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Abstract

The electronic linking of neuroscience information, including data embedded in the primary

literature, would permit powerful queries and analyses driven by structured databases. This task

would be facilitated by automated procedures which can identify biological concepts in journals.

Here we apply an approach for automatically mapping formal identifiers of neuroanatomical

regions to text found in journal abstracts, and apply it to a large body of abstracts from the Journal

of Comparative Neurology (JCN). The analyses yield over one hundred thousand brain region

mentions which we map to 8,225 brain region concepts in multiple organisms. Based on the

analysis of a manually annotated corpus, we estimate mentions are mapped at 95% precision and

63% recall. Our results provide insights into the patterns of publication on brain regions and

species of study in the Journal, but also point to important challenges in the standardization of

neuroanatomical nomenclatures. We find that many terms in the formal terminologies never

appear in a JCN abstract, while conversely, many terms authors use are not reflected in the

terminologies. To improve the terminologies we deposited 136 unrecognized brain regions into the

Neuroscience Lexicon (NeuroLex). The training data, terminologies, normalizations, evaluations

and annotated journal abstracts are freely available at http://www.chibi.ubc.ca/WhiteText/.
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Introduction

One of the challenges in neuroscience research is making the best use of the large bodies of

existing knowledge and data. This challenge has been increasingly taken up under the broad

rubric of “neuroinformatics”, which, among other things, is concerned with the formal

encoding and combination of existing neuroscience knowledge, and the mining of that

information to make new discoveries (French and Pavlidis, 2007; Koslow, 2005; Shepherd

et al., 1998). Thus an aim has been to create “knowledgebases” that are formal enough to be

usable for computation, but flexible enough to encompass a wide range of query situations.

While there have been many efforts to create such knowledgebases with various scopes, the

major bottleneck is simply assembling the existing information. The difficulty is that

enormous amounts of information are available primarily through the biomedical literature,

which is available only as “free text”, that is, natural human written language without formal
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structures that a computer can easily use. General-purpose systems such as Google may

provide useful performance in document retrieval in response to simple queries, but as

queries span more modalities and include data-driven aspects, the challenges mount and

computational approaches that are “domain-aware” become important. In this paper we are

concerned with a subset of this problem of how to turn documents like journal articles into

“computable” knowledge. In this introduction we describe some of the broader goals and

challenges that motivate our work.

Figure 1 is a schematic expanding on the goals outlined above. The vision for this kind of

system has been in circulation for some time, with a relatively recent exhortation to the field

provided by David Van Essen in a 2007 editorial (Van Essen, 2007). Van Essen expressed

the desire for a system that has the ability to automatically answer queries such as “which

brain regions are affected by autism?” or, “which genes are implicated in autism and in

which brain regions are they expressed?”. Answering such questions requires that the system

contain the necessary expert knowledge in a way that is accessible to a query system, and

ideally able to be integrated with large data sets from sources such as brain imaging,

genetics, or genomics. As depicted in Figure 1, there are many pieces that must be

assembled to accomplish this goal, but the first step is getting information into the system

for processing. As shown near the top of Figure 1, there are two general ways that

information in the biomedical literature can make its way into structured databases. First, at

left in the figure, the information can be entered by a human expert. However, this is very

expensive and time-consuming and is not free of other problems. It is therefore attractive to

“mine” such information directly from the literature, with minimal or no human

intervention. This text-mining approach is outlined in the right-hand branch of Figure 1.

In Figure 1, a step common to both methods of data entry is “standardization”. By

standardization (referred to as “normalization” or “resolution” in the text mining literature),

we mean the mapping of a piece of text (a “mention”) to the concepts referred to by the text,

in a formal way that can be used by computers. This addresses the difference between the

concept of, for example, the substantia nigra pars compacta and the text “substantia nigra

pars compacta”. In a computer system, we want all mentions of the concept “substantia

nigra pars compacta” to be accessible in a consistent way. For example, the text “SNPC”, in

the appropriate context, might refer to the same concept. If the computer system stores the

information for occurrences of the text “SNPC” separately from that for the text “substantia

nigra pars compacta”, queries accessing the latter will not successfully retrieve information

linked to the former. Researchers in neuroinformatics have therefore designed ways to

formalize the representation of neuroscience concepts. While this is a difficult task due to

the scope and complexity of the field, fundamentally the solution is very simple: in the

computer system, the concept of the substantia nigra pars compacta is represented by an

agreed-upon code, which might be an identifier such as “birnlex_990” (Bug et al., 2008).

This separates the meaning of the concept from its representation. This means that any piece

of data need only be linked to the code “birnlex_990”, without worrying about the effects of

spelling variation or abbreviations. When these codes are adopted widely by database

developers, sophisticated queries become possible. This conversion of relatively informally-

described data into formal, standardized codes is fundamental to the types of query systems

envisioned by Van Essen. These types of approaches should also be seen as complementary

to free-text based retrieval methods exemplified by Google.

As mentioned, the “codes” (or “identifiers”) that are used to formally represent information

are themselves created by humans (with the assistance of computers). These identifiers are

assembled into collections that are variously called ontologies, vocabularies, terminologies,

or lexicons. Keeping with the example of neuroanatomical subdivisions of the brain (which

is the focus of this paper), in these terminologies each brain region is listed along with its
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code. Importantly, these formalized terminologies provide much more power than simply

offering a common encoding scheme. In particular, concepts can have relationships with one

another. An important and commonly used type of relationship is “part of”. In this manner

the terminologies contain the information that the ventral tegmental area (VTA) is “part of”

the midbrain. Using these relationships, software can infer that a query for “midbrain”

should include information that refers to the VTA, because the terminology encodes the fact

that the VTA is part of the midbrain. In contrast, a purely text-based search for “midbrain”

would not be guaranteed to retrieve information on the VTA. Of course these same general

concepts apply to domains other than brain regions including drugs and diseases. As the

common formal encodings are increasingly adopted by the field, the power of the

knowledgebases becomes clearer. For example, the fact that the VTA contains dopaminergic

neurons is formally encoded and could be discovered automatically even with a query for

“monoaminergic neuron”, because the relationship between dopaminergic and

monoaminergic neurons could be captured by the terminologies (in this case, a “is a”

relationship instead of “part of”) (Gardner et al., 2008). Software can be used to

automatically learn that tyrosine hydroxylase is one of the genes most specifically expressed

in the VTA, using the formal brain region encodings in the Allen Brain Atlas (Lein et al.,

2007). Additional genome-scale expression experiments that studied the VTA can be

identified by links to the Gemma system (Lee et al., 2004). Similar integration approaches

will reveal patterns of anatomical connectivity (Bota et al., 2005) or functional imaging

results (Nielsen, 2003). A third use of formal encoding is to directly extract information

from journal articles. For example, the co-occurrence of mentions of a brain region in

articles might be used to infer a functional or structural connection between them. Similarly,

associations between brain region mentions could be linked to other concepts found in text

such as “addiction” and “Parkinson's” (Hayasaka et al., 2011; Kalar et al., 2011).

In this paper we are concerned with the right branch of Figure 1, which uses automated

methods to extract information from journal articles. Our specific focus is the development

of methods for automatically linking journal abstracts to formal brain region identifiers. In

previous work, we presented high-performance methods for the first step needed to perform

this task, which is identifying which parts of a document mention a brain region (French et

al., 2009). In this paper we address the step of automatically standardizing text that is

recognized as mentioning a brain region, by resolving them to formal identifiers in

neuroanatomical databases. Doing this successfully will allow improved implementation of

the scenarios we outline above as well as many others. The workflow which this paper

contributes to is illustrated with an example in Figure 2.

To our knowledge, very little work has explored automatically converting brain region

mentions to database identifiers. The most relevant studies are by Srinivas at al., who

extracted terms from atlases of thalamic anatomy and manually filtered them for

neuroanatomical concepts (Srinivas et al., 2003; Srinivas et al., 2005). They then attempted

to map the acronyms and terms across brain atlases for cat, primate, human and monkey,

with the goal of assisting comparative analysis. Most other efforts in this area are focused on

information retrieval tasks, in which a free-text query is given and used to search a database

(Bowden and Dubach, 2002; Nielsen, 2003). The most advanced system is the Neuroscience

information framework (NIF) which matches user queries to existing brain region

terminologies to expand the input query with synonyms (Gardner et al., 2008). We note that

none of these approaches are designed to work on complex documents such as journal

articles. Other literature retrieval search engines attempt to match mentions to lists of

regions but they do not use formal identifiers (Crasto et al., 2003; Muller et al., 2008).

Recently, Yarkoni et al. developed methods to accomplish a related task, which is to

automatically extract numerical activation coordinates from journal articles describing

functional brain imaging studies (Yarkoni et al., 2011), and converting those coordinates to
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brain regions. There are also several general-purpose tools which extract biomedical

concepts from the literature (Aronson and Lang, 2010; Jonquet et al., 2009). These tools

discover terms from large biomedical terminologies, which include some brain region

concepts.

There are several challenges to successfully converting text mentions of a brain region into a

formal identifier. One is ambiguity; for example the hypothalamus, medulla and thalamus

each have an “arcuate nucleus”. Another is that the terminology databases are incomplete, so

authors may refer to brain regions which do not have a formal identifier. A related problem

is that terminologies do not exist for some organisms, and even for those that do, the

terminologies are obviously different for different nervous systems. We present several

novel solutions to these problems and evaluate their effectiveness, yielding a method that

provides a high level of accuracy in mapping text to brain region concepts. We apply our

approach to the analysis of a large set of abstracts from the Journal of Comparative

Neurology, providing information on the distributions of brain region mentions. Our results

are a starting point for linking diverse neuroinformatics data sources to literature-based

information on brain regions.

Methods

Benchmark data set

We used our previously described manually-curated data set (“corpus”) of brain region

mentions in journal abstracts (French et al., 2009). Briefly, the corpus of 1377 abstracts

consists of 1258 abstracts randomly chosen from the Journal of Comparative Neurology and

119 abstracts selected from other neuroscience journals. Before curation, we applied an

abbreviation expansion algorithm to all abstracts (Schwartz and Hearst, 2003). All extracted

mentions of an abbreviation short form were thus expanded to their long forms in a given

abstract. The brain region mentions were then manually curated. The corpus provides no

resolution of the brain region mentions into database identifiers.

Brain region identifiers

We assembled a large dictionary of brain regions with formal identifiers from multiple

sources. We used NeuroNames (Bowden et al., 2007), NIFSTD/BIRNLex (Bug et al., 2008),

Brede Database (Nielsen, 2003), the Brain Architecture Management System (BAMS) (Bota

and Swanson, 2008) and the Allen Mouse Brain Reference Atlas (ABA) (Dong, 2007). All

terms were converted to lowercase and are linked to the provided identifiers. Of the five

sources only BAMS and ABA are true neuroanatomical atlases that provide direct links

between brain region names and 3D volumes in a digital or print format. The Brede database

provides similar spatial data with 3D coordinates for named regions of interest. We did not

extract abbreviation terms because we expand abbreviations as described above.

The total number of concepts in these five source terminologies is 7,145, but it is clear that

there is extensive redundancy among them (even after accounting for species-specificity of

concepts). Unfortunately, because there are limited direct mappings of concepts across the

terminologies, it is difficult to estimate how many different brain regions are represented in

total. We arrived at a rough estimate of 1,000 different mammalian brain region concepts

based on the sizes of four of the terminologies, and the fact that the much larger

NeuroNames (at over 3,000 concepts) has an expanded concept of “brain region” that

includes “ancillary” terms that tend not to be recognized as distinct concepts by the other

terminologies. Technical details of the processing of each input terminology are given in the

next paragraphs.
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NeuroNames terms were extracted from all worksheets in the NeuroNames Ontology of

Mammalian Neuroanatomy (NN2010) and Nomenclatures of Canonical Mouse and Rat

Brain Atlases (NN2007) excel files (Bowden and Dubach, 2002). Classical, ancillary, Latin

and synonym terms were added to the terminology. Further, terms from all four mouse and

rat atlases were added to the terminology. Overall 9,188 unique terms were extracted to

represent 3,238 Neuroname concepts.

The 2,391 NIFSTD terms were extracted from the 1,272 classes in the Anatomy

subontology. Synonyms and the main labels were extracted for ontology classes that were

regional parts of the eye, ear, brain, spine and ganglion of peripheral nervous system.

Terms from the Brede Database were extracted from the supplied worois.xml file. Terms

were obtained from all name and variation XML tags. Hemispheric “left” and “right”

prefixes were removed to be consistent with the rest of the terminology. In total 1,006 terms

were extracted from Brede to represent 763 concepts.

For BAMS, we extracted terms from the primary terminology - Swanson-1998 (Swanson,

1999). This terminology allows linking to the rich connectivity information curated into

BAMS. The version of the BAMS database we use contains 962 rat brain region terms and

is accessible via bulk download (http://brancusi.usc.edu/bkms/xml/swanson-98.xml). Instead

of parsing the original XML we used a converted semantic web version created by John

Barkley (http://sw.neurocommons.org/2007/kb-sources/bams-from-

swanson-98-4-23-07.owl).

Allen Brain Atlas terms were obtained from the OWL formatted version downloaded from

the Allen Brain Atlas API documentation. Like the above sources, abbreviations were

excluded from the extraction. In total 910 terms and concepts were extracted (no synonym

information).

Resolvers

We employed five methods of resolving (or “converting”) textual mentions to region names

in the ontologies and atlases. The most basic is the “Exact String Matching Resolver”. This

resolver simply converts the mention to lower case and attempts to match all characters to a

region name in the terminology. The next step is implemented in the “Bag of Words

Resolver” which splits the mention strings into words (tokenization) and then looks for exact

string matches for each of these words. This is a common information retrieval technique

that matches the same text but ignores word order.

To remove lexical variation we again tokenized the phrases into words. We converted the

words into a base form by using a stemmer. A stemmer normalizes words to their base form

by removing common endings. For example “ventral striatopallidal parts of the basal

ganglia” is stemmed to “ventr striatopallis part of th bas gangl”. We employed the Lovin's

stemmer as implemented by Eibe Frank (Lovins, 1968). We created two additional resolvers

analogous to the ones described above. After tokenizing and stemming, the first resolver will

match the stemmed tokens to the stemmed terms in the terminology (Stem Resolver). The

second will match them in any order (Bag of Stems Resolver). The Bag of Stems resolver is

similar to the orderless gap-edit global string-matching algorithm used by Srinivas et al.

(2005). In their implementation they allowed half of the stems to match for terms greater

than two words in length (uninformative common words excluded). Our Bag of Stems

method is slightly different with use of a different stemmer and a strict requirement of all

words to match (our mentions might be modified to remove specific terms).
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To compare these to an externally designed method we employed the Lexical OWL

Ontology Matcher (LOOM). LOOM is a simple method for mapping across biomedical

ontologies. While LOOM is not designed for matching free text mentions we found its

approximate string matching technique to be of value. LOOM uses a string comparison

function that requires an exact match for words longer than four characters and allows one

character mismatch for longer strings (after removing spaces and parentheses). The LOOM

authors show it provides comparable performance to more complicated tools for ontology

mapping (Ghazvinian et al., 2009).

Modifiers

To improve the resolution process, we employed several techniques that work by modifying

the text from the abstract. In total nine modifiers are employed (Table 1). Three of the

modifiers remove important words from the text, and thus we consider them “lossy”. Each

modifier is applied in the order presented in Table 1, and only to the mentions that have not

been previously matched. The result of the modifier does not replace the original mention,

but instead expands it, creating a set of alternative representations of the original mention.

Each modifier is executed once except the Direction Remover which is run a second time at

the end to extract more general regions from very specific mentions.

Species identification

We employed LINNAEUS, a species name identification system for biomedical literature

for extracting species mentions from the corpus (Gerner et al., 2010). LINNAEUS provided

an open and accurate tool for quantifying species mentions with accuracies above 90%. We

used the default configuration properties to tag the abstracts for NCBI species identifiers. Of

the 209 species found we manually deemed 44 to be not relevant (list available at

supplement website). These primarily included mentions of reagents for tract tracing

(“horseradish”, “phaseous vulgaris”, “pseudorabies virus”). We noted some false positives,

including brain regions that were tagged as species (“n. superficialis”, “n. ambiguus”).

Data model

To capture the relations between abstracts, mentions, terms and ontology concepts we

employed a resource description framework (RDF) model (W3C, 2004). For NIFSTD,

BAMS, ABA and Brede concepts we link to the original identifiers for future integration.

The full RDF dataset is available on our supplement website at http://www.chibi.ubc.ca/

WhiteText/.

Evaluation

By automatically testing for exact string matches we were able to review the complete set of

mention-to-region pairings. The exact string matches were automatically accepted while the

remaining pairings were manually evaluated. Each mention-to-concept pairing was marked

as “accept”, “reject” or “specific-to-general” (a “part-of” relationship). A specific-to-general

marking applies to mentions where the region was mapped to an enclosing region (e.g.

“nucleus deiters dorsalis” mapped to “nucleus of deiters”). This applies to many cases, as

several of our modifiers discard information. Resolutions of ambiguous terms were accepted

only if they matched a majority of the contexts. For example, all mappings of “arcuate

nucleus” were rejected because the abstracts in which they occur are not consistently

referencing the arcuate nucleus of the thalamus, medulla or hypothalamus. To reduce

redundant evaluations, pairings were grouped when the main text label for the matched

region is the same across ontologies. The abstracts in which the mention occurred were used

to judge the context and correctness of the resolution. Resolutions were accepted across
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species unless it was a specific parcellation scheme for a species, for example - “area 10a of

Vogts”.

Resolution coverage represents the proportion of mentions that have been mapped to at least

one brain region concept. This proportion of mapped mentions is dominated by frequently

occurring terms like “cortex”. To control for mention popularity we provide two additional

measures of coverage. The first ignores the number of times a mention occurs and treats

each unique mention equally (rare mentions are given equal weight as common terms). The

second ignores repeat mentions of a mention within an abstract and weights each mention by

the number of abstracts it appears in.

Resolution accuracy was measured by dividing the number of accepted concept to mention

links by all total mention-to-concept resolutions made. We also take into account frequency

of the mention by multiplying the concept to mention links by number of abstracts the

mention appears in. We considered specific-to-general mappings to be an accepted

resolution while also measuring their frequency individually.

Although the species name recognizer we chose has been previously evaluated we compared

it to a subset of our abstracts that we previously annotated with species. Because the

annotated tags were entered in free text we employed LINNAEUS to convert them to NCBI

taxonomy identifiers. These converted identifiers were then compared to those extracted

from the abstracts automatically.

Results

Figure 2 shows an overview of the system we developed, starting from journal abstract to

mapped concept. In developing the approach, we examined the properties of the input

terminologies, and carefully evaluated the quality of the mappings we obtained, as described

in the next sections. In the final section we describe the application of the process to a large

set of JCN abstracts and present findings on the patterns of brain region concept usage.

Summary of the terminologies

We first established the basic properties of the target terminologies (or “lexicons”) we used

for mapping. It is important that these terminologies encompass the range of concepts used

in the literature. In total we extracted 11,909 terms from five terminologies. These terms

represent a total of an estimated 1,000 different mammalian brain regions (see Methods). On

average a concept in the aggregated terminologies had 1.6 terms or labels (for example

representing synonyms; note that we must distinguish between “concepts” and their textual

representation as “terms”). While we estimate that concept overlaps among the

terminologies are high, term overlap across terminologies was remarkably low, with terms

being linked to just 1.3 of the five terminologies on average, with 79.8% of the terms

appearing in only one terminology. Across the ontologies the highest amount of overlap was

between ABA and NeuroNames with 62.7% of the ABA terms appearing in the much larger

NeuroNames set. In addition 53.5% of the NIFSTD terms appear in NeuroNames. This is

expected because NIFSTD was originally based on NeuroNames (Bug et al., 2008).

Although the NeuroNames curators have imported some of the ABA and BAMS

terminology, it is not complete. While some “singleton” terms are minor variants of terms

found in other terminologies (e.g., raphé vs. raphe), the terminologies contain many

apparently obscure or rarely-used terms such as “area 22 of mauss 1908”.

Standardization

We ran our resolvers on an annotated set of 17,585 brain region mentions (see Methods).

These initial results showed that 47.1% of the 17,585 could be resolved to a formal identifier
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in the terminologies (Table 2). However, many of brain regions mentions are repeated: there

are 5,941 unique brain region mentions in the set of 17,585. When viewed this way, 18.8%

of unique mentions are resolved. As shown in Table 2, mentions that occur more often are

better resolved. These measures of “coverage” do not address whether the mappings are

correct. To assess accuracy, we first considered mappings that exactly match the text in the

abstract to the term in the terminologies to be correct; this accounts for 41.1% of mapped

mentions (7,228). The more advanced methods that allow partial matches are shown in

Table 2 (detailed results at supplement website). We found the Simple Mapping Matcher

performed the worst with 3.6% of unique mention mappings rejected as incorrect. Overall

the combined set of resolvers result in 4.3% of unique mentions being rejected and 52.9% of

mentions failing to map.

Tuning and final evaluation

While the accuracy of the mappings obtained in these experiments was high, the coverage

was lower than desired, with too many mentions left unmapped to formal identifiers. After

reviewing the results, we decided to modify our process and the input terminologies. The

first change was the addition of previously undocumented synonyms to the terminologies.

We were able to make synonym-to-region links for 42 of the 122 top unmatched mentions

that occurred more than 9 times in the corpus. Examples include “cortical”, “thalamic” and

“si” (the full table is provided on the supplement website). Although we sought to remove

acronyms and abbreviations, several occur in the list. These are primarily terms that the

automatic abbreviation expander failed to resolve or a long form was not provided by the

author. The rate of these errors is roughly 5%, and is similar to the tested accuracy of the

abbreviation expander (Schwartz and Hearst, 2003). The addition of these synonyms

produces a 7.7 percentage point increase in mention coverage (Table 3). We list these values

separately because they reflect post-hoc additions to the process, but they present true

increases in coverage expected for a production system.

We implemented further improvements using what we call “modifiers” (Table 1). Modifiers

make slight changes (“edits”) to the original text and, as a last resort, remove qualifying

terms such as “dorsal”. The last resort “lossy” modifiers would result in mapping “dorsal

hippocampus” to “hippocampus”, what we call a “specific-to-general” mapping. When

combined, the modifiers raise the coverage of abstract-mention pairs to 58.4% and 35.9% of

unique mentions with 39.4% specific-to-general mappings. As Table 3 shows, each modifier

provided a modest contribution to the coverage while maintaining accuracy. Finally, the

lossy modifiers (designed to discard qualifiers) created primarily general-to-specific

mappings for the mentions that failed to match after applying the preceding modifiers.

To gain insight into remaining problem areas, we manually examined a random subset of

100 unmatched mentions. Fourteen of the 100 can be explained by annotation errors in our

corpus, including text spans that missed the first character of a term and annotations of

tracts. This result was expected given previously measured rates of annotator agreement

(French et al., 2009). Another 25 refer to regions in species not represented by the

terminologies. The remaining unmatched mentions can be categorized as unique variants,

very specific mentions and ambiguous mentions (a complete list is available on the

supplement website). Thus most failures to map are due to gaps in the terminologies.

Species-specific evaluation

The evaluation above suggests that the quality of resolution would depend on the organism

used in the study, as the terminologies are species-specific and many taxa lack

terminologies. To filter for species of study we ran LINNAEUS to identify species mentions

in the abstracts (Gerner et al., 2010). We compared the automatically tagged species
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information to a subset of 396 abstracts with manually annotated species information.

LINNAEUS was able to recall 97.4% of the annotated species mentions that could be

mapped to a specific species. Precision could not be fully evaluated because many mentions

of species are too general and refer to a genus or other taxonomic level. LINNAEUS does

not extract these terms and as a result terms like “Macaque monkey”, “pigeon” and “squirrel

monkey” could not be extracted (but were still annotated manually for the subset). Overall,

LINNAEUS identified species terms in 88% of abstracts. Co-occurrence of species within

abstracts is relatively low; the most common pair of species is rat and human which occur

together in 30 abstracts.

As predicted, the coverage of mentions and specific-to-general matches varied greatly across

species. Table 4 presents the results for a selected set of top occurring species, the full table

is available on the supplement website. Species that lacked terminologies resolved less well

and specific-to-general mappings occurred much more often. The top occurring species

benefited from terminologies of their species. To determine the accuracy of the commonly

studied species targeted by our terminologies we combined the mentions that co-occur with

rat, mouse, human, rhesus monkey and macaca fasicularis mentions. Coverage of unique

mentions in this group increases by 7 percentage points, and specific-to-general mappings

are reduced to 33.7% from 39.4% on all mentions. Accepted mappings slightly increased

from 95.1% to 96.6%.

Analysis of all Journal of Comparative Neurology abstracts

We ran our final method on 12,557 JCN abstracts that are not already in our corpus

(covering 1975 to January 2011). This required first running the abbreviation expander, then

the brain region mention detector as described previously (French et al., 2009), followed by

the tuned normalization process described above. In total we found 142,178 brain region

mentions. Of these 95,895 were resolved to a concept in a terminology, representing 7,923

unique region mentions and 57,185 unique abstract-region pairs (on average 4.6 per abstract;

86% of abstracts having at least one). The resolution results resemble those from the

manually annotated abstracts with 67.5% of mentions resolved and 27.4% of unique

mentions matched to a terminology entry. For the subset of commonly studied species that

cover the terminologies coverage reaches 71.6% of mentions and 32.3% of unique terms.

The slight increase in mention coverage and decrease in unique coverage is expected from a

larger corpus size generating a larger set of rare terms. Table 5 presents the top 25 most

frequently occurring NIFSTD concepts. The types of unmatched mentions are similar to

those found previously with many broad terms that are not explicitly in the terminologies

and several insect brain regions such as “mushroom bodies”.

We examined the extent to which terms in the terminologies are used. We found that 44.1%

of the 7,145 available concepts are used at least once. Viewed another way, over 55% of the

concepts (and 77% of terms) in the terminologies do not appear to be used in any JCN

abstract. These results suggest that many of the concepts (and terms) in the terminologies are

rarely used by working scientists.

Because our analysis includes information on species and publication date as well as brain

region use, the final data set allows interesting temporal analyses of the JCN. We first asked

whether there is a tendency for more recent articles to use more narrowly defined brain

regions. By comparing the publication year with the proportion of specific-to-general

mappings in the training set we observe a slight but non-significant positive trend (Spearman

correlation 0.18; p-value = 0.31). Our analysis is also able to reveal trends in the

“popularity” of brain regions over the years. For example, we found that there was an abrupt

dip in the mentions of “superior colliculus” in the early 1990s, while the hippocampus and

amygdala enjoyed rising mentions until recently (Figure 3). A similar analysis of species of
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study shows that mentions of mouse and humans are increasing, while rat and Rhesus

monkey mentions are fading (Figure 4).

Discussion

Our contribution in this paper is the development and thorough evaluation of a process for

mapping specific brain region concepts to free text in journal abstracts. We achieved a high

degree of coverage (64.5%) and precision (95.1%), and yield a data set of value for

additional analyses. Our research has also identified many challenges and current limitations

that need to be addressed to most effectively use information on brain regions in the

neuroscience literature.

The primary problem we encountered was with the terminologies, which are not well-

standardized and also, apparently, incomplete. The terminologies we used have surprisingly

little overlap, despite some of them having common target organisms. This reflects the

extensive variation in how neuroanatomical concepts are expressed in natural language, but

the lack of harmonization across terminologies is striking.

We observed that authors often write about regions that are beyond the granularity of the

terminologies (for example, by adding a modifier such as “mediolateral” to a recognized

term). While we presented a “lossy” mapping method that handles this problem, it is likely

that some of these fine-grained terms should be added to the terminologies. To this end, we

have contributed 136 new brain region concepts to NeuroLex (Larson et al., 2010). We

selected the regions by filtering our results for specific-to-general mappings to an existing

NITSFD brain region concept. We then selected terms that are co-mentioned with rhesus

monkey, macaca fasicularis, rat, mouse or human in at least two separate abstracts, assuming

that repeated use in the literature is evidence of utility. This automatically generated list of

152 region terms was reduced to 136 after manual adjustments for synonyms and

conjunctions. Although this is a small first step, formalization of these mention-to-concept

pairings would reduce the specific-to-general mapping rate in our study by 2.5 percentage

points. Further, these 136 terms occur over 2,400 times in the complete set of JCN abstracts.

Because NeuroLex is presented in a wiki format, the community can review and edit these

additions (http://neurolex.org). Another potential avenue for improving terminologies is the

International Neuroinformatics Coordinating Facility (INCF) Program on Ontologies of

Neural Structures (PONS) which seeks to establish formalized terminologies for

neuroanatomy (http://www.incf.org/core/programs/pons).

By inspecting unmatched mentions, we were able to tune the system and improve the

coverage from 47.1% to 63.5%. Other attempts at tuning resulted in very modest

improvements in comparison. Our analysis of one hundred unmatched mentions suggests

more advanced methods employing contextual information could be used to resolve

ambiguous and co-referenced mentions. Context information has already been applied to

cross-species mapping and may be adaptable to brain region mapping outside of atlases

(Srinivas et al., 2005).

In addition to pointing out gaps in the existing terminologies, our results also point to a

mismatch in the other direction, in that the terminologies contain numerous terms that do not

appear in any JCN abstracts. For example, the rodent term “Perireunensis nucleus” never

appears in any PubMed abstract; a wider web search turns up just a single mention in the

accessible literature (Jacobsson et al., 2010). An overall picture emerges of terminologies

that are incomplete while simultaneously full of terms which may not be actually used in

practice. Our results may thus aid the developers of terminologies and highlights the need

for more work in this area.
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Improvements to the terminologies would increase the coverage of our methods, that is, the

number of textual mentions of brain regions which can be mapped to an identifier.

In contrast to coverage, there is little improvement that can be realized in the precision of

our method. If our method is able to map text in an abstract to a formal identifier, the

mapping is almost always valid. We believe this is due in part to our conservative approach

which relies on strict matches and avoids the ambiguity of abbreviations. The best single

method appears to be the Bag of Stems Resolver, which nearly reaches the coverage of all

the methods combined, while maintaining a very low 1.9% unique term rejection rate. This

agrees with previous work that tested a similar resolver for cross species mapping of

thalamic atlases (Srinivas et al., 2005). The LOOM Simple Mapping Matcher, designed for a

different task (ontology mapping) performs worse than any other method. Our motivation

for testing it is that it provides mappings our other resolvers cannot. Unfortunately, we find

that by allowing one letter mismatches, it leads to frequent serious errors such as conflating

“central” and “ventral”. Interestingly, past work in the ontology mapping domain has placed

LOOM on par with other more advanced methods (Ghazvinian et al., 2009). Overall, our

results suggest that more complicated methods will not yield substantial improvements.

Our analysis broken down by species confirmed our expectation that the organism of study

is a key piece of information for high-quality mapping. As expected, brain region mentions

from amphibians, insects and fish had increased rejection and more specific-to-general

mappings. Mammalian species such as rabbit and cat performed at levels close to the

average. Rat, the most common species of study in the corpus, had an above average

coverage but also a high amount of specific-to-general mappings (31.9%). In comparison,

mouse abstracts had only 13.6% specific-to-general mappings while achieving the highest

coverage (75.7%). This may reflect that the larger rat brain is commonly used for study of

detailed rodent neuroanatomy that extends beyond the standard atlases. In addition the

human abstracts have results similar to mouse with high coverage of mentions and few

specific-to-general mappings compared to Rhesus monkey abstracts. Approximately half of

the mentions are linked to species matching the target terminologies. These mentions from

commonly studied species are accurately normalized, with low rejected (3.4%) and specific-

to-general mappings (33.7%).

We applied the methods to an unseen set of automatically tagged region mentions from the

remaining JCN abstracts. The results mirror those from within the manually annotated

corpus and suggest the methods could readily be extended to larger scales. Our method

appears to scale well, with over 1,000 brain region concepts appearing in the extended

corpus but not the original annotated set.

To increase the value of the data set to the neuroscience community, our results have been

incorporated into the NeuroLex database, where work is in progress to display, for example,

time-trends of brain region mentions in the JCN alongside other information on each region

(Anita Bandrowksi, personal communication). We also provide a bulk version of the data

suitable for third-party analyses on our website (http://www.chibi.ubc.ca/WhiteText/). As

mentioned in the introduction, having brain regions mapped to abstracts is only one step in

making full use of the information embedded in the literature. Future work will focus on the

linking of brain region mentions to each other and to other concepts such as drugs and

diseases. Our eventual goal is to provide computationally rich linkages of brain regions to

diverse neuroinformatics resources.
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Figure 1.
High-level overview of a hypothetical neuroscience query system, emphasizing the input of

information. At top left, data entry by experts is depicted, while at top right, the approach

taken in this paper, which is to use automated methods. Both methods require the

“standardization” step, which is the focus of this paper. Once information is standardized

and stored, appropriate methods can be used to combine it with data analysis to permit

complex queries and data mining. See main text for more discussion. Image credits:

Washington Irving/Wikipedia and Briar Press.
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Figure 2.
Example of the problem addressed in this paper. A sentence from an abstract is first pre-

processed, for example to identify words or to expand abbreviations. Next, text that is

predicted to refer to a brain region is identified (French et al., 2009). Finally, the text is

converted into a standard identifier from a controlled terminology. The last step is the focus

of the methods developed in this paper.
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Figure 3.
Trends in the proportion of yearly abstracts mentioning amygdala (black square), superior

colliculus (red triangle), hippocampus (blue triangle) and medulla (green triangle).

Proportion values are smoothed by averaging the previous, current and following years.
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Figure 4.
Changes in the proportion of yearly abstracts mentioning rat (red square), mouse (black

circle), people (green diamonds) and Rhesus monkey (blue triangle) over time. Only 32

abstracts are considered for the 2011 year. Rat, mouse and human are significantly

increasing over time (p < 0.05). Abstracts mentioning Rhesus monkey are significantly

declining (p < 0.001).
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Table 5

Top 25 most frequent brain region concepts in the Journal of Comparative Neurology.

Region Frequency

Retina 7341

Cerebral cortex 5578

Spinal cord 3915

Thalamus 2290

Hippocampus 2098

Cerebellum 1953

Hypothalamus 1800

Olfactory bulb 1551

Brainstem 1512

Superior colliculus 1457

Neostriatum 1343

Amygdala 1312

Midbrain tectum 1109

Midbrain 1093

Forebrain 962

Solitary nucleus 819

Locus ceruleus 769

Substantia nigra 764

Cochlea 762

Entorhinal cortex 712

Lateral geniculate body 705

Dentate gyrus 684

Central gray substance of midbrain 662

Telencephalon 660

Cochlear nuclear complex 651

Regions are limited to the NIFSTD terminology with frequency determined from the full JCN corpus. Both the manually curated and automatically

predicted brain region spans were used to generate the table.
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