
Using Test Cases as Contract to Ensure Service
Compliance Across Releases

Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta,
Gianpiero Esposito, and Valentina Mazza

RCOST - Research Centre on Software Technology,
University of Sannio, Palazzo ex Poste,
Via Traiano 82100, Benevento, Italy

{marcello.bruno, canfora, dipenta, gianpiero.esposito,
valentina.mazza}@unisannio.it

Abstract. Web Services are entailing a major shift of perspective in
software engineering: software is used and not owned, and operation hap-
pens on machines that are out of the user control. This means that the
user cannot decide the strategy to migrate to a new version of a service,
as it happens with COTS. Therefore, a key issue is to provide users with
means to build confidence that a service i) delivers over the time the
desired function and ii) at the same time it is able to meet Quality of
Service requirements.

This paper proposes the use of test cases as a form of contract between
the provider and the users of a service, and describes an approach and
a tool to allow users running a test suite against a service, to discover if
functional or non-functional expectations are maintained over the time.
The approach has been evaluated by applying it to two case studies.

Keywords: Service Testing, Evolution of Service–Oriented Systems, Re-
gression Testing, Service Level Agreements.

1 Introduction

Service–oriented architectures are having a relevant impact on the development
of today’s software systems, and promise to become a major technology to even
enable the development of business–critical applications. This, however, requires
highly reliable and robust services. To this aim, it is necessary to perform service
testing. All in all, a service can be considered very similar to a component, and
thus testing approaches developed in Component–Based Software Engineering
(CBSE) can be adapted to services. Much in the same way, a complex service–
oriented system is a distributed system, thus, again, existing techniques can be
reused.

However, service–oriented architectures introduce some important issues that
need to be considered when performing software testing. In a service–oriented
scenario, users just invoke a service, instead of physically integrating it (as it hap-
pens for components). The service provider can decide to maintain the service,
and the user could not be aware of that. For example:

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 87–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

88 M. Bruno et al.

– new features can be added: despite that, the service provider could decide
not to advertise in the service interface the change performed, because the
input and output parameters are not affected. However, the change made
alters the service behavior, and alters the service non-functional properties
(e.g., the response time) as well;

– optimizations (e.g., changes in algorithmic solutions) can be performed: this
will, for sure, cause a variation in the service non-functional properties. As
a result, the Service Level Agreement (SLA) stipulated between the user
and the provider may or may not be violated. In fact, an optimization could
improve a non-functional property while worsening another, or even an im-
provement of some Quality of Service (QoS) attributes (e.g., the response
time) may not be desirable since it may cause unwanted effects in the whole
system behavior. Last but not least, any optimization could introduce faults,
thus varying the service functional behavior as well.

To deal with the aforementioned issues, this paper proposes the use of test
cases as a way to stipulate contracts between a service provider and service
users1. This calls for empowering users to perform regression testing [1] with
the aim of discovering if a new version of a given service is still in line with the
expectations and assumptions that led to the inclusion of the service in a system.

Test suites are published by the service provider as a part (facet) of the service
description. When a user acquires a service, s/he can use such test suites to check
whether the service behaves as desired. In addition, the user can add a further
test suite (this can be particularly important since the user may not completely
trust test cases delivered by the provider). If no deviation from the expected
behavior is noticed, the contract is stipulated, and the test suite specifies the
service behavior required to fulfill the contract. Then, the user can periodically
run the test suite to discover if changes made to the service implementation
entail the violation of any of the initial assumptions and expectations, either
functional or related to QoS.

This paper makes the following contribution:

– it proposes to support service consistency verification through evolution by
executing test suites contained in a XML–encoded facet attached to the
service;

– it presents a toolkit that allows to generate testing facets from JUnit test
suites, combining static and dynamic analysis, and to run them against the
service; and

– it discusses empirical data demonstrating the effectiveness of using test cases
as a contract between service providers and users.

The rest of the paper is organized as follows. Section 2 describes the proposed
approach and tool. Section 3 presents and discusses results from empirical studies
1 According to service–oriented architecture terminology, the term user is used here

to refer to the organization or individual engineer that integrates a service into a
service–oriented system, and not to the end user of the system itself, that is not
expected to test a service.

Using Test Cases as Contract to Ensure Service Compliance Across Releases 89

performed to assess the approach. Finally, after a discussion of the related work,
Section 5 concludes.

2 The Approach

The basic idea behind our approach is to provide a service with i) a set of test
cases and ii) a set of QoS assertions. This idea comes from component–based
software testing, where some authors proposed the idea of providing a test suite
together with the component [2, 3]. However, the fact that a service is executed
on the server machine and evolves independently from the systems using it, and
the need for a service to meet non-functional requirements established in the
SLA, introduce new issues that the approach has to fulfill.

When the user acquires a service, s/he is able to access the XML–encoded
test cases and QoS assertions hyperlinked to the service WSDL. These test cases
and assertions constitute a kind of “contract” between the user and the service
provider. By executing the test cases, the user can observe the service functional
and non-functional behavior. If satisfied, the user stipulates the contract. The
provider, on his/her own, agrees to guarantee such a behavior over a specified
period of time, regardless of any change that will be made to the service im-
plementation. If, during that period, the service evolves (i.e., a new release is
deployed), deviations from the agreed behavior would cause a contract violation.

Fig. 1 provides an overview of the whole test case generation and regression
testing process. The light gray area indicates what happens when the service

WEB
SERVICE

(release r)

Unit Test
Tool

(e.g. JUnit)

Test
Suites

Tester

User-developed
test suite

Static
Analysis

JUnit class
Instrumentation

Test suite
Execution

Dynamic
Analysis

XML test suite
generation

WSDL

Regression
Test Runner

QoS
Monitoring

Generation of
QoS Assertions

Generated
QoS

Assertions
n

WEB
SERVICE

(release r)
n+k

Regression
Test Runner

Tester

Test
Log

XML-ENCODED TEST SUITE GENERATION

Functional
Test Suite

DEPLOYED SERVICE

Developer

QoS
Monitoring

SLA

Fig. 1. Test generation and execution

90 M. Bruno et al.

is acquired (release rn). The dark gray area indicates what happens when the
service evolves (to release rn+k) and the user re-tests the service. When the
developer implements the service, s/he also provides for it a unit test suite.
By proper analysis and transformations, the test suite is XML-encoded and
attached to the service interface. The service is therefore published together
with the testing facet, comprising test cases (and, eventually, QoS assertions).
Subsequently, the service user can periodically re-execute the test suite against
the service to verify whether the service still exhibits the functional and non-
functional properties held when the service was acquired. The whole approach
is supported by a toolkit, developed in Java, composed of two modules:

– the testing facet generator that, as described in Section 2.2 supports the
generation of the XML-encoded testing facet. In the current implementa-
tion, the tool accepts JUnit2 test suites, although we plan to extend our tool
so to be able to accept as input test suites developed using other tools (and
for services written using different languages). JUnit supports the develop-
ment of a unit test suite as a Java class, containing a series of methods that
constitute the test cases. Each test case is composed of a sequence of asser-
tions checking properties of the class under test. The tool relies on JavaCC3

to perform Java source code analysis and transformation, on the Axis web
services framework4 on the Xerces5 XML parser.

– the test suite runner that permits the service consumer to execute the test
suite against the service and produces the test log.

After describing the approach’s assumptions, the next subsections thoroughly
describe the different phases of the test case generation and execution process.

2.1 Assumptions

In order to let the approach work properly, we need to make some assumptions,
and, in case they fail, proper countermeasures should be taken.

An user can test someone else’s service with the assumption that the test
case execution does not produce any side effect, but only a service response.
This is reasonable, for example, for services used for distributed computations
or in a grid environment. For example, services performing computations (e.g.,
image compressing, DNA microarray processing, or any scientific calculus) are
suitable. This is not the case, however, of services whose execution produces an
irreversible effect, such as services for hotel booking or book purchasing.

In the case of services with side effects, the approach is still feasible from the
provider’s side, after isolating the service from its environment (e.g., databases),
or even from the user side if the provider exports operations to allow users to
test the service in isolation.
2 http://www.junit.org/
3 https://javacc.dev.java.net/
4 http://xml.apache.org/axis/
5 http://xml.apache.org/xerces2-j/

Using Test Cases as Contract to Ensure Service Compliance Across Releases 91

Testing may become problematic for the provider if it is highly resource–
demanding or, for the user, if the service has not a fixed fee (e.g., a monthly–
usage fee) but the cost depends on the number of its invocations. These issues
are discussed in Section 5.

Finally, as explained in Section 2.2, the approach is able to generate asser-
tions for testing service non-functional properties. However, this is based on
monitoring data that can depend on the current configuration (server machine
and load, network bandwidth and load, etc.). While averaging on several mea-
sures can mitigate the influence of network/server load at a given time, changes
in network or machines may lead to completely different QoS values.

2.2 Step 1: Generating the XML–Encoded Test Suite

The testing facet generator XML–encodes a unit test suite provided with the
service. First, the service provider indicates to the tool the service class and
the JUnit class containing the test suite for the service–under–test. Then, the
tool starts analyzing both the service and the JUnit class. The translation of
the JUnit test suite into the facet is not straightforward: in general, any JUnit
assertion involves expressions of variables containing references to local objects,
and method invocations related to these objects. However, the XML–encoded
test suite needs to be executed from user–side. The service user can only access to
service operations. Any other expression needs therefore to be evaluated on server
side and thus XML–encoded as a literal. Expression evaluation is performed

Fig. 2. Test case generation tool

92 M. Bruno et al.

by executing an instrumented version of the JUnit test class from server–side.
The obtained dynamic information is then complemented with test suite static
analysis to generate the XML testing facet.

The tool shows to the user the list of test cases contained in the test suite
(“Choose test case” window in Fig. 2). The user can decide which JUnit test
cases should be encoded in XML. For the selected test cases, the user can select
(from the “Select analysis” window) two options:

1. automatic test case transformation: the tool automatically translates any
expression, but service operation invocations, in literals and generates the
XML–encoded test suite;

2. selective translation: the user can select which method invocations, corre-
sponding to service operations (see the “Method list” window) should be
evaluated and which should be left symbolic in the testing facet.

Finally, the service needs to be complemented with QoS assertions, that can
be used to verify whether the service is able to preserve its non-functional be-
havior over the evolution. These assertions can be automatically generated by
executing all test cases against the deployed service and measuring each time
the QoS attributes by means of a monitoring system. Supposing that each test
case contains an assertion involving a service operation, when the test case is
executed (and thus the operation invoked) QoS values can be measured. In the
current implementation, we are able to measure response time and throughput;
however, with the aid of external monitoring systems, even more complex QoS
measures can be used.

The measured values will constitute constraints that should hold in future
releases of the service. After obtained this set of constraints and encoded them
in XML (see Section 2.2), the service user will send the XML file to the provider.
Under some extents, these constraints can be part of the SLA. For example, if
the user acquires a service and, invoking one of its operation with a given set of
parameters (contained in the test case), observes a response time of 20 ms (over
a large number of runs), then the generated constraint should be something like:

ResponseT ime < 20ms + ∆ (1)

where ∆ represents a tolerance threshold for the expected response time, or

ResponseT ime < pi (2)

where pi is the ith percentile of the response time distribution as measured when
acquiring the service.

As an alternative of using QoS assertions, the service non-functional behavior
can be checked against any SLA document attached to the service. However,
while the assertions allow to check the QoS achieved for each test case, SLA can
only be used to check the average QoS values.

XML–Encoding of Test Suites. The testing facet generator produces a facet
organized in two levels:

Using Test Cases as Contract to Ensure Service Compliance Across Releases 93

Fig. 3. XML-encoding of a JUnit assertion

1. A first level, containing a Facet Description and a Test Specification. The
Facet Description contains general information such as the facet owner or
the creation date. The Test Specification Overview contains, for each test
suite enclosed in the facet, information such as the testing strategy adopted
(e.g., Functional or Structural) and the tool used to develop the test suite
(e.g., JUnit). Then, the Data section contains links to XML files containing
the test suite itself and QoS assertions.

2. A second level, comprising files containing XML–encoded test suites and
QoS–assertions.

Fig. 3 shows an example of how a JUnit test case can be mapped to a XML
file. The example is related to a service returning travel information for a given
location (i.e., closest airport and train station, plus distance to get to the air-
port and to the station). The left–side of the figure shows a portion of the JUnit
test case. The method setUp() creates an instance variable containing a Loca-
tion object (location1), while the testLocationInfo() method asserts that
location1 must match the result of the getLocationInfo operation when the
passed parameter is “Benevento”.

The right–side of Fig. 3 shows the XML mapping. In particular, it is worth
noting that:

– objects are serialized in XML (using the XStream6 serializer);
– the param tag has an attribute (evaluation) indicating whether the parameter

is a literal serialized in the XML, or whether it is symbolic (i.e., it is a service
operation that needs to be invoked). For the latter, actual parameters are
specified.

QoS assertions are XML–encoded using the WSLA schema [4]. While the
SLA poses general QoS constraints7 (e.g., “Throughput > 1 Mbps” or “Average
response time < 1 ms.”), QoS assertions indicate which will be the expected
service performance in correspondence of a given set of inputs (specified in the
test case). For example, when the input (as specified in the test case) of a MP3

6 http://xstream.codehaus.org/
7 That must hold for any service usage.

94 M. Bruno et al.

compression service is a 5 MBytes file, the QoS assertion may indicate a response
time of 30 s (that will clearly be different in case the input file is smaller or
bigger).

2.3 Step 2: Running the Test Suite

Once the test suite has been published together with the service, the tester
(either a user, a third-party or the provider) can:

1. download the test suite and the QoS assertions, hyperlinked to the service
WSDL interface;

2. run the test suite and get the test log: service operations contained in the
test suite are invoked, and assertions evaluated. A test log is generated,
indicating, for each test case, i) whether the test case has passed or failed
and ii) the differences between the expected and actual QoS values. Also in
this case, the QoS monitoring is used to measure actual QoS values, thus
permitting the evaluation of QoS assertions.

The service user can also provide, on his/her side, further test cases. This
is particularly important: the user might not trust the developer’s test suite;
on the contrary, s/he wants to develop an additional test suite as a contract
reflecting the intended service usage (that might have not been contemplated
by the provider). In a semi–structured environment (e.g., a service registry of
a big organization) the user can therefore publish this new test suite to the
service, and other users can eventually reuse it. On the contrary, this may not

Fig. 4. Test suite runner

Using Test Cases as Contract to Ensure Service Compliance Across Releases 95

be possible in an open environment, where the additional test suite is stored by
the user, and only serves to check whether future service releases still satisfy the
user requirements.

The decision on whether the user has to add further test case may be based on
the analysis of the provider’s test suite (e.g., characterizing the range of inputs
covered), and from the test strategy used by the provider to generate such a test
suite – e.g., the functional coverage criterion used – also advertised in the test
facet.

The trustability level of the provider’s test suite can be assessed, for instance,
by analyzing the domain in which the service inputs varies, and the functional
coverage criteria adopted.

Fig. 4 shows a screenshot of the test suite runner. As shown, after specifying
the service URL, it is possible to run the test cases against the service. The
window reports the log indicating whether the different assertions passed or
failed, and, each time an assertion uses a XML-serialized object, such an object
is shown in the window as well.

3 Empirical Study

To validate the proposed approach, we need to generate test cases and related
QoS assertions on a service release. Then, test cases need to be run again against
subsequent releases, to check whether the service “violates the contract”.

We published as web services five releases of two open source systems, dns-
java and InetAddressLocator. dnsjava8 is a Domain Name System (DNS) client
and server; in particular, for this study’s purpose, the dig (domain information
groper) utility has been wrapped with a web service. dig is used to gather infor-
mation from DNS servers, while InetAddressLocator9 is a utility that, given an
IP address, returns its geographical location.

The dig web service has five parameters: the domain to be solved (compul-
sory), the server used to solve the domain, the query type, the query class and an
option switch. The service answers with two strings: the query sent to the DNS,
and the DNS answer. The InetAddressLocator service interface is quite simple:
the input parameter is just the IP address to be located, while the output is a
string specifying the geographic location. For both services, we carefully checked
whether the response message contained values such as timestamps, increasing
id, etc., that could have biased the result, i.e., causing a failure for any test case
execution. Test case generation was guided by determining, for each input pa-
rameter, equivalence classes. The number of test cases was large enough (1000
for dnsjava and 2500 for InetAddressLocator) to cover any combination of the
equivalence classes. After services have been deployed, test cases are run against
all the releases of each system. For dnsjava, two different analyses of the test
execution logs have been performed:

8 http://www.dnsjava.org/
9 http://javainetlocator.sourceforge.net/

96 M. Bruno et al.

Table 1. dnsjava: % of failed test cases

strong check soft check
1.3.0 1.4.0 1.5.0 1.6.1 1.3.0 1.4.0 1.5.0 1.6.1

1.2.0 3% 74% 74% 74% 1% 7% 7% 7%
1.3.0 74% 74% 74% 9% 9% 9%
1.4.0 0% 0% 0% 0%
1.5.0 0% 0%

1. strong check, comparing both dnsjava response messages (i.e., the DNS query
and answer). This is somewhat representative of a “stronger” functional–
contract between the service user and the provider, that guarantees an exact
match of the whole service response over a set of releases;

2. soft check, comparing only the DNS answer, i.e., the information that often a
user needs from a DNS client. This is somewhat representative of a “weaker”
functional contract.

For InetAddressLocator, we simply compared the (single) response message.
Finally, for dnsjava we also measured two QoS attributes, i.e., the response time
and the throughput. To mitigate the randomness of these measures, the test case
execution was replicated 10 times, and average values considered10.

This section reports and discusses the results obtained analyzing test case
executions. The following subsections will discuss results related to functional
and non-functional testing.

Functional Testing. Table 1 reports the percentage of test cases that failed
when comparing different dnsjava releases, considering the strong check contract.
Rows represent the releases when the user could have acquired the service, while
columns represent the service evolution. It clearly appears that a large percentage
of failures (corresponding to contract violations) is reported in correspondence
of release 1.4. This is mostly explained by changes in the set of DNS types
supported by dnsjava.

All the users who bought the service before could have reported problems
in the service usage. User–side testing would have therefore noticed the user
of the change, while provider–side testing would have suggested to advertise
(e.g., updating the service description, although leaving the service interface
unaltered) the change made. Vice–versa, users who bought the services at release
1.4 experienced no problem when the service evolved towards releases 1.5 and 1.6.

Let us now consider the case in which the comparison is limited to the DNS
answer (soft check). As shown in Table 1, in this case the percentage of violations
in correspondence of release 1.4 is lower (it decreases from 74% to 7–9%). This
large difference is due to the fact that only the DNS query (compared with
the strong check) reports DNS types: here the comparison of just resolved IP
addresses did not produce a large percentage of failures. Where present, failures
10 According to what we verified, the standard deviation was below 10% of the average

value.

Using Test Cases as Contract to Ensure Service Compliance Across Releases 97

Table 2. InetAddressLocator: % of failed test cases

2.12 2.14 2.16 2.18
2.10 0% 1% 1% 5%
2.12 1% 1% 5%
2.14 0% 4%
2.16 4%

Fig. 5. dnsjava measured QoS over different releases

are mainly due to the different way subsequent releases handle exceptions. While
this happens in a few cases, it represents a situation to which both provider and
service users should pay careful attention.

Finally, Table 2 shows results for the InetAddressLocator software system.
Here the differences, mainly appearing in the last release (2.18) are mainly due
to updates in the location database. While in this case a different behavior may
be considered as a service improvement, it is worth noticing that this could still
lead to undesired behaviors from user’s side. For example, if the user expects
that the InetAddressLocator replies with the string Europe to a given set of IP
addresses, while the new release (more precise) returns the string Italy, then the
behavior of the system using the service may be affected.

Non-functional Testing. Fig. 5 reports average response time and throughput
values measured over the different dnsjava releases. A response time increase (or
a throughput decrease) may cause a violation in the SLA stipulated between the
provider and the user. Basically, the figure indicates that:

– except for release 1.6, the performance always improved;
– users who acquired the service at release 1.5 could have noticed a SLA vio-

lation, in case the provider guaranteed, for future releases, at least the same
performances exhibited by release 1.5;

– users who acquired the service at release 1.4 could have noticed, in corre-
spondence of release 1.6, a (slight) decrease of the response time, even if a
(slight) improvement in terms of throughput; and

– finally, all users who acquired the service before release 1.4 were fully
satisfied.

98 M. Bruno et al.

Overall, we thus noticed that the QoS always improved over its evolution,
but for release 1.6.5, where developers decided to add new features at the cost
of worsening the performances.

4 Related Work

As stated in Section 2, the idea of complementing web services with a support
for testing comes from the testing of component–based systems. As described
by Weyuker [3], Bertolino et al. [2] and Orso et al. [5, 6], components can be
complemented with a high–level specification, a built-in test suite, and also a
traceability map able to relate specifications to component interfaces and to test
cases. Weyuker [3] indicates that, especially for components developed outside
the user organization, the provider might not be able to effectively perform
component unit testing, because s/he is not aware of the target usage scenarios.
As a consequence, the component user is required to perform a more careful
re-test inside his/her own scenario. As discussed in Section 5, this is particularly
true for services. For this reason, developer’s test cases need to be complemented
with user’s test cases.

In literature there are plenty of approaches for regression testing. The state
of the art is presented by Harrold [7], explaining the different techniques and
issues related to coverage identification, test–suite minimization and prioritiza-
tion, testability etc. Regression test selection [8, 9, 10] constitutes an important
aspect aiming to reduce the cost of regression testing, that largely affects the
overall software maintenance cost [1]. Much in the same way, it is important to
prioritize test cases that better contribute to achieve a given goal, such as code
coverage or the number of faults revealed [11, 12].

Cost–benefits models for regression testing have also been developed
[13, 14, 15]. Although this is out of scope of the present paper, the issue of model-
ing, predicting and trying to reduce the testing cost is particularly important for
web service testing. Even when test cases are available, service testing consumes
network resources, and the provider might want to limit it (see Section 5).

5 Concluding Remarks

Regression testing, performed to ensure that an evolving service maintains the
functional and QoS assumptions and expectations valid at the time of integration
into a system, is a key issue to achieve highly–reliable service–oriented systems.
We have proposed the idea of test cases as a form of contract between a service
provider and a service user, and have shown an approach to publish test cases
as a facet of the service description, and using such a facet to regression test a
service over the time. Whilst the focus of the paper is on the user-side testing, the
approach proposed can also be useful for third-party-side testing and provider-
side testing, which, similarly to what happens for components [16], constitute
the three main perspectives when testing a service–oriented system:

Using Test Cases as Contract to Ensure Service Compliance Across Releases 99

1. provider/developer perspective: the service developer would periodically
check whether the service, after its maintenance/evolution, is still compliant
to the contract stipulated with the customers. To avoid affecting service per-
formance, testing can be performed off–line, possibly on a separate instance
(i.e., not the one deployed) of the service and on a separate machine;

2. user perspective: on his/her side, the user may periodically want to re-test
the service to ensure that its evolution, or even changes in the underlying
software/hardware do not affect the functional and non-functional behavior.
Particular attention needs to be paid from the provider’s side: service invo-
cation is supposed to have a cost and to consume resources. High–frequency,
massive testing of the service from many users would lead to a denial–of–
service. Proper countermeasures need therefore to be set from provider’s side,
limiting the number of service invocations per period of time, and maybe al-
lowing access during periods when the service workload is low;

3. certifier perspective: a certifier acts similarly to a user, with the aim of re-
peatedly testing the service, possibly on behalf of a user, to check whether
it is compliant to some functional and non-functional behavior specified in
the test suite.

Work–in–progress is devoted to enhance the tool and to integrate it in a com-
plex service–oriented development environment. We are also tackling issues such
as the automatic generation of test cases, starting from a service specification or
interface, with the aim of violating functional or non-functional contracts. Also,
supporting test case reuse and performing cost–benefits analysis are important
issues to be considered. Finally, the preliminary empirical studies performed need
to be replicated with larger, industrial service–oriented systems.

Acknowledgments

This work is framed within the IST European Integrated Project SeCSE (Service
Centric Systems Engineering) – http://secse.eng.it, 6th Framework Programme,
Contract No. 511680. Authors would like to thank Alberto Troisi for his work
the service regression testing tool.

References

1. Leung, H.K.N., White, L.: Insights into regression testing. In: Proceedings of IEEE
International Conference on Software Maintenance. (1989) 60–69

2. Bertolino, A., Marchetti, E., Polini, A.: Integration of ”components” to test soft-
ware components. ENTCS 82 (2003)

3. Weyuker, E.: Testing component-based software: A cautionary tale. IEEE Softw.
15 (1998) 54–59

4. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agreement
(WSLA) language specification (2005)
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

100 M. Bruno et al.

5. Orso, A., Harrold, M., Rosenblum, D., Rothermel, G., Soffa, M., Do, H.: Using
component metacontent to support the regression testing of component-based soft-
ware. In: Proceedings of IEEE International Conference on Software Maintenance.
(2001) 716–725

6. Orso, A. Harrold, M., Rosenblum, D.: Component metadata for software engineer-
ing tasks. In: EDO2000. (2000) 129–144

7. Harrold, M.J.: Testing evolving software. J. Syst. Softw. 47 (1999) 173–181
8. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An empirical

study of regression test selection techniques. ACM Trans. Softw. Eng. Methodol.
10 (2001) 184–208

9. Harrold, M.J., Rosenblum, D., Rothermel, G., Weyuker, E.: Empirical studies of a
prediction model for regression test selection. IEEE Trans. Softw. Eng. 27 (2001)
248–263

10. Rothermel, G., Harrold, M.J.: Empirical studies of a safe regression test selection
technique. IEEE Trans. Softw. Eng. 24 (1998) 401–419

11. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A family
of empirical studies. IEEE Trans. Softw. Eng. 28 (2002) 159–182

12. Rothermel, G., Untch, R.J., Chu, C.: Prioritizing test cases for regression testing.
IEEE Trans. Softw. Eng. 27 (2001) 929–948

13. Leung, H.K.N., White, L.: A cost model to compare regression testing strategies.
In: Proceedings of IEEE International Conference on Software Maintenance. (1991)
201–208

14. Malishevsky, A., Rothermel, G., Elbaum, S.: Modeling the cost-benefits tradeoffs
for regression testing techniques. In: Proceedings of IEEE International Conference
on Software Maintenance, IEEE Computer Society (2002) 204

15. Rosenblum, D.S., Weyuker, E.J.: Using coverage information to predict the cost-
effectiveness of regression testing strategies. IEEE Trans. Softw. Eng. 23 (1997)
146–156

16. Harrold, M.J., Liang, D., Sinha, S.: An approach to analyzing and testing
component-based systems. In: First International ICSE Workshop on Testing Dis-
tributed Component-Based Systems, Los Angeles, CA (1999) 333–347

	Introduction
	The Approach
	Assumptions
	Step 1: Generating the XML--Encoded Test Suite
	Step 2: Running the Test Suite

	Empirical Study
	Related Work
	Concluding Remarks

