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Abstract— The world we live in is labeled extensively for
the benefit of humans. Yet, to date, robots have made little
use of human readable text as a resource. In this paper we
aim to draw attention to text as a readily available source
of semantic information in robotics by implementing a system
which allows robots to read visible text in natural scene images
and to use this knowledge to interpret the content of a given
scene. The reliable detection and parsing of text in natural scene
images is an active area of research and remains a non-trivial
problem. We extend a commonly adopted approach based on
boosting for the detection and optical character recognition
(OCR) for the parsing of text by a probabilistic error correction
scheme incorporating a sensor-model for our pipeline. In order
to interpret the scene content we introduce a generative model
which explains spotted text in terms of arbitrary search terms.
This allows the robot to estimate the relevance of a given scene
with respect to arbitrary queries such as, for example, whether
it is looking at a bank or a restaurant. We present results from
images recorded by a robot in a busy cityscape.

I. INTRODUCTION

Text, by design, is a rich source of semantic information

which often cannot be inferred otherwise from the current

vantage point, or at all, using our senses alone. Human-

readable text is plentiful in man-made environments. Out-

doors, street signs, bus stops, and shop fronts all provide

good quality text that is rich in information about func-

tion and location. Shop fronts are particularly rich in text

which provides information about the nature of the shop

and is potentially queryable using internet search resources

to determine the shop location. Street signs can provide

important navigational cues. Indoors, where GIS and/or GPS

information may be denied or unavailable, text can provide

similarly vital clues. Oftentimes, objects and places are

labelled directly: key words like “push” or “pull” can be

indicative of doors, areas are marked as “kitchen”, and so

on. However, despite its apparent utility, text has so far been

largely ignored as a source of information for robots. In

this paper we describe an approach to enable autonomous

agents to leverage this valuable and under-exploited resource

to determine the relevance of a given scene with respect to

an arbitrary query. For example, a restaurant might (in the

best case) be indicated by the observed word “restaurant”,

but it may also be indicated by synonyms such as “bistro”

or words that denote the cuisine (“Chinese”, “Thai”) or the

food specialty (“seafood”, “pizza”, “steak”). We describe a

generative probabilistic model which explains spotted text

with respect to a search term and thus enables a robot to
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Fig. 1. A typical example output of our text-spotting pipeline. P-values
indicate the value of the posterior probability p(w|z). See Section II-D for
details.

Fig. 2. The data acquisition robot used in this work. Images were captured
using the Bumblebee camera mounted on a pan-tilt head.

establish a direct connection between a place in a map and

an abstract semantic concept.

The core of our system consists of a text-spotting engine

which robustly detects and parses text in the environment

(see, for example, Figure 1). Despite the long history of

automatic text recognition, the application beyond printed

documents remains an active research problem (e.g. [1]–[4]).

The challenges with wild text include the lack of contrast

between text and its background, the rich diversity of fonts

and character sizes, highly variable horizontal and vertical

alignment of characters and related words, and perspective

distortion due to non fronto-parallel viewing.

The contributions of this work consist of a robotic system

which exploits a valuable but thus far unused navigational

and informational resource using vision and optical character



recognition (OCR). A generative model is introduced, which

explains the subject of a scene in terms of detected text.

The remainder of this section describes related prior work.

The core components of the text-spotting engine, text de-

tection and OCR are described in Section II. The generative

probabilistic model used to select images relevant to arbitrary

search terms is described in Section III. Experimental results

are presented in Section IV. We conclude in Section V.

A. Related Work

The potential of exploiting human-readable text in robotics

has been recognised by several researchers in the past.

However, to the best of our knowledge no prior art exists

where text-spotting in natural scene images has been imple-

mented and deployed in a robotics context. The use of OCR

with robots is suggested, but not implemented, in [5]–[7].

In [5] a small robot with onboard DSP-based computation

is proposed that would read signs and licence plates. It is

not clear how far this work has progressed. The authors

of [6] discuss OCR and propose its application to robotic

navigation. In [8] a book-manipulation robot uses OCR to

confirm the title of the book to be taken from a shelf. The

authors of [9] describe an indoor mobile robot that performs

OCR, although the extracted text is not utilised. More recent

work has explored the exploitation of direction signs in

robotics. In [10] the authors approach this task using object

recognition techniques predicated upon a prior knowledge

of a set of signs of interest. Signs are recognised by virtue

of the geometry of their constituent parts. Crucially, neither

text detection, parsing nor understanding are brought to bear.

In contrast, our work aims to enable the recognition and

understanding of any text in a scene, which provides for

a much broader spectrum of applications of which sign-

following is but one. No prior knowledge of signs of interest

is assumed.

An important part of our system is the extraction of

text from natural scene images. This is an area of current

research interest (e.g. [1]–[4]). ICDAR1 has organised two

competitions (2003 and 2005) for the robust detection of wild

text based on a standard set of labelled images. The results

are summarised in [11], [12]. Other non-document OCR

applications include detecting text in television streams [13],

licence plate recognition [14]–[16], and assistive devices for

the visually impaired [17], [18].

II. THE TEXT-SPOTTING TOOL CHAIN

At the heart of our system lies a text-spotting engine.

Commonly, this problem is decomposed into stages: the

detection of text in the image, recognition of characters, and

the grouping of characters into coherent units of text (such

as words or sentences). With few exceptions (see, for exam-

ple, [3]) these individual steps are considered independent,

sequential processes and no information is shared between

them. Our text-spotting implementation follows this classical

approach to the problem. The principal elements are:
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Fig. 3. Performance of a single boosted classifier after 1,000 rounds
of training using both the training partition of the ICDAR data and the
Weinman data.

1) Text detection. Determine regions of the input image

that are likely to contain text.

2) Layout analysis. Text regions with similar sized char-

acters that are close and aligned, horizontally or verti-

cally, are merged.

3) Optical character recognition (OCR). Convert these

image regions to character strings, typically words.

4) Text filtering and spelling correction. The output from

the OCR stage is very noisy, often containing spurious

characters and many character substitution errors.

A. Detecting Text in Natural Scene Images

The aim of this stage is to efficiently detect instances

of text in a given image. Boosting techniques [19] coupled

with an attentional cascade, introduced in [20], provide a

straightforward means to this end and have a successful

track record in text detection [2], [13], [21]. In this work we

apply GentleBoost [22] with the base classifiers consisting

of decision stumps operating on a set of Haar-like features.

These features are obtained by sliding predefined block

patterns over an image and computing features as functions

of statistics such as mean and variance of each of the

individual blocks.

Chen et al [2] note that image gradient information cap-

tures a distinctive characteristic of text. We follow [21] in

our selection of features and use feature channels based on x-

and y-gradient and gradient magnitude in addition to mean

and variance. We compute 22 features from each of five

feature channels giving a total of 110 feature dimensions

to be considered.

Two independent third-party data sets were employed for

training of our text detector. The first dataset is provided

publicly as part of the ICDAR 2003 challenge on robust

reading and text locating2. It consists of a training and a

test set each comprising 250 hand-labelled images drawn

from indoor and outdoor environments. Since our focus is

on outdoor applications we augmented these data with a

subset of the data used by Weinman [3] comprising 300

images taken in outdoor urban settings and including a higher

2http://algoval.essex.ac.uk/icdar/RobustReading.html
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Fig. 4. Stages of the text-spotting pipeline. (a) the original image, (b) with overlaid detection rectangles for scales 48, 57 and 69 (c) the text likelihood
map, (d) the detected text regions for this scale range.

proportion of natural scene clutter as well as instances of

multiple lines of text per label.

To investigate the efficacy of the features we trained a

single monolithic boosted classifier based on 450 positive

and 2,000 negative examples of text randomly sampled from

a combination of the training partition of the ICDAR data

and the complete Weinman data. The trained classifier was

evaluated using a hold-out set of 996 positive and 38,000

negative data sampled from the same datasets. The classifier

performance on the validation set after 1,000 rounds of train-

ing is presented in Figure 3. The number of training rounds

was set arbitrarily large, designed to guarantee convergence

to a stable validation error. Figure 3 indicates an adequate

separation of the classes.

In order to provide an efficient classification framework

with a suitably low false positive rate we deploy a cascade

of boosted classifiers rather than a single monolithic one. The

training was conducted using text regions randomly sampled

from a combination of the training partition of the ICDAR

data and the complete Weinman data. Each stage of the

cascade was trained using 400 positive and 1,000 negative

examples. The negatives were continuously sampled out of

a pool of 35,000 data. The validation set consisted of 1,046

positive and 5,000 negative examples. The final output of the

cascade yielded a detection rate of 79.4% while only 1.6 out

of a thousand detections are spurious.

B. Region extraction

The output of the previous stage are lists of rectangles,

one list for each scale, which are classified as containing

text, see Figure 4(b). A typical image will have hundreds of

rectangles at each of a number of scales. The rectangles are

overlapping and at each scale we look for rectangles that have

support, that is they overlap with at least N other rectangles

(we use N = 3). It is highly unlikely that wild text will

match the scale steps exactly so we consider the supported

rectangles in a sliding window of M adjacent scales (we use

M = 3). Each rectangle votes for the pixels that it contains

and the votes are tallied in a voting array the same size

as the original image, see Figure 4(c). The voting array is

thresholded at 25% of the maximum value and bounding

boxes for the regions are computed. The selected regions, at

this scale, are shown in Figure 4(d).

Good bounding boxes are important for success in subse-

quent stages of the pipeline and, while our current simplistic

approach to layout analysis allows for a reasonable number

of recognitions, it often results in bounding boxes that are

too tight or too loose.

C. Optical character recognition

Today OCR packages are very reliable for printed text

which exhibits high contrast, simple background, unifor-

mity in font and character size, and horizontal alignment

of characters — characteristics not shared by wild text.

We evaluated two open-source OCR packages: GOCR and

Tesseract [23] and chose the latter. Tessearct deals well with

skewed baselines which is advantageous when dealing with

perspective distortion due to non fronto-parallel viewing.

The main mode of failure is misrecognition of characters

and intercharacter spacing. Single character substitution er-

rors are common (eg. zero for oh, one for ell, five for ess).

Spaces can appear between adjacent characters, or spaces

between words are sometimes not seen — both cases are

problematic. The root cause is the wide range of fonts that

are found in outdoor signage.

D. Probabilistic Error Correction

The output of the OCR engine can be improved consider-

ably by constraining it to a set of meaningful words. A simple

dictionary check would discard any word not found. This

is unsatisfactory for the common case of single character

substitution errors. Instead we use probabilistic inference

over the true word present in the scene, w, given a possibly

erroneous detection, z , p(w|s).
Let Z denote the set of all possible OCR detections such

that z ∈ Z . Furthermore, let V denote the set of all terms

in the English language such that w ∈ V . We think of z

as a noisy translation of some unknown generating word w.

The posterior distribution over all words in the set V can be

expressed as

p(w|z) =
p(z|w)p(w)

p(z)
(1)

=
p(z|w)p(w)∑

w∈V
p(z|w)p(w)

. (2)

Evaluation of this expression requires the determination

of p(z|w) — the distribution of text detections given a

correctly spelt and complete observation-generating word w.

Intuitively, the “closer” z is to a word, the more likely that

word is to explain the detection. We use the Levenshtein edit



Fig. 5. Examples of wild text found by the robot. The annotations are the raw Tesseract output without any error correction applied.

Fig. 6. Examples of wild text found by the robot after error correction. P-values indicate the value of the posterior probability p(w|z).

Fig. 7. Examples of incorrect detections of wild text due to texture words. P-values indicate the value of the posterior probability p(w|z).

distance φ(z, w) to capture this sense of distance between

detected text z and word w and write

p(z|w) = α e−αφ(z,w). (3)

Here α is a free parameter encoding the accuracy of the text

detection system. For the results presented in this paper α

was set by hand using random spelling mistakes. No data

contained either in the training or test sets were used. In

future work we intend to learn this parameter from a large

training set. Finally, Equation 2 requires the specification of

the prior probability of a given word w occurring in a scene.

We use word frequencies obtained from the British National

Corpus [24], a collection of approximately 100× 106 words

encompassing ca. 130, 000 unique terms.

III. RELATING TEXT TO SUBJECTS

We now derive a model which explains the subject of an

image in terms of the detected text it contains. Importantly,

because of the use of a large corpus of text, we need not limit

ourselves to a finite set of subjects chosen a-priori. We apply

this model to execute subject searches in which a robot will

return a list of places and views which relate semantically to

the search term. Specifically, we require that searching for the

subject mobile phone would return geographic coordinates of

views containing text like “nokia”, “samsung”, “broadband”,

etc. — evidence that the scene captured in an image has

something to do with mobile phones. Note that we do not

expect or demand flawless text detection since, due to the

detector model introduced in Section II-D, we can handle

incorrect detections like “nqkio”, “smssag”, or “roodbond”.

Given a corpus of images, let Z denote the set of all

detections of text throughout the corpus. Furthermore, let

S denote the set of all possible scene subjects. Our goal is

to explain a particular subject term s ∈ S with respect to

a given particular text detection z ∈ Z . In a probabilistic

sense we can express this as the task of finding the posterior

probability of the search term given the detection

p(s|z) =
p(z|s)p(s)

p(z)
. (4)

The partition function p(z) is the probability distribution over

all possible detections and can be expanded in terms of a

marginalization over subject terms of the joint distribution

p(z, s). If we take all subjects to be equally likely, Equation 4

reduces to

p(s|z) =
p(z|s)p(s)∑
s∈S

p(z|s)p(s)
(5)

=
p(z|s)∑
s∈S

p(z|s)
. (6)

The term p(z|s) is the likelihood of the OCR returning a

string z when the underlying scene subject is s. We leverage

the detector model introduced in Equation 3 to account for

the noise in the detection and parsing of text. We introduce

a layer of now hidden variables w ∈ V , where once again V
denotes the vocabulary of the English language and each w



lunch taxi bank

Fig. 8. Images related to the query subjects lunch, taxi and bank.

is a word. By marginalising over the V our desired likelihood

term p(z|s) can be expanded in terms of the hidden words

p(z|s) =
∑

w∈V

p(z|w, s)p(w|s). (7)

If we take detection noise to be independent of subject,

we can express the likelihood p(z|s) as

p(z|s) =
∑

w∈V

p(z|w)p(w|s), (8)

which requires the determination of the detector model

p(z|w). The remaining term in Equation 8 is p(w|s) —

the probability of a bonafide word w occurring in a corpus

of words on subject s. We assume an internet connected

robot and launch a web search for the subject string s. The

words in the returned documents are aggregated into a single

subject document. For the results presented here we searched

the websites of the BBC News, the New York Times and

the Guardian Newspaper. The construction of the subject

document allows p(w|s) to be estimated directly by counting

the number of times word w occurs.

IV. EXPERIMENTAL RESULTS

We used the robot Marge, an iRobot ATRV-JR equipped

with a variety of sensors (Figure 2). Images were captured

with a Bumblebee stereo head that provides 1024 × 768
greyscale images with a 60 deg field of view. Only images

from the left camera in the stereo pair are considered here.

Figures 5 - 7 show a small selection of typical results of

applying our text-spotting pipeline to the collected dataset

of 941 images3. Figure 5 presents the raw OCR output

before error correction is applied. Note that a number of

words are misspelt and that, for the middle two frames,

the bounding box has truncated a word. Figure 6 shows the

same scenes with successfully corrected words. Our system

recovers some of the misspelt words or discards those that

were truncated. As well as the extracted words the system

provides a confidence level p(w|z) — computed as per

Equation 2 — as to how well the inferred word w explains

the observation z . This posterior probability over generating

words provides a natural and intuitive way of thresholding

3Full-size versions of all the results presented here, an
extended set of results, the labelled data used for evaluation
(Figure 9) as well as other resources for text-spotting in
robotics can be found at [http://www.robots.ox.ac.uk/ mo-
bile/wikisite/pmwiki/pmwiki.php?n=Main.TextSpotting].

lunch taxi bank

term p(s|z) term p(s|z) term p(s|z)

restaurant 0.0186 telephone 0.0112 barclays 0.1131
barclays 0.0052 queue 0.0092 george 0.0060
queue 0.0035 february 0.0051 street 0.0047
children 0.0033 street 0.0042 february 0.0043
keep 0.0032 over 0.0024 telephone 0.0041

TABLE I

THE TOP 5 WORDS EXTRACTED FROM THE DATASET RANKED BY

LIKELIHOOD. WORDS RENDERED IN BOLD EXCEED THE THRESHOLD.

system output. Figures 6 - 8 only show detections with a

confidence greater than 90%.

The failure cases shown in Figure 7 provide examples of

what we call texture words. In these cases, scene texture such

as fences, vertical window edges, brickwork, architectural

features and adornments, etc. elicit a positive response from

the text detection stage and OCR zealously assigns characters

— typically, letters from the set “ILETUCMWA”.

We applied our subject-relevance model, querying in turn

for the subjects lunch, taxi and bank. In the first instance

the output of the system consists of a ranking of all the

terms extracted from the corpus of images based on the

posterior probability p(s|z). The top five returns per subject

are shown in Table I together with the probability of the topic

given the observed word. In every case the system manages

to successfully extrapolate from the query to semantically

related terms. We apply a threshold at 1%. The images

corresponding to our query terms are shown in Figure 8. The

collection of a subject document relevant to a query incurs

a computational expense. In practice this information can be

cached and provides an ever growing body of knowledge

for the robot. For particular problem domains the relevant

subject documents can be pre-retrieved.

Figure 9 provides a quantitative performance analysis of

our text-spotting engine when applied to a corpus of 300 city-

centre images recorded with a hand-held camera. The corpus

contains 3,935 manually labelled words. Depending on the

threshold on the word posterior, our system achieves recall

rates between 6-8.8% with precision in the range 60-94%

while constantly outperforming the uncorrected OCR output.

While adequate precision is achieved, the relative recall

figures are low (on average one word per frame). However,

text does not occur uniformly throughout an environment:

some scenes contain no text at all while, in others, text is

abundant. Our experiments indicate that the amount of text

correctly retrieved in practice is sufficient to perform tasks

such as the determination of scene relevance.



Fig. 9. Precision-recall curve for text retrieved using our system from
a corpus of 300 city-centre images taken with a hand-held camera. The
red star indicates performance without error correction. The blue dots
indicate performance as the results are thresholded according to the posterior
probability p(w|z). Note the difference in scale ranges.

Our system does not presently return individual word

boundaries but rather detections and parsings of blocks of

text. Accordingly, 100% detection recall could be achieved

trivially by drawing a bounding box around an entire image,

though in the majority of these cases the OCR would fail. To

exclude this as a factor in our analysis we have verified that

in 75% of cases the areas of the detections are commensurate

with those of the hand-labelled annotations. The overall

largest bounding box recovered spanned ca. 60% of the

image area.

V. CONCLUSIONS

We have described a robotic system that is capable of

detecting and reading wild text, a rich source of seman-

tic information indigenous to man-made environments. Our

work demonstrates the potential of this resource for robotics

applications by investigating query-based navigation where

an arbitrary, abstract search term is related to relevant scene

images and, by extension, places in a map.

This is early work in the field of literate robotics and our

work is progressing on several fronts. Firstly, we are inte-

grating the system presented here into a 3G-connected robot

that can implement these techniques online. Secondly, we are

constantly seeking to improve our text-spotting capability.

In particular, we are investigating means to improve the

performance of the OCR step, which is currently exhibiting

a very high error rate. We are also investigating opportunities

to improve performance by exploiting the contiguous nature

of the workspaces traversed by robots and the additional

sensor modalities available in this domain. Thirdly, we are

investigating a variety of robotics applications including

text-based localisation — where textual clues are used in

conjunction with an internet-based geocoding service — as

well as the integration of textual cues into object detectors.
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