits from the scheme, we are collecting tcp-

dump traces of our user community using the proxy. Work to

provide a thorough real-world evaluation of the scheme from

these traces is on-going.

VII. ISSUES AND DISCUSSION

A. Transparent Proxying in GPRS Networks

Transparent proxies are commonplace in today’s Internet

[33]. Application-level transparent proxies are frequently em-

ployed by Internet service providers (ISPs) to interpose WWW

caches and redirect streaming media requests to the closest

replicated content. Adopting a similar approach, GPRS (and

3G) network operators could deploy TCP enhancing proxies in

their networks to benefit mobile users.

Using transparent proxying, mobile users require no software

or configuration changes. Furthermore, layer-4 switching can be

used to distribute load from users amongst a set of proxies.

Since TCP enhancing proxies do not require fine-grained

wireless channel monitoring, there is flexibility as to their place-

ment in the network. Fig. 13 shows two possibilities: 1) close

to the gateway router of the cellular network provider, where
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Fig. 12. Swift recovery from a TCP timeout during a 600 kB file transfer, while using the proxy. Plots showing (a) Outstanding (in-flight) data. (b) Sender
sequence trace. (c) RTT plot with TCP timeout spike. (d) Receiver perceived throughput. MSS was set at 1400 bytes.

Fig. 13. Transparent TCP proxying in a GPRS network.

traffic density is high (in Fig. 13 shown as TCP Proxy(1))

or 2) near to the wired-wireless boundary (i.e., GPRS GGSN

node or close), where traffic from a number of mobile hosts is

aggregated (shown as TCP Proxy(2)).

The close-up plot in Fig. 13 shows one such example using a

layer-4 switch to redirect TCP connections to a TCP enhancing

proxy cluster. By using such a scheme, issues such as scalability,

availability, and reliability can be addressed. Each proxy in the

cluster can handle TCP traffic for a set of GPRS mobile clients.

B. Proxies and End-to-End Layering Semantics

On issue to be considered when deploying a proxy such as

we propose is the effect on end-to-end semantics and its conse-

quences on overall reliability and security. Using a “split TCP”

[6] scheme, the proxy transparently divides the connection into

two legs: one from the fixed host to the proxy, and the other from

the proxy to the mobile host.

We attempt to mitigate the effect of transparent proxying on

the overall end-to-end semantics of the TCP connections by

never acknowledging (“early-ACKing”) the last FIN of each in-

dividual TCP connection, hence ensuring the mobile host has

all outstanding data before the “close” system call returns at the

sender. We know of no applications that rely on stronger seman-

tics than this. Architectural and policy issues relating to trans-

parent proxies are discussed in the Internet Architecture Board’s

(IAB) Open Pluggable Edge Services document RFC 3238 [32].

VIII. RELATED WORK

The academic literature contains a plethora of solutions for

elevating performance over wireless links. Berkeley’s SNOOP

[14], delayed DupAcks scheme [28], M-TCP [25], I-TCP [22],

Freeze-TCP [27], FDA [29], W-TCP [18], WTCP [26], and TCP
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TABLE II
WIRELESS TCP SOLUTIONS

Westwood [23] are some of the more important ones. Careful

examination of existing schemes suggests four broadly different

approaches: link-layer-based schemes (both TCP aware and un-

aware) (e.g., [14] and [28]), split connection based approaches

(e.g., I-TCP [22] and W-TCP [18]) and early warning based ap-

proaches (e.g., Freeze-TCP [27]), and finally those necessitating

end system changes (e.g., WTCP [26], Freeze-TCP [27], and

TCP Westwood [23]).

Snoop [14] is a TCP aware link-layer scheme that “sniffs”

packets in the base station and buffers them. If DupAcks are de-

tected, incoming packets from the mobile host are retransmitted

if they are present in a local cache. On the wired side, DupAcks

are suppressed from the sender, thus avoiding unnecessary fast

retransmissions and the consequent invocation of congestion

control mechanisms. End-to-end semantics are preserved. How-

ever, when bursty errors are frequent, the wired sender is not

completely shielded, leading to conflicting behavior with TCP’s

retransmission mechanisms.

The Snoop protocol scheme was originally designed for

WLANs rather than “long-thin” wide-area wireless links. As

such, it does not address the problems of excess queueing at

base stations or proxies. Hu and Yeung developed FDA [29],

which uses a Snoop-like strategy, but uses a novel flow-control

scheme which goes some way to prevent excess queueing.

Further, Snoop’s link-layer retransmissions and suppression of

ACKs can inflate the TCP sender’s RTT estimates and, hence,

its timeout value, adversely affecting TCPs ability to detect

error free conditions.

Delayed DupAcks [28] is a TCP unaware link-layer scheme:

it provides lower link-layer support for data retransmissions and

a receiver or mobile host side TCP modification that enables

the receiver to suppress DupAck’s for some interval when

packet(s) are lost over radio. However, the interval is diffi-

cult to determine as it depends on frequency of losses over the

wireless medium. The base station is not TCP aware, thus, a re-

ceiver cannot determine whether a loss is due to radio errors or

congestion, which can force the sender to timeout in such sit-

uations. Further, DupAck bursts can also aggravate congestion

over wire-line links that have high BDP.

In [16], Chan and Ramjee propose ACK Regulator for im-

proving end-to-end TCP performance over CDMA 2000-1X-

based 3G wireless links. The scheme requires no changes to

end-host systems. However, 3G links offer much higher channel

variations than GSM-based GPRS due because of the processing

delays and rate variations involved in the channel-based sched-

uling schemes used [16]. Schemes like ACK regulator can be

used to handle the impact of such high rate and delay variations,

which also mitigates the extent of excess data buffering in 3G.

The second broad approach is to split the TCP connection

into two sections. This allows wireless losses to be completely

shielded from the wired ones. I-TCP [22] uses TCP over the

wireless link albeit with some modifications. Since TCP is not

tuned to the wireless link, it often leads to timeouts eventually

causing stalls on the wired side. Due to the timeouts, valuable

transmission time and bandwidth is also wasted. I-TCP could

also run short of buffer space during periods of extended time-

outs due to the lack of an appropriate flow control scheme.

M-TCP [25] is similar to I-TCP except it better preserves

end-to-end semantics. M-TCP uses a simple zero window ACK

scheme to throttle transmission of data from the wired sender.

This leads to stop-start-stop bursty traffic on the wired connec-

tion, and the lack of buffering in the proxy can lead to link un-

derutilization for want of packets to send. Holding back ACKs

also affects sender’s RTT estimates, affecting TCP’s ability to

recover from nonwireless related packet losses.

Ratnam and Matta propose W-TCP [18], which also splits

the connection at the base station. However, it acknowledges

a packet to the sender only after receiving an acknowledgment

from the mobile host. W-TCP changes the timestamp field in the

packet to account for the time spent idling at the base station.

Retransmission characteristics have been adjusted to be aggres-

sive on the wireless side so that the link is not underutilized.

WTCP [26] is an end-to-end scheme which primarily uses in-

terpacket separation as the metric for rate control at the receiver.

Congestion related loss detection is also provided as a backup

mechanism. A drawback in WTCP is that it entails changes at

both the wired sender and the mobile host. Even if a receiver

side change can be envisaged, widespread adoption by wired

senders seems unlikely.

TCP Westwood [23] is a scheme that improves TCP perfor-

mance under random and sporadic losses, by desisting from

overly shrinking the congestion window on packet loss. It does

so by simultaneously estimating end-to-end bandwidth avail-

able to TCP, and uses it as a feedback measure to control the

congestion window. However, it requires modification to TCP

at the end-system.

The third broad approach identified covers schemes that use

various kinds of early warning signals. Freeze-TCP uses zero

window probes (ZWPs) like M-TCP, but is proactive since the

mobile host detects signal degradation and sends a zero window

warning probe. The warning period, i.e., the time before which

actual degradation occurs should be sufficient for the ZWP to
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reach the sender so that it can freeze its window. The warning

period is estimated on the basis of RTT values. One pitfall is the

reliability of this calculation and Freeze-TCP’s inability to deal

with sudden random losses. Furthermore, Freeze-TCP requires

end-system changes.

IX. CONCLUSION AND ONGOING RESEARCH

In this paper, we have proposed a flow aggregation scheme

to enhance data performance transparently of TCP flows over

cellular wireless links such as GPRS. The proposed split TCP

scheme was implemented and evaluated on a GPRS network

testbed. We summarize the key features of this proxy.

• Fast startup: The proxy avoids slow start during connec-

tion startup, thus quickly bringing the link up to full uti-

lization, to the particular benefit of short-lived flows.

• Flow fairness: The proxy explicitly schedules packets in

the aggregate to fairly allocate bandwidth between flows

and control the amount of data outstanding over the wire-

less link.

• Agile recovery: Error recovery over GPRS is significantly

improved due to the extension of the SACK mechanism

to cover the entire aggregate. As a result, using the proxy

losses are detected faster and recovery is done without

unnecessary backoff.

• Smart buffer management: Within the proxy, the flow con-

trol algorithm manages proxy buffer space to ensure suf-

ficient data is buffered to keep the wireless link fully uti-

lized, but tries to adjust flows smoothly, and limits the

buffer space committed to each mobile host.

In ongoing research, we are recording full tcpdump packet

traces of the GPRS traffic generated by our user community.

We plan to perform empirical analysis of this long-term trace

to quantify the real-world performance benefits provided by the

proxy for the applications in use by our users.

We are currently considering ways of improving our wireless

link BDP estimation algorithm. Although not particularly crit-

ical for GPRS where the BDP stays roughly constant even under

changing radio conditions and even during cell reselections, we

feel that a more dynamic scheme may be required for EDGE and

UMTS (3G) systems. Calculating the BDP of the aggregate in

a similar manner to that employed by TCP Vegas or Westwood

seems a promising approach.

The current work using the proxy has focussed on the down-

link direction as we perceive this as being the most critical

direction for performance of most applications. Besides the

downlink, we are also considering how the split TCP approach

could be used to improve the uplink, but the options without

modifying the mobile host are rather more limited. Fortunately,

vanilla uplink performance does not exhibit many of the gross

problems posed by the downlink.
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