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Abstract 

TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the 

proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis 

(ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type (WT) TDP-43 

inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority 

of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is 

the most common form of motor neurone disease, characterised by progressive weakness and 

muscular wasting, and typically leads to death within a few years of diagnosis. To determine 

how the translocation and misfolding of TDP-43 contributes to ALS pathogenicity, it is crucial to 

define the dynamic behaviour of this protein within the cellular environment. It is therefore 

necessary to develop cell models that allow the location of the protein to be defined. We report 

the use of TDP-43 with a tetracysteine tag for visualisation using fluorogenic biarsenical 

compounds, and show that this model displays features of ALS observed in other cell models. 

We also demonstrate that this labelling procedure enables live-cell imaging of the translocation 

of the protein from the nucleus into the cytosol.  
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Introduction 

Amyotrophic lateral sclerosis (ALS) is a progressive, and ultimately fatal, neurodegenerative 

disorder that primarily affects the upper and lower motor neurons of the central nervous system 

(CNS). Symptoms of the disease are normally first observed at a focal site of onset and then 

gradually spread to contiguous regions of the nervous system over time. As is the case with a 

number of other neurodegenerative diseases, this process is accompanied by the deposition of 

insoluble inclusions of aggregated protein in the cytoplasm of affected cell types which acts as a 

pathological signature for the condition. A major component of these inclusions has been 

identified as hyperphosphorylated and ubiquitinated pathological forms of both full-length and 

proteolytic cleavage fragments of TDP-43 1-3. Interestingly, scores of additional proteins are 

found co-deposited in spinal motor neurons with various forms of TDP-43 4. 

 

Under physiological conditions, TDP-43 is a predominantly nuclear protein and, amongst other 

functions, it is involved in mRNA regulation and splicing 1-3, 5. In ALS, however, it has been found 

to mislocalise to the cytoplasm where it forms misfolded aggregates. The formation of pre-

inclusions that do not associate with ubiquitin 6 coincides with the movement of TDP-43 from the 

nucleus, and is considered to be an early aggregated species that precedes the accumulation of 

mature, ubiquitin-associated inclusions 6, 7. There is great debate surrounding the relative 

contributions to pathogenesis of the loss of functional TDP-43 from the nucleus (loss-of-

function, LOF) and of the accumulation of aggregated species with toxic properties in the 

cytoplasm (gain-of-function, GOF), although recent evidence suggests that both mechanisms 

can contribute to the disease 8. Indeed, cytoplasmic translocation and aggregation of TDP-43 

are directly associated with cell death, suggesting that the study of the initial stages of these 

processes could significantly increase our understanding of how TDP-43 contributes to the 

molecular pathology of the disease.  

 

Fluorescent labels have been employed in many live cell models to allow the observation of the 

intracellular distribution of proteins. The tetracysteine (TC) motif and biarsenical dye system 

makes use of a derivative of fluorescein, called fluorescein arsenical hairpin binder (FlAsH). 

This dye binds to a short amino acid sequence with the TC-motif, having the general structure 

Cys-Cys-Xaa-Xaa-Cys-Cys (CCXXCC, in which X denotes any amino acid) 9. Both FlAsH and a 

red-shifted variant, ReAsH, denoting resorufin arsenical hairpin binder, are commercially 

available and well characterised fluorescent dyes. These reagents are not fluorescent in their 

unbound states, but interaction with the TC motif results in a large increase in their fluorescence 
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quantum yields. Previous studies to optimise the flanking regions of the TC peptide sequence 

resulted in two 12-amino acid motifs, FLNCCPGCCMEP and HRWCCPGCCKTF, with high 

capacities to accommodate the FlAsH and ReAsH dyes 10. Such optimised TC tags can be 

genetically inserted into the target protein, allowing the FlAsH or ReAsH dye to bind with high 

specificity. A significant advantage of the TC tag compared to the use of fluorescent proteins is 

that its small size reduces the likelihood of it significantly affecting the properties of the protein 

of interest 11. This system lends itself to the visualisation of the target protein inside live cells 

because of the relatively low cytotoxicity of the dye 12. Furthermore, it has been shown that a 

variety of proteins in common mammalian cell lines, primary cortical neurons and also Gram-

negative bacteria can be labelled with FlAsH and ReAsH 13. Both reagents have been used 

successfully to report on the conformation of proteins expressed in cultured cells 14-16. In the 

context of the present study, we note that this labelling strategy has been used in cell models of 

several neurodegenerative diseases to investigate the conformational states of aberrantly 

misfolded proteins in a cellular environment 17, 18. For example, the incorporation of a TC tag into 

a variant of huntingtin (Httex1) has been used to probe the aggregation state of the protein in 

Neuro2A cells, in which the conformational properties of the monomeric form but not the 

aggregated forms, enable the TC tag to bind to ReAsH 17. In addition, transfected SH-SY5Y 

cells have been used to overexpress TC-labelled α-synuclein, allowing the dynamics and 

structural properties of the aggregates to be studied using in situ microscopy techniques 

including fluorescence recovery after photobleaching (FRAP) and confocal fluorescence 

anisotropy 18. 

 

We discuss in this paper the development of a live cell model of ALS using transiently 

transfected SH-SY5Y cells overexpressing TC tagged WT TDP-43 (HA-TDP43-TC) that allows 

direct visualisation of the protein in living cells using the biarsenical dye FlAsH. We demonstrate 

that the TC tag does not detectably alter the behaviour of TDP-43 in this cell model by 

comparing it to cells overexpressing HA-TDP-43 (HA-TDP43), a human influenza 

haemagglutinin (HA) epitope tagged TDP-43 which is a well-characterised system used 

previously to investigate the role of TDP-43 in ALS 19, 20. We show here that the HA-TDP43-TC 

model recapitulates key biochemical features of TDP-43 proteinopathies, such as association 

with stress granule markers and phosphorylation 19, 21, 22. Furthermore, we show it is possible to 

monitor noninvasively, and with spatiotemporal resolution, the cytoplasmic accumulation of 

TDP-43 concomitantly with its nuclear clearance over the course of 72 h post-transfection. 

Finally, we demonstrate that this model is amenable to time-lapse confocal microscopy, and 
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observe FlAsH labelled TDP-43 transferring from the nucleus into the cytoplasm in real time.  

 

Materials and Methods 

Construction of plasmids 

To generate the HA- and TC-tagged WT TDP-43 (HA-TDP43 and HA-TDP43-TC) sequences, 

the cDNA encoding TDP-43 was amplified from the pCMV.SPORT6.1_TDP-43 plasmid (Source 

BioScience, Nottingham, UK) by PCR using Phusion High-fidelity DNA polymerase (Thermo 

Fisher Scientific, Loughborough, UK) and primers that either incorporated the DNA sequences 

of the HA-tag and the TC-tag (TDP43-TC (forward) and TDP43-TC (reverse) primers) or which 

incorporated the HA-tag only (HA-TDP43 (forward) and HA-TDP43 (reverse)). Sequences of the 

primers are reported in Table S1 and the DNA sequences encoding HA-TDP43 and HA-TDP43-

TC are shown in Figure S1. In both cases, the primers introduced unique BamHI and XbaI sites 

at the 5’ and 3’ ends of the coding sequences respectively. These sites were used to clone the 

genes of interest into the pcDNA3.1TM(+) vector (Thermo Fisher Scientific). The constructs were 

transformed using standard heat-shock protocols into chemically competent DH5αTM E. coli 

(Thermo Fisher Scientific) and plated on LB-agar plates containing ampicillin (100 µg/mL). DNA 

was isolated using a Qiaprep Spin mini-prep or maxi-prep kit (Qiagen, Manchester, UK) 

according to the manufacturer’s instructions. Purified DNA concentrations were determined 

using a NanoDrop® ND-1000 Spectrophotometer (Thermo Fisher Scientific) and constructs 

were confirmed by DNA sequencing (Department of Biochemistry, University of Cambridge, 

UK). 

 

Cell culture and transfection 

The human neuroblastoma SH-SY5Y cell line was routinely cultured in complete growth 

medium (DMEM/F12 supplemented with 10% (v/v) FBS) in a humidified chamber at 37°C in 

95% air and 5% CO2. Cells were either chemically transfected using Lipofectamine® 2000 

(Thermo Fisher Scientific) or electroporated using the Neon™ system (Thermo Fisher 

Scientific). 

 

Lipofection 

Cells were plated one day before transfection in 35 mm glass bottom dishes (Ibidi, 

ThistleScientific, Glasgow, UK) such that the culture was at 70-90% confluence on the day of 

transfection. Transfections were carried out using Lipofectamine® 2000 according to the 

manufacturer’s instructions in serum free media (DMEM/F12 without FBS). Briefly, the 
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plasmid/Lipofectamine® 2000 complex was prepared at a 1:4 ratio (μg:μL). Lipofectamine® 2000 

was incubated (room temperature (RT), 5 min) in half the total volume of media before being 

mixed with the media containing the plasmid DNA, followed by further incubation (RT, 20 min). 

The complete media was aspirated from the cultured cells and replaced with the 

DNA/Lipofectamine complex in serum free media. The cells were incubated in the 

DNA/Lipofectamine-containing media (37°C. 5 h) which was then replaced with complete media, 

and the cells were incubated overnight at 37°C before being used for further experiments.  

 

Electroporation 

Two days prior to electroporation, cells were seeded into T-75 flasks with complete growth 

media such that the cells were 70–90% confluent on the day of the experiment. The cells were 

then detached with 0.25% Trypsin-EDTA (3 mL, Thermo Fisher Scientific) and washed in 

phosphate buffered saline, pH 7.4 (PBS). The cells were re-suspended in the resuspension 

buffer provided and electroporated (1,100 V, 50 ms, 1X) according to the manufacturer’s 

protocol (Neon Transfection System, Thermo Fisher Scientific). After electroporation, the cells 

were seeded in complete growth media in 6-well, or 96-well plates (Corning, Appleton Woods 

Limited, Birmingham, UK), or in 35 mm glass bottom dishes (Ibidi, Thistle Scientific), and left for 

at least 24 h before use in experiments.  

 

Immunocytochemistry  

SH-SY5Y cells overexpressing TDP-43 were grown in 35 mm glass bottomed dishes. To 

monitor the effects over time, immunocytochemistry was performed with cells at 24, 48 and 72 h 

post transfection. The cells were washed with chilled PBS and fixed with chilled 

paraformaldehyde (3.7% in PBS, 15 min). After 15 min, the cells were washed twice with chilled 

PBS (10 min) and permeabilised by incubating in chilled PBS-T (0.3% (v/v) Triton-X in PBS, 30 

min). After 30 min, the cells were blocked with BSA (5% (w/v) in PBS-T, 30 min) and washed 

twice with chilled PBS (5 min). The cells were incubated with the primary antibody (1:1000) (RT 

for 1 h or 4 °C overnight) with gentle rocking. For co-localisation experiments, cells were co-

incubated with the primary antibodies anti-HA 3F10 (Sigma Aldrich UK Ltd., Gillingham UK) and 

either phospho (403/404) TDP-43 (ProteinTech, Manchester, UK) or phospo (409/410) TDP43 

(ProteinTech), or TIA-1 C-20 (Santa Cruz Biotechnology, Heidelberg, Germany). This was 

followed by incubation with an appropriate secondary Alexa FluorTM antibody (1:1000, Life 

Technologies, Paisley, UK) (RT for 1h or 4 °C, overnight). Wheat germ agglutinin (WGA) Alexa 

FluorTM 647 conjugate (Life Technologies) treatment was done prior to permeabilisation by 
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treating the cells with a 1:500 dilution of WGA conjugate in Hank’s buffered salt solution (HBSS; 

10 min, RT). Cells were washed twice in HBSS and permeabilisation was performed with 

subsequent labelling. Cells were washed twice with chilled PBS after incubation with each of the 

primary and secondary antibodies. After washing, the cells were incubated with the nuclear 

stain Hoechst (1 μg/mL, Life Technologies) for 5 min, and the labelled cells were mounted with 

Ibidi mounting medium (Ibidi, Thistle Scientific). Imaging of the samples was performed on a 

Leica TCS SP8 Confocal Microscope (Leica Microsystems, Wetzlar, Germany) at the 

Cambridge Advanced Imaging Centre (CAIC), University of Cambridge. 

 

In-cell biarsenical dye labelling 

For the labelling of TC tagged TDP-43 (HA-TDP43-TC) overexpressed in SH-SY5Y cells, the 

TC-FlAsH™ II In-Cell Tetracysteine Tag Detection Kit from Molecular Probes (Thermo Fisher 

Scientific) was used. Transfected SH-SY5Y cells were grown in 35 mm glass bottomed dishes. 

To monitor the effects over time, in-cell FlAsH labelling was performed at 24, 48 and 72 h post 

transfection. The cells were washed twice with reduced serum Opti-MEM® without phenol red 

(Life Technologies), and incubated with FlAsH (1 μM) in Opti-MEM® (37°C, 30 min, protected 

from light). After 30 min, the cells were washed twice with 1X BAL (2, 3-dimercaptopropanol) 

buffer in Opti-MEM® (37°C, 1 h, protected from light). For live-cell imaging at each time point, 

cells were incubated with Hoechst stain (1 μg/mL) in Opti-MEM® for 5 min after the BAL buffer 

wash steps. Finally, the cells were washed with Opti-MEM® and cultured in Opti-MEM® and 

prepared for live-cell imaging. 

 

Quantification of transfection efficiency  

Cells were transfected with either HA-TDP43 or HA-TDP43-TC using Lipofectamine® 2000. 24 h 

post-transfection, the cells were fixed and immunostained with an anti-HA antibody and an 

AlexaFluor 488 secondary antibody, to detect positively transfected cells, and Hoechst nuclear 

counterstain, to visualise the total number of cells. The samples were imaged using a Leica 

TCS SP5 confocal microscope equipped with 40x HPC Fluo Tar and 63x APO oil immersion 

objectives, and a UV diode and 488 nm argon laser line to visualise the Hoechst and AlexaFluor 

488 fluorescence respectively (Leica Microsystems, Milton Keynes, UK). Three images were 

obtained at 40x magnification in different regions of the dish for each sample. Subsequent 

quantification was performed using ImageJ, using the Cell Counter plugin to count manually all 

cells stained with the anti-HA antibody or Hoechst stain. The number of cells positive for both 

anti-HA and Hoechst were calculated as a percentage of the total number of Hoechst positive 
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cells. 

 

Time-lapse imaging 

Cells transfected with HA-TDP43-TC in 35 mm glass dishes were labelled with the Molecular 

Probes™ FlAsH-EDT2 dye from Invitrogen™ Life Technologies™, 24-36 h post-transfection. 

Cells were washed in Opti-MEM® (RT, 2X) followed by incubation in FlAsH-EDT2 (1 μM in Opti-

MEM®) (RT, 30 min, protected from light). The cells were washed twice in 1 X BAL buffer (in 

Opti-MEM®) (37°C, 1 h, protected from light) and imaged in Opti-MEM®. The chamber slide 

placed in a CO2-UNIT-BL Stage top heated CO2 chamber (37°C, no CO2 perfusion) 30 min prior 

to imaging, using confocal microscopy (Leica Microsystems). The inbuilt software (LAS AF, 

Leica Microsystems) was used for time-lapse imaging using the ‘Best Focus’ function at 

different locations within the dish using the ‘Mark and Find’ function (overnight, 15 min 

intervals).  

 

Quantification of depletion of nuclear fluorescence from time-lapse images 

 Each frame of the time-lapse video was analysed as an individual tiff file in ImageJ, and 

analysis was performed in the green channel of each image. A region of interest was drawn 

around the nucleus of the target cell exhibiting fluorescence using the freeform tool. ‘Set 

measurements’ was selected from the Analyze menu, and ‘area’, ‘integrated density’ and ‘mean 

gray value’ were ticked. ‘Measure’ was selected from the ‘Analyze’ menu to obtain values. The 

process was repeated for an area of the image without fluorescence to measure the background 

signal, and was performed for all frames up to 11 h of imaging, after which there was no 

difference between nuclear fluorescence and the background signal. The results were copied 

and pasted into Microsoft Excel for further analysis. Equation 1 was used to obtain a value for 

corrected fluorescence at each time point. 

 

Equation 1:  𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 − (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ×  𝑚𝑒𝑎𝑛  𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)  

 

Comparison of the cellular location of TDP-43 in HA-TDP43 and HA-TDP43-TC following 

electroporation treatment 

Confocal images acquired from cells expressing HA-TDP43 and HA-TDP43-TC after labelling 

with an anti-HA antibody were used to determine the location of fluorescence signals by dividing 

into three categories: (1) predominantly nuclear localisation, (2) localisation in both cytoplasm 
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and nucleus and (3) predominantly cytoplasmic localisation. Fifty cells were randomly counted 

from different sample preparations and the percentage was calculated for each category. 

 

 Immunoprecipitation experiments 

Transfected cells were rinsed with PBS (10 mL) and detached using a trypsin–EDTA solution 

followed by the addition of complete growth medium to neutralise the trypsin. The cells were 

pelleted by centrifugation (4°C, 5 min, 1500 rpm) and the supernatant was removed. The cell 

pellet was washed with chilled PBS and further centrifuged (4°C, 5 min, 1500 rpm). The 

supernatant was removed, and the cell pellet was lysed with RIPA buffer (1 mL, 50 mM Tris-

HCl, pH 8.0, 150 mM sodium chloride, 1.0% Igepal CA-630 (NP-40), 0.5% sodium 

deoxycholate, 0.1% sodium dodecyl sulphate) supplemented with EDTA-free protease inhibitor 

cocktail (Roche Diagnostics, Mannheim, Germany) for 10 min on ice, followed by centrifugation 

(4°C, 10 min, 10,000 rpm), after which the supernatant was retained for immunoprecipitation. 

PierceTM Anti-HA Magnetic Beads (Thermo Fisher Scientific, 25 μL) were washed twice with 

TBS-T (Tris-buffered saline, 0.05% (v/v) Tween 20, 300 μL), followed by a final wash with 

ddH2O; with brief vortexing between washes. The cell lysate (1 mL) was added to a 1.5 mL 

microfuge tube followed by addition of the pre-washed magnetic beads. The sample was then 

mixed and incubated (RT, 30 min, 200 rpm) with constant rotation. After incubation, the tube 

was placed into a DynaMag™-Spin Magnet stand (Thermo Fisher Scientific) and the 

supernatant containing unbound protein was collected and saved for analysis. To elute, the HA-

tagged TDP-43 bound to the magnetic beads, Pierce HA Peptide (Thermo Fisher Scientific) 

(100 μL of 2 mg/mL) was added to the bead slurry, and this was then vortexed and incubated 

(37°C, 10 min). The eluted sample was then analysed by Western blotting.  

 

Western Blotting 

SDS-PAGE was used to separate protein samples prior to western blotting. The protein sample 

(20 μL) was prepared in NuPAGE® LDS Sample Buffer (4X) (LifeTechnologies) and NuPAGE® 

Sample Reducing Agent (10X) (Life Technologies) and run on a NuPAGE® 4-12 % gradient 

Bis-Tris (Life Technologies) gel with MES running buffer (Life Technologies) (200 V, 25 min). 

The proteins were transferred from the gel to an iBlot® Transfer Stack with PVDF membrane 

(0.2 μm pore size) using the iBlot® Dry Blotting System (Life Technologies) according to the 

manufacturer’s protocol. After transfer, the PVDF membrane was blocked with 5% (w/v) dry 

skimmed milk powder in PBS with 0.05% Tween-20 (blocking buffer) (RT, 1 h, gentle agitation). 

The membrane was then incubated with primary antibodies in blocking buffer (1:1000, 4°C, 
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overnight or RT, 1 h) followed by washing four times with PBS-T (RT, 10 min). After washing, 

the membrane was incubated with AlexaFluor 488- or 594-labelled secondary antibody (1:1000, 

RT, 1 h). After incubation, the membrane was washed four times with PBS-T and imaged using 

a Typhoon 9400 laser-based scanner (GE Healthcare) at 550 V using a green (532 nm) 

excitation laser to excite AlexaFluor 594 or a blue (488 nm) laser to excite AlexaFluor 488.  

 

Results 

Transient transfection of SH-SY5Y cells to overexpress full length TDP-43 containing a C-

terminal tetracysteine-tag (TC) 

A number of TDP-43 cell models use epitope tags or fluorescent fusion proteins to distinguish 

between overexpressed TDP-43 and the endogenous protein 7, 19, 23-25. For our model, we added 

the 12 amino acid TC tag (FLNCCPGCCMEP) 10 to the C-terminus of full-length TDP-43 (Figure 

1, i). It has been established that in disease states such as ALS, C-terminal truncated fragments 

of TDP-43 are found in the inclusions 3, 26, and so we reasoned that the addition of the TC tag to 

the C-terminus of our full-length TDP-43 construct will allow us to visualise both the full-length 

and truncated fragments of TDP-43. We also incorporated an HA-epitope tag at the N-terminus 

of the protein (Figure 1, ii) in the same construct to allow an alternative means of identification 

using antibody detection 19, 23, 25, 27, 28. The HA-TDP43-TC construct was inserted into the 

mammalian expression vector, pcDNA3.1(+). Despite the tags introduced being of relatively 

small sizes (~ 1 kDa), we checked that the addition of the C-terminal TC tag did not change the 

cellular behaviour of the overexpressed WT TDP-43, by comparing our TC-tagged TDP-43 to an 

N-terminally HA-tagged full-length TDP-43 (HA-TDP43, Fig. 1, iii) construct which has been 

previously shown to have diffuse nuclear localisation in transiently transfected cells 19, 20. 

 

Figure 1. Schematic diagram illustrating i) full length wild-type TDP-43, ii) HA-TDP43-TC and iii) 
HA-TDP43 constructs. The HA-tag is denoted in black, the nuclear localisation signal (NLS) and 
nuclear export signal (NES) are shown in purple, the RNA-recognition motifs are shown in dark 
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grey, the glycine rich region is orange and the TC-tag is shown in green.  
 
The HA-TDP43 and the HA-TDP43-TC constructs were transiently transfected into SH-SY5Y 

cells using two methods: lipofection (Lipofectamine® 2000) and electroporation (Neon™ system) 

to determine which most efficiently delivers the HA-TDP43-TC plasmid into the cells. SH-SY5Y 

cells are a human neuroblastoma cell line that is well-established and extensively used in 

neurodegenerative disease models, including for studies involving TDP-43 18, 19, 25, 29, 30. We 

used this cell line for the current study as they are consistently amenable to transient 

transfection protocols and have a favourable nucleus-to-cytoplasm ratio, which allows clear 

microscopy imaging. After 24 h post transfection, the cells were fixed, permeabilised and probed 

with an anti-HA primary antibody.  For both the HA-TDP43 and HA-TDP43-TC expressing cells, 

HA-specific labelling was detected as predominantly diffuse nuclear fluorescence (Figure 2A). 

By analysing the number of positively stained cells for the two different transfection methods, we 

observed a 10% and 12% transfection efficiency for the HA-TDP43 and HA-TDP43-TC 

plasmids, respectively, using the lipofection method, and a 14% transfection efficiency for both 

plasmids with the electroporation method (Table S2). For the HA-TDP43-TC cell line, we could 

image the live cells 24 h post-transfection using the FlAsH dye (Figure 2B), finding that FlAsH-

bound protein was predominantly localised to the nucleus. It is interesting to note that for the 

lipofected cells, the FlAsH-bound HA-TDP43-TC displayed a weaker signal intensity compared 

to electroporated cells, although this was not statistically significant (n=1, two-tailed unpaired t 

test, p=0.1404) (Table S3). We proceeded with the electroporation method in light of its greater 

efficiency, using it to characterise the intracellular distribution of HA-TDP43-TC over time. To 

confirm further the presence of the full-length protein within the cells 24 h post-transfection, the 

HA-tagged proteins were isolated using immunoprecipitation (anti-HA magnetic beads) and the 

resulting samples were analysed by Western blotting (Figure 2C); similar results were observed 

for the 48 h and 72 hr post-transfected samples (data not shown).  
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Figure 2. Confocal images of SH-SY5Y cells transfected (by either electroporation or 
lipofection) to overexpress HA-TDP43 or HA-TDP43-TC, at 24 h post-transfection. A) 
immunofluorescence images generated using an anti-HA antibody and an AlexaFluor 488 
secondary antibody (green), Hoechst nuclear stain (blue) and membranes are stained with 
wheat germ agglutinin (WGA) Alexa FluorTM 647 conjugate (red), scale bars are 50 μm; B) 
fluorescence images after the addition of the FlAsH dye (24 h post-transfection). For clarity, the 
white dotted line denotes the nucleus. Images are representative of multiple independent 
experiments. C) Immunoprecipitation followed by Western blot analysis of HA-TDP43 and HA-
TDP43-TC isolated from SH-SY5Y cell lysates at 24 h post transfection. Mock transfections are 
cells transfected with buffer alone. 
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Monitoring HA-TDP43-TC expression at different time points post-transfection with the 

FlAsH dye 

In previously reported cell models, WT TDP-43 is overexpressed and remains localised within 

the nucleus 19, 31, whereas disease-related variants show translocation of the protein from the 

nucleus to the cytoplasm where they form inclusions when monitored up to 72 h post 

transfection. When cells expressing WT TDP-43 are exposed to conditions of stress, such as by 

the addition of arsenite or through nutrient deprivation, this aberrant behaviour is also observed 

21, 22. To determine whether or not FlAsH labelling was able to identify HA-TDP-43-TC positively 

over 72 h post transfection, we compared live-cell images after the addition of the FlAsH 

reagent to HA-TDP43-TC expressing cells at 24, 48 and 72 h post-transfection. In Neon-

transfected SH-SY5Y cells expressing HA-TDP43-TC, we observed diffuse nuclear staining 24 

h post-transfection (Figure 3, 24 h). At 48 h post-transfection, however, FlAsH fluorescence was 

observed in both the nucleus and the cytoplasm (Figure 3, 48 h), and by 72 h, FlAsH labelled 

HA-TDP43-TC was predominantly in the cytoplasm and appeared as inclusions of variable size 

(Figure 3, 72 h). The cells with strong staining of cytoplasmic inclusions showed a lack of 

nuclear fluorescence. No FlAsH fluorescence was observed at any time point (24-72 h) when 

the over-expressed protein lacked the TC tag (Figure S2). Translocation of the HA-TDP43-TC 

protein had clearly occurred spontaneously in this cell model despite earlier reports that in the 

absence of exogenous stress, WT TDP-43 remains in the nucleus 32-34. We next examined 

whether this translocation was due to the C-terminal TC tag perturbing the behaviour of WT 

TDP-43 protein or if the mode of transfection had itself imposed an exogenous stress. To carry 

out this objective we used the well-characterised HA-TDP43 cell model 19 and compared results 

from time course experiments in which cells were transfected using either electroporation or 

lipofection.  
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Figure 3. Confocal images of FlAsH bound HA-TDP43-TC in live SH-SY5Y cells at 24, 48 and 
72 h post transfection. FlAsH fluorescence images only (upper panel), or merged with bright 
field (BF) images (lower panel). The images are representative of multiple independent 
experiments. For clarity, the outline of the nuclei is indicated by dashed white lines. The white 
arrowheads indicate punctate staining of HA-TDP43-TC. Mock transfection is cells transfected 
with buffer alone. 
 

SH-SY5Y cells were transfected to express HA-TDP43 using electroporation and, similarly to 

HA-TDP43-TC, translocation of the protein was observed at 48 and 72 h post-transfection 

(Figure 4A and 4B). Comparison of the number of cells containing nuclear or cytoplasmic TDP-

43 (detected through HA-tag labelling, n=50 cells per condition) showed that the HA-TDP43 and 

the HA-TDP43-TC models both displayed similar distributions (Figure 4C & 4D). When the cells 

underwent lipofection however, much less translocation was observed in both cell models and 

at 72 h post-transfection the nuclear TDP-43 staining remained prominent (Figure S3), in 

agreement with previous studies 20, 24, 25, 27, 28. Interestingly, when the electroporation method 

was used to transiently transfect cells to overexpress EGFP-tagged TDP-43, we found that at 

48 h and 72 h post-transfection, the TDP43-EGFP fluorescence was predominantly localised in 

the nucleus (Figure S4). This predominant nuclear localisation by WT TDP43-EGFP at 48 h  

and 72 h post-transfection has been reported previously 35, 36.   
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Figure 4. HA-TDP43 and HA-TDP43-TC expression and distribution in SH-SY5Y cells at 48 and 
72 h following transfection by electroporation A) Representative images of cellular TDP-43 
distribution for HA-TDP43 (A) and HA-TDP43-TC (B); scale bars are 10 μm. Merged 
immunofluorescence images generated using an anti-HA antibody (green) and Hoechst nuclear 
counterstain (blue). Histograms showing cellular location of HA-TDP43 and HA-TDP43-TC at 
(C) 48 h and (D) 72 h post-transfection. Percentages were calculated by examining cells with 
positive HA-tag labelling from 8 independent imaging experiments until 50 cells for each 
condition (A and B) were identified.  
 

HA-TDP43-TC shows co-localisation with the stress granule marker TIA-1 

To determine if the cytoplasmic inclusions observed in cells expressing HA-TDP43-TC provide a 

useful model of ALS pathogenesis, we next examined whether or not the protein had co-

localised with a marker of stress granules (SGs), dynamic RNA-containing complexes that are 

formed in the cytoplasm when cells are subjected to stress 37. SGs direct translation towards 
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proteins required for cell survival and repair, but may under pathological conditions, stabilise 

and act as scaffolds to promote recruitment and aggregation of a variety of proteins, including 

TDP-43 38, 39. SGs in cell culture are formed within minutes of stress induction, and normally 

degrade within 3 h following the cessation of stress, but persist in response to chronic stress 37. 

It has been reported that in a number of cell models, cytoplasmic TDP-43 aggregates are found 

to co-localise with stress granule markers such as TIA-1 in both cell culture models 22, 32, 40 and 

immunocytochemical analyses of ALS and FTLD-TDP tissue samples 21, 22, 41. Chronic cellular 

stress may initiate pathological TDP-43 aggregation via its promotion of the assembly of SGs, 

thereby bringing together high concentrations of aggregation prone proteins and leading to 

cytoplasmic inclusion 42. At 48 and 72 h post-transfection, we observed that cytoplasmic 

inclusions containing HA-TDP43-TC co-localised with TIA-1 (Figure 5); similar co-localisation 

was also observed in cells overexpressing HA-TDP43 (Figure 5).  
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Figure 5. Comparison of the co-localisation of TDP-43 and the SG marker TIA-1 between the 
HA-TDP43 and HA-TDP43-TC SH-SY5Y cell models at 48 h and 72 h post transfection using 
electroporation. Merged immunofluorescence images generated using an anti-HA antibody 
(green) and Hoechst nuclear counterstain (blue) and anti-TIA-1 staining (red). Yellow denotes 
co-localisation between HA-labelled TDP-43 and TIA-1 (white arrows). 
 

In addition to co-localisation with SG markers, phosphorylation of TDP-43 is commonly 

regarded as a hallmark feature of ALS. Using specific antibodies that recognise phosphorylated 

Ser403/404 or Ser409/410 epitopes, cytoplasmic inclusions containing phosphorylated TDP-43 

have been detected in some cell models; this is not seen, however, in many cell-lines 

expressing WT TDP-43 36, 43. We probed transfected SH-SY5Y cells expressing HA-TDP43-TC 

with antibodies specific for TDP-43 phosphorylation at either Ser403/404 or Ser409/410. In SH-

SY5Y cells transfected to express HA-TDP43 or HA-TDP43-TC, at 48 and 72 h post 

transfection, no specific fluorescence was obtained using the pSer409/410 antibody (data not 
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shown), but fluorescent cytoplasmic inclusions were detected using the pTDP-43 Ser403/404 

antibody (Figure 6).  

 

Figure 6. Comparison of co-localisation of TDP-43 using an antibody for detection of 
phosphorylation at serine 403 and 404 residues between the HA-TDP43 and HA-TDP43-TC 
SH-SY5Y cell models at 48 h and 72 h post transfection using electroporation. Merged 
immunofluorescence images generated using an anti-HA antibody (green), Hoechst nuclear 
counterstain (blue) and an anti-TDP-43 p403/404 antibody (red). Yellow denotes co-localisation 
between HA-labelled TDP-43 and TDP43-p403/404. 
 
The TC-tag cell model shows nuclear-to-cytoplasmic translocation in real-time   

Having demonstrated that the TC-tag cell model reproduces several events relevant to the 

disease process in ALS, we finally examined whether or not it is possible to monitor TDP-43 

translocating from the nucleus into the cytoplasm in real-time. Given that the mild stress induced 

by electroporation appears to stimulate translocation of HA-TDP43-TC, no additional external 
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chemicals or processes are needed to induce this process. At 24 h post-transfection, the FlAsH 

reagent was added to these cells and they were imaged using confocal microscopy for a further 

20 h (Figure 7).  

 

Initially, individual cells expressing HA-TDP43-TC show predominantly nuclear staining (Figure 

7 a), but over the time-course of the experiment (Figure 7 b onwards) these cells can be seen to 

have developed small cytoplasmic inclusions. Interestingly, even at the initial time point when 

cytoplasmic TDP-43 can be visualised (~26 h 30 min), the fluorescence signal is not diffuse but 

appears as small puncta that clearly change position in relation to the cell nucleus over time. 

They also appear to coalesce during real-time imaging, suggesting that they merge into larger 

structures, or are just in close proximity to one another (Supplementary Video S1). The 

appearance of HA-TDP43-TC in the cytoplasm coincides with a gradual decrease in nuclear 

FlAsH signal intensity (Figure 7 c onwards, Figure S5), indicating nuclear depletion of the 

labelled TDP-43. Concerns about the high background fluorescence due to endogenous 

cysteine-rich proteins and the potential cytotoxicity of biarsenical dyes have been raised 44; 

however, with the application of BAL buffer washes, we did not observe high background 

fluorescence during our live-imaging studies, and the cells imaged did not show any signs of 

morphological change until late into the imaging process (~44 h, Figure 7 f), 
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Figure 7. a-f. Frames from time-lapse confocal microscopy imaging of HA-TDP43-TC 
expressing SH-SY5Y cells labelled with FlAsH dye. Imaging commenced at 24 h post-
transfection and the subsequent time points (h) shown are a) 24:00, b) 26:30, c) 28:45, d) 
29:15, e) 33:45, and f) 42:30. The inset white boxes contain zoomed images of the cell nucleus 
(zoom factor 2 x original image). The nucleus of the target cell is denoted by a dotted line and 
white arrows denote cytoplasmic puncta. The images are representative of multiple independent 
experiments. 
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Discussion 

Together with fluorescent protein (FP) tags, the HA tag is one of the most extensively used 

labels in investigations of the role of TDP-43 in ALS 19, 24, 45. The HA-tag, however, has a 

significant limitation, in that there is a need to fix and immunostain cells in order to detect the 

labelled TDP-43, therefore making this model incompatible with live cell imaging to monitor 

intracellular processes. The FP-TDP-43 fusion systems are amenable to live cell imaging, but 

involve the incorporation of a ~27 kDa FP. Given the relative size of the FP in relation to TDP-

43 (~27 kDa versus 43 kDa), the bulkiness of the fluorescent moiety may perturb the native 

structure and function of the TDP-43 and therefore, the use of the smaller TC-tag in conjunction 

with biarsenical dyes (~1 kDa) may prove advantageous. 

 

In this paper we have described a cell model in which the cells are transiently transfected to 

overexpress HA-tagged TDP-43 with a C-terminal TC tag, which is visualised using the 

biarsenical dye, FlAsH. This model can be used to monitor the translocation of TDP-43 from the 

nucleus to the cytoplasm in live cells using time-lapse microscopy. Although our study shows 

that the HA-TDP43-TC model is very similar to the well-characterised HA-TDP43 cell model, the 

properties of the TC tag and FlAsH make it a very valuable tool for monitoring the intracellular 

distribution of TDP-43 in live cells. The TC tag itself is relatively small, while the FlAsH dye is 

membrane permeable and non-fluorescent until it binds to the TC tagged protein. In addition, 

the dye itself is sufficiently photostable, and shows low toxicity, to allow imaging in live cells over 

several hours 13.  

 

Comparisons between the HA-TDP43-TC and HA-TDP43 cell models indicate that the C-

terminal TC tag does not detectably alter the properties of HA-TDP-43 when overexpressed in 

SH-SY5Y cells. When transfected by electroporation, at 48 and 72 h post-transfection, cells 

expressing either HA-TDP43 or HA-TDP43-TC both show cytoplasmic translocation and 

accumulation of the overexpressed protein. Interestingly, this observation differs from most 

previous reports in which WT HA-TDP43 or GFP-TDP43 has been overexpressed in transfected 

mammalian cell lines 20, 46. Nuclear to cytoplasmic translocation is more commonly observed in 

cell models expressing TDP-43 containing familial ALS mutations 47, 48 or truncated forms of the 

protein 25, 31. For cells expressing WT TDP-43, translocation of the protein to the cytoplasm has 

generally been reported to occur only following the application of external stress 21, 32. For cells 

expressing HA-TDP43 or HA-TDP43-TC, we observe predominantly nuclear localisation when 

cells were lipofected, with much less cytoplasmic TDP-43 detected at all the time points 
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measured post-transfection, than in cells transfected using electroporation. These results 

suggest that the electroporation method, which slightly increases the transfection efficiency (by 

2-4%), may also result in a degree of cell stress 49; we therefore took advantage of this 

phenomenon to study the translocation of WT TDP-43 in the absence of pharmacological 

stressors. 

 

Cells transfected by electroporation to express HA-TDP43-TC demonstrate some key 

biochemical hallmarks of ALS, including the nuclear to cytoplasm translocation, an increase in 

the appearance and size of cytoplasmic inclusions over time, an indication that the TDP-43 is at 

least partially phosphorylated and the association of the TDP-43 inclusions with TIA-1, a marker 

of stress granules 1, 3, 38. Phosphorylation of TDP-43 at the Ser403/404 or Ser409/410 epitopes 

has also been associated with ALS pathogenesis 43, 50, 51. It is not clear whether phosphorylation 

of TDP-43 leads to aggregate formation and/or neurotoxicity, or if this process represents a 

normal reaction to the presence of an intracellular aggregate, as reports have shown that 

phosphorylation of WT-TDP43 is not always observed 20, 24. We did, however, observe positive 

staining with the antibody specific for p403/404 but not the antibody specific for p409/410 (Fig. 

6).  

 

Using cells expressing HA-TDP43-TC, we were able to observe translocation of WT TDP-43 in 

the absence of pharmacological stresses in live cells over time, as indicated by the appearance 

of fluorescent motile cytoplasmic puncta together with decreased nuclear fluorescence. This 

process is thought to precede the deposition of cytoplasmic inclusions, which may contribute to 

the pathogenesis of ALS due to depletion of TDP-43 in the nucleus, preventing the protein from 

carrying out its normal regulatory functions on mRNA (LOF), and/or to the accumulation of 

cytoplasmic TDP-43 with inherently toxic properties (GOF) 52. 

 

The HA-TDP43-TC cell model shares many features of the well-established HA-TDP43 model, 

which has been successfully utilised to investigate many aspects of TDP-43-mediated disease 

processes, but offers the considerable advantage of being compatible with live cell imaging. In 

particular, we were able to monitor the nuclear to cytoplasmic translocation of TDP-43 in live 

cells using confocal microscopy, which represents an early stage in the deposition of 

aggregated TDP-43 in the cytoplasm of affected cells.  

 

Having shown that it is possible to image TDP-43 translocation in real-time using this model, it is 
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clear that this has the potential to provide quantitative information about the translocation 

process itself, and could even be applied to gain further insights into other processes, which 

occur subsequently to nuclear translocation, such as the aggregation of TDP-43 within the 

intracellular environment. This in turn may help develop a better understanding of how TDP-43 

contributes to neurodegeneration in ALS and related proteinopathies.  
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Supplementary methods  

Transfection efficiency  

SH-SY5Y cells expressing HA-TDP43 or HA-TDP43-TC were fixed and immunostained with 

anti-HA antibody and nuclear counterstain Hoechst, 24 h post-transfection (via lipofection or 

electroporation). These samples were then imaged using confocal microscopy at 40x 

magnification, and the number of green (HA-TDP43 or HA-TDP43-TC) and blue (Hoechst) 

stained cells present in each image were manually counted using the Cell Counter plug-in in 

ImageJ. The transfection efficiency was calculated as the number of green transfected cells 

as a percentage of the total number of blue Hoechst-stained cells counted in each image.  

 

Quantification and comparison of nuclear FlAsH fluorescence in cells transfected with 

the HA-TDP43-TC plasmid using either lipofection or electroporation  

SH-SY5Y cells were transfected with HA-TDP43-TC using both lipofection and 

electroporation methods and imaged using confocal microscopy 24 h post-transfection. The 

nuclear fluorescence in transfected cells was quantified as described in the methods section. 

A two-tailed unpaired Student t-test was performed on the mean fluorescence for each 

transfection method using GraphPad Prism version 7 for Mac OS X (GraphPad Software, La 

Jolla California USA) to determine whether or not there was a significant difference in the 

intensity of nuclear fluorescence between the two different transfection methods. 

Supplementary tables and figures 

Table S1. Oligonucleotide sequences of primers used. 
Primer 
name 

Sequence 

TDP43-TC 
(forward) 

5’-AATTGGATCCATGTACCCATACGACGTCCCAGACT 

ACGCTTCTGAATATATTCGGGTAAC-3’ 
TDP43-TC 
(reverse) 

5’-CTAGTCTAGACTAGGGCTCCATGCAACAGCCTGGA 

CAGCAGTTCAGGAACATTCCCCAGCCAGAAGACT-3’ 

HA-TDP43 
(forward) 

5’-AATTGGATCCATGTACCCATACGACGTCC-3’ 

HA-TDP43 
(reverse) 

5’-CTAGTCTAGAAGCTTCTACATTCCCCAGCCAG-3’ 
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Table S2. Transfection efficiency of SH-SY5Y cells transfected with HA-TDP43 or HA-
TDP43-TC plasmid using either lipofection or electroporation 
 

 Transfection 
method 

Number of 
green cells 

Number of 
blue cells 

efficiency 
(%) 

HA-TDP43 Lipofection 
 

264 2648 9.97 

 Electroporation 
 

53 374 14.17 

HA-TDP43-TC Lipofection 
 

236 1947 12.12 

 Electroporation 44 312 14.10 
 

 
Table S3. Nuclear fluorescence values from SH-SY5Y cells expressing HA-TDP43-TC using 

both lipofection and electroporation methods 24 h post-transfection. 

 
 HA-TDP43-TC lipofection  

Area of measurement Integrated density Nuclear fluorescence 
92.364 2574.874 2252.985 
82.204 1430.486 1144.005 
104.14 1566.261 1203.333 
96.982 1213.431 875.449 
63.731 1621.448 1399.346 
54.957 2458.034 2266.509 
60.96 881.151 668.705 

78.059 1216.663 943.059 
Mean background grey value 3.485  

  
HA-TDP43-TC electroporation 

 

Area of measurement Integrated density Nuclear fluorescence 
78.509 1636.226 1335.327 
65.347 2008.453 1757.999 
94.673 2441.639 2078.789 
111.76 1719.123 1290.784 
99.522 4858.802 4477.367 

Mean background grey value 3.833  
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Figure S1. DNA sequences encoding A) HA-TDP43 and B) HA-TDP43-TC. Restriction 

enzyme sites (BamHI and XbaI) appear as underlined bold text. The DNA sequence 

encoding the HA-tag is highlighted yellow in A) and B), and the DNA sequence encoding the 

TC-tag in B) is highlighted in cyan. 
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Figure S2. Confocal images showing HA-TDP43 (no TC-tag) in live SH-SY5Y cells at 24, 48 

and 72 h post-transfection in the presence of FlAsH reagent (middle panels). No FlAsH 

signal is detected in the absence of the TC-tag. Bright field and Hoechst nuclear 

counterstain (blue) are shown for each time point.  
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Figure S3. Confocal images showing the distribution of HA-TDP43 and HA-TDP43-TC in 
lipofected SH-SY5Y cells at 24, 48 and 72 h post-transfection, immunostained with anti-HA 
antibody (green). The inset white boxes contain zoomed images of the cell nucleus (zoom 
factor 2 x original image).  

 

 

Figure S4. Confocal images showing the distribution of TDP43-GFP (green) in 

electroporated SH-SY5Y cells at 24, 48 and 72 h post-transfection. Cells were transfected 

with a pcDNA4/TO-TDP43-EGFP construct (GenScript, Piscataway, NJ USA) using 

protocols detailed in the materials and methods. Scale bars are 50 μm.  
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Figure S5. Histogram showing the loss of nuclear fluorescence over 11 h, using HA-TDP43-
TC expressing SH-SY5Y cells labelled with FlAsH dye 24 h post-transfection using 
electroporation. Corrected total nuclear fluorescence was measured using ImageJ and 
calculated in Excel. The values were obtained from the representative experiment in Figure 
7. 
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Figure S5. Full western blot from Figure 2, panel C. Western blot analysis following 
immunoprecipitation purification of HA-TDP43 and HA-TDP43-TC from SH-SY5Y cell lysates 
at 24 h post transfection. Mock transfection is cells transfected with buffer alone. 
 
Supplementary Video S1. Time-lapse confocal microscopy video of HA-TDP43-TC 
expressing SH-SY5Y cells labelled with FlAsH dye. Imaging commenced at 24 h post-
transfection using electroporation. 
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