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Abstract
We analyze the problem of ranking sets of objects based on a ranking over the single
objects. In recent years various papers used the sumof individual scores for the objects,
in particular Borda scores, to make such comparisons. The advantage of this approach
lies in providing a complete ranking of sets of objects and therefore can be seen
as an alternative to other methods based on best and/or worst objects. The paper
contributes in two ways. On the one hand, we highlight certain drawbacks that arise
when using Borda scores in such comparisons. On the other hand, we provide two
characterization results for Borda-sum rankings, one for the restricted setting of sets
of equal cardinality and one for the general setting which allows for comparisons of
sets of unequal cardinality.

1 Introduction

In this work we consider the problem of ranking sets of objects based on a ranking over
the single objects. Applications of such an approach do exist, for instance, in social
sciences (in particular, in economics) and philosophy whenever we have to handle
situations in which sets of objects need to be compared on the basis of pure ordinal
information about the individual objects. This problem has been widely discussed in
the social choice literature and normative justifications for such rankings over sets of
objects have been provided (see Barberà et al. 2004 for an extensive survey). How-
ever, also the literature on fair division of indivisible objects is concerned with the
comparison of sets of objects whenever different allocations have to be compared.
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Recently, various papers explicitly use the sum of some kind of positional scores1

with respect to the ranking of the single objects and, in particular, Borda scores2 of its
respective elements (and their sum of points) to compare the different sets (see, e.g.,
Brams and Taylor 2000; Brams et al. 2003; Brams and King 2005; Bouveret and Lang
2011; Baumeister et al. 2017; Brams et al. 2017 or Kilgour and Vetschera 2018). In
that literature the Borda-sum ranking is used to deal with issues such as efficiency,
proportionality or envy-freeness, because these are hard to tackle with purely ordinal
and non-additive information.

A thorough analysis of rules based on Borda scores for the objects has - to the best
of our knowledge—not yet been considered.3 We fill this gap by providing axiomatic
characterizations for the Borda-sum ranking. However, we will show that its use also
comes at a certain price. In particular, we show that, using Borda scores, any com-
parison of sets of objects depends on the total number of objects available. A change
in this number may change the ranking between the sets. This problem exists for all
types of comparisons, whether they are between sets of equal cardinality or unequal
cardinality. Nevertheless, there might still be acceptable applications for such a rule.
These may, for instance, require the assumptions that the set of objects is clearly fixed
and unchangeable and that we are comparing exclusively sets of equal cardinality.
Given such a restricted framework, we provide a characterization of the whole family
of rules based on Borda scores that compare sets of equal cardinality. In addition, we
extend this characterization to rules that compare sets of unequal cardinality.

Our characterization results are, essentially, built upon four different axioms. Those
contain well-known axioms from the literature, such as Extension Rule and Strict
Independence, but will also introduce two new axioms. One of them, Trading, is
concerned with compensating the switch in an object with its lower ranked neighbor
by another switch of another object with its higher ranked neighbor. An axiom of a
certain resemblance is given in Bossert and Slinko (2006) (by means of Translation
Neutrality), which requires that if the best (worst) objects of two sets are translated by
one position, the relative ranking of the resulting sets does not change. The second,
Irrelevance ofWorst Object, determines a sort of origin to the Borda score by assuming
that theworst object has essentially zero value and therefore does not increase the value
of a set in case it is added.

1 In general we use scoring vectors which state the amount of points assigned to the single objects with
respect to their position in the ranking of the objects. For example, in a situation with n objects, the famous
Borda scoring vector (n − 1, n − 2, . . . , 1, 0) assigns n − 1 points to the top ranked object, n − 2 points
to the second ranked object, down to 0 points assigned to the bottom ranked object. Of course, many other
scoring vectors are used in the literature. The evaluation of a set of objects is then determined by the sum
of points assigned to its single elements.
2 Originally Borda scores have been used in determining the Borda ranking in voting situations (see,
e.g., Brams and Fishburn 2002; Young 1974 and Saari 2000a, b) for such comparisons. Borda scores have,
however, also been used in terms of Borda utilities in welfare economics (see, e.g., Fleurbaey andHammond
2004).
3 An exception is a working paper by Baigent and Xu (2004) who provide a characterization of the average
Borda rule.
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Related work. The general problem of ranking sets of objects admits many inter-
pretations4 (Barberà et al. 2004). For instance, one could be interested in situations
in which, from any set of objects, eventually one will be chosen. In that respect rank-
ings are mostly determined by comparing either the best or worst (or both) objects in
the sets.5 On the other hand, additive rules, in the more general setting of additively
representable preferences over sets of n-tuples (via some utility representation), have
also been analyzed (see, e.g., Fishburn 1970). We add to that literature by aggregating
Borda scores with respect to the ranking over the single objects for the comparison of
sets of objects. For the considered setting the question about additive representability
of the preferences via some real-valued function v is hence also related to de Finetti
(1931) who provides necessary conditions for an additive representability via v. In a
more recent work, Alcantud and Arlegi (2008) analyse the family of rankings over
finite subsets of a given set that are additively representable.

This work also has a certain vicinity to the freedom of choice literature in which
freedom of choice from a set of objects is evaluated based on the ranking of the objects
(see, e.g., Pattanaik andXu1990).Our paper, however, focuses on the evaluation of sets
of objects when joint use is assumed, i.e., the objects are not mutually exclusive (see,
e.g., Bossert 1995). The importance of such an approach can be seen, for example,
in situations where political parties negotiate over the distribution of governmental
departments in a coalition, firms have to agree on a distribution of tasks among them,
teams of workers have to be assigned, or sets of objects in a divorce settlement are
allocated.

The paper is structured as follows: Sect. 2 introduces the formal framework. In
Sect. 3 we present a paradoxical situation in connection with the Borda-sum ranking.
Section 4 provides a characterization of a family of rules based on Borda scores that
compare sets of equal cardinality. This is extended to a characterization of a particular
family of rules for comparing sets of unequal cardinality in Sect. 5. The independence
of the axioms is shown in Sect. 6 and, finally, Sect. 7 concludes the paper.

2 Formal framework

Let X = {x1, . . . , xn} be a non-empty, finite set of objects, and X = 2X\∅ denote
the set of all non-empty subsets of X . For c ∈ {1, 2, . . . , n}, let Xc denote the set of
all size c subsets of X . We start with a strict preference relation P on X , where we
assume x1Px2Px3 . . . Pxn . � denotes a binary relation on X , with strict preference
relation � and indifference relation ∼.

For any object x j ∈ X , its Borda score is given by b(x j ) := n − j , for each 1 ≤
j ≤ n; these scores are captured by the Borda score vector b = (n − 1, n − 2, . . . , 1).
Now, the Borda-sum ranking �b on X is defined as follows: For A, B ∈ X ,

4 These also include decision making processes under uncertainty or ignorance, see, e.g., Gravel et al.
(2018).
5 Two major results in that context are concerned with the characterization of the maximin-based ordering
(e.g., Barberà et al. 1984) or the lexmin ordering (e.g., Pattanaik and Peleg 1984).
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A �b B : ⇐⇒
∑

x∈A

b(x) ≥
∑

y∈B
b(y),

where
∑

x∈A b(x) is called the score of A.
Clearly, any positive affine transformation b̄ = μ + δb, with μ ≥ 0 and δ > 0,

leads to �b̄ being a weak order on X , i.e., �b̄ is a reflexive, transitive, and complete
binary relation on X . Also, note that for any positive linear transformation of Borda
scores bδ = δb with δ > 0, where �bδ denotes the corresponding weak order on X ,
we have A �b B ⇐⇒ A �bδ B. That is, for any choice of δ > 0 using the vector b
or bδ yields the same ranking.

In Sect. 4 we will show that, among all weak orders on X , the order �b (and hence
the family of orders �b̄; see Proposition 1 in Sect. 4), when used to compare only sets
of equal cardinality, is characterized by three axioms. In Sect. 5, we will characterize
the particular order �b (and therewith the family of orders �bδ ; see also Proposition 2
in Sect. 5) on the whole set X by the use of only one additional axiom.

For notational convenience, for any natural number � < n let W� denote the set of
the � + 1 bottom ranked objects in P , i.e., W� := {xn−�, xn−�+1, . . . , xn}.

For any set A ∈ X , let min A denote the unique object y ∈ A such that x Py holds
for each x ∈ A\{y}; analogously, max A denotes the unique object z ∈ A such that
zPx holds for each x ∈ A\{z}.

3 A paradoxical situation

In Social Choice Theory the Borda rule is used to aggregate individual preferences
(rankings) into a social outcome (winning alternative(s) or a collective ranking over the
alternatives) based on adding up the individual Borda scores. This is awidely discussed
rule (see, e.g., Saari 2000a, b) violating, however, one of Arrow’smain axioms, namely
independence of irrelevant alternatives (IIA) (see Saari 1995). Intuitively, IIA implies
that adding additional candidates to a voting situation should not change the social
preference between any two candidates x and y as long as the pairwise individual
preferences between x and y do not change.Obviously, this is not an exclusive problem
of the Borda rule but comes up in any rule based on a (non-trivial) scoring vector.

Although in the current framework there is only one given preference ranking, to
a certain extent, a similar problem occurs when comparing sets of objects based on
Borda scores. A plausible and desirable requirement of any rule to rank sets of objects
might be that the ranking of two sets does not change whenever the size of X , the
grand set of objects, changes. In the fair division literature this might be relevant if, in
a 2-agents setting, sets A and B are compared that do not add up to X . Hence, in such
a situation one could think of eliminating unused objects from X\{A ∪ B}, but this
should not change the ordering of A and B. Of course, some division algorithms have
been devised that always assign the whole set of objects to the agents, making such
a requirement useless. But imagine that, in case more objects become available, any
additional objects are immediately distributed among the agents as well. Then a rather
weak requirement would be that if a set of objects A is considered strictly better than
B, with A∪ B = X , and we add two new objects y and z to X such that y is preferred
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Using the Borda rule for ranking sets of objects 403

to z, i.e., yPz, it should not be the case that now B ∪{z} is strictly better than A∪{y}.
This can also be seen as a sort of (rather weak) monotonicity condition, typically a
desirable property to be satisfied. Consider, however, the following example.

Example 1 Let X = {x1, x2, . . . , x10} and the ranking P be such that x1Px2P · · · Px10.
The Borda score of the single objects is given by b(x j ) = n − j for all x j ∈ X , i.e.,
the corresponding vector of Borda scores is b = (9, 8, . . . , 1, 0). Let us divide X
into two sets A = {x3, x4, x5, x6, x9} and B = {x1, x2, x7, x8, x10}. The score of A
is

∑
x∈A b(x) = 23 and the score of B is

∑
x∈B b(x) = 22. Hence, A �b B. Now,

assume a new set of alternatives X̄ = X ∪{y, z} and a new ranking P̄ , which includes
y and z, such that x1 P̄x2 P̄ y P̄z P̄x3 P̄ · · · P̄x10. Because set X̄ has increased by two
objects, the new vector of Borda scores is (11, 10, 9, . . . , 1, 0). Let us add y to the pre-
viously better set A and z to B. The new score for the set A∪{y} is∑

x∈A∪{y} b(x) = 32
and the score for B∪{z} is∑

x∈B∪{z} b(x) = 34. Hence, although Awas strictly better

than B when chosen from X , A becomes strictly worse than B under X̄ even when
we add a better object (y) to A and a worse object (z) to B.

Because in the previous example we compared sets of equal cardinality the para-
doxical situation occurs for any positive affine transformation of the Borda score used.

4 Borda-sum ranking for equal cardinality

Despite its problem discussed in the previous section, the Borda-sum ranking is actu-
ally used in various occasions and, in particular, in the literature on fair division (see,
e.g., Brams and Taylor 2000; Brams et al. 2003; Brams and King 2005; Bouveret
and Lang 2011; Baumeister et al. 2017; Brams et al. 2017 or Kilgour and Vetschera
2018). However, many other potential applications do exist where a comparison of
sets with fixed cardinality may be relevant. These include, for example, matching
theory (see, e.g., Abdulkadiroğlu and Sönmez 2013), where in many-to-one match-
ings certain agents (e.g., schools, universities or hospitals) compare different sets of
objects (e.g., students or doctors), usually of the same cardinality, during the selection
process. Moreover, in hedonic games (see, e.g., Aziz and Savani 2016), agents com-
pare different coalitions to which they could belong to, often being of the same size,
with each other. Nevertheless, in both situations it seems reasonable that there exists
ordinal information about the objects contained in the set, i.e., that schools can rank
the students on the market or agents can rank the other agents with whom they might
potentially form a coalition.

In current approaches, comparisons between sets of objects are often incomplete
or contain many indifferences if based exclusively on ordinal information about the
objects. One option to overcome these problems is to use the Borda-sum of sets of
objects based on the underlying Borda scores of the objects taken from the ranking.
Hence, it seems useful to investigate the normative foundations of the Borda-sum
ranking. In our first characterization result, we restrict ourselves to a framework in
which only sets of equal cardinality are compared and all objects are allocated.
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Assume � to denote a weak order on X , with asymmetric part � and symmetric
part ∼ respectively. Let us start with two axioms that are well-known in the literature
and discussed in detail, e.g., in Barberà et al. (2004).

The first axiom, Extension Rule, provides a very intuitive idea on how to handle
singleton sets: Those need to be ranked in the same way as the objects are ranked in
the ranking P on X .

Extension rule For all x, y ∈ X , x Py �⇒ {x} � {y}.
The second axiom (Barberà and Pattanaik 1984 and see, e.g., the use of it by

Foster (2011)), Strict Independence, requires the ranking of two sets of objects to be
independent of the addition of any object which does not belong to those sets or the
removal of an object contained in both sets.6 It can be stated as follows:

Strict independence For all A, B ∈ X , for all x ∈ X\(A ∪ B), A � B ⇐⇒
A ∪ {x} � B ∪ {x}.

The third axiom, Trading, is based on the principle of compensation, i.e., a set of
objects remains essentially of identical value in case the substitution of an object by
the object ranked immediately below that object in P is compensated by substituting
another object by the object immediately ranked above that object in P . This trading
argument can be formalized as follows:

Trading: For all A ∈ X , for all xi , x j ∈ A with xi+1Px j−1:
(xi+1 /∈ A and x j−1 /∈ A) �⇒ A ∼ (A ∪ {xi+1, x j−1})\{xi , x j }.

As mentioned before, a possible application could be seen in the negotiation among
parties about forming a coalition. This contains the distribution of ministers of gov-
ernmental departments and, usually, parties have their own preference rankings over
the set of departments. Because the negotiation process is not a one-shot event, during
this process the negotiators of a party will have to justify the results in front of their
party base. If the party is to receive only one department, Extension Rule seems very
plausible. Moreover, often departments contain quite different responsibilities which
are neither complementary nor substitutable, something that motivates Strict Indepen-
dence. Finally, changes to a party’s preliminarily assigned departments are commonly
based on a compensation argument. That is, should it receive the next worse depart-
ment y instead of department x , it is compensated with the next best ministryw instead
of ministry z. This is also quite often the way how it is communicated by the nego-
tiators to the party base. Hence, this compensation—and therefore Trading—idea is
explicitly used to provide a justification for a change in the current assignment trying
to make it acceptable for the stakeholders, who—as has happened in the negotiations
after the German Bundestag elections 2017—may have to approve any deal of the
negotiators. In that respect, it often provides a stronger argument for the negotiators to
get acceptance by the stakeholders than the threat of a breakdown of the negotiations.

We will make use of the following lemma to show our first main result. The lemma
states that for any weak order satisfying the axioms Extension Rule and Strict Inde-
pendence, if, for any two sets A, B of equal size, for each bi ∈ B and ai ∈ A we have
bi Pai or bi = ai , then A cannot be preferred over B.

6 Barberà and Pattanaik (1984) prove that Strict Independence is incompatible with Dominance, an axiom
which states that if we add to A ⊂ X an object x ∈ X\A such that x Py for all y ∈ A, then A ∪ {x} � A
and if yPx for all y ∈ A then A � A∪{x}. Dominance, however, is not satisfied by the Borda-sum ranking
for any of the Borda scores, because the second part of the axiom does not hold.
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Using the Borda rule for ranking sets of objects 405

Lemma 1 Let � be a weak order on X that satisfies Extension Rule and Strict Inde-
pendence. Let A, B ∈ X with A = {a1, a2, . . . , ak} and B = {b1, b2 . . . , bk} such that
for each i ∈ {1, . . . , k} bi = ai or bi Pai holds. Then B � A, with strict preference
B � A if bi Pai for some i.

Proof Clearly, bi = ai for each i is equivalent to B = A, and thus B ∼ A follows.
We distinguish the following subcases.
Case 1: A ∩ B = ∅. Thus, bi Pai for each i ∈ {1, . . . , k} follows. Extension
Rule implies that

{bi } � {ai } (1)

holds for each i ∈ {1, . . . , k}. From (1) we know {b1} � {a1}. Adding a2 to each of
these sets, by Strict Independence, thus results in

{b1, a2} � {a1, a2}. (2)

Consider the sets {a2} and {b2}. We know that {b2} � {a2} holds (stated in (1));
hence, by Strict Independence, adding b1 to each of these sets yields

{b1, b2} � {b1, a2}.

With (2)

{b1, b2} � {b1, a2} � {a1, a2}

and due to transitivity of �

{b1, b2} � {a1, a2} (3)

follows.
Again due to Strict Independence, adding a3 to each of the sets in (3) yields

{b1, b2, a3} � {a1, a2, a3}. (4)

On the other hand, starting with {b3} � {a3} and, in turn adding b2 and b1, by
Strict Independence we get {b2, b3} � {b2, a3}, and, consequently, {b1, b2, b3} �
{b1, b2, a3}. With (4) and transitivity we can conclude that

{b1, b2, b3} � {a1, a2, a3}

holds. Now, it is not difficult to see that adding, in turn, the remaining elements of A
and arguing analogously for each of these elements finally yields

{b1, b2, . . . , bk} � {a1, a2, . . . , ak}
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which corresponds to B � A.
Case 2: A ∩ B �= ∅. If A ∩ B �= ∅ then for A ∩ B = {y1, . . . , y|A∩B|} we have

A � B ⇔ A\{y1} � B\{y1} ⇔ A\{y1, y2} � B\{y1, y2} ⇔ · · · ⇔ A\(A ∩ B) �
B\(A ∩ B) due to Strict Independence; thus, for A′ := A\B and B ′ := B\A we
have A � B ⇔ A′ � B ′, where A′ and B ′ = {b′

1, . . . , b
′
�} are disjoint sets of equal

size � such that there are distinct elements a′
1, . . . , a

′
� ∈ A′ with a′

j Pb
′
j for each

j ∈ {1, . . . , �}, and we can repeat the above argumentation. ��
Now we can state the first major result of the paper, namely a characterization

of the Borda-sum ranking for sets of equal cardinality. Observe that in the case of
sets of equal cardinality the Borda-sum ranking is not affected by any positive affine
transformation of Borda scores; i.e., for any choice of μ ≥ 0 and δ > 0 using the
vector b or b̄ = μ + δb will yield the same ranking. Thus, the below Theorem 1 in
fact characterizes the whole family of rankings �b̄.

Proposition 1 Let c ∈ {1, 2, . . . , n}. On Xc it holds that �b̄=�b for any choice of
μ ≥ 0 and δ > 0.

Theorem 1 Let c ∈ {1, 2, . . . , n}. A weak order � on Xc satisfies Extension Rule,
Strict Independence, and Trading if and only if � = �b.

Proof It is not difficult to verify that �b is a weak order on Xc that satisfies all of the
stated axioms.

Assume the weak order� onXc satisfies Extension Rule, Strict Independence, and
Trading. Let A, B ∈ Xc. In addition, let A = {x (1), x (2), . . . , x (|A|)}where x (i)Px (i+1)

holds for any i ∈ {1, . . . , |A| − 1}.
We show that for any two sets A, B ∈ Xc

A � B ⇐⇒ A �b B (5)

holds.
Let |A| = |B| = c, for some 1 ≤ c ≤ n. We proceed by induction on c.
For c = 1, let A = {x} and B = {y}. If x = y, by reflexivity of � it follows

that A ∼ B holds; clearly, A ∼b B holds as well. If x �= y, either x Py or yPx is
satisfied; w.l.o.g. assume x Py. Now, x Py implies (i) A �b B by definition of�b, and
(ii) A � B due to Extension Rule. Thus, A � B ⇐⇒ A �b B follows.

Assume A � B ⇔ A �b B holds for all A, B ∈ Xc with |A| = |B| = c, for all
1 ≤ c ≤ k, for some k ≥ 1. Let A, B ∈ Xk+1, i.e., with |A| = |B| = k + 1.

Case 1: A ∩ B �= ∅. By Strict Independence, for any x ∈ A ∩ B we have A\{x} �
B\{x} ⇐⇒ A � B, and, as a consequence, A\{x} ∼ B\{x} ⇐⇒ A ∼ B. Thus,

A\{x} � B\{x} ⇐⇒ A � B (6)

holds. Clearly, |A\{x}| = |B\{x}| = k, and by assumption

A\{x} �b B\{x} ⇐⇒ A\{x} � B\{x}
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Using the Borda rule for ranking sets of objects 407

is satisfied. With (6), we get

A\{x} �b B\{x} ⇐⇒ A\{x} � B\{x} ⇐⇒ A � B.

Obviously, A\{x} �b B\{x} ⇐⇒ A �b B holds, and therefore we get A �b

B ⇐⇒ A � B.
Case 2: A ∩ B = ∅. Let f : A → B be the one-to-one function with

f (x (i))P f (x (i+1)) for each i ∈ {1, . . . , |A|}; i.e., f maps the best ranked element
of A (max A) to the best ranked element of B (max B), the second best element of A
to the second best element of B, etc.

If for each x ∈ Awe have f (x)Px , obviously, B �b A holds; in this case, Lemma 1
yields that B � A holds as well. Analogously, if each x ∈ A we have x P f (x), clearly
A �b B follows, and due to Lemma 1 A � B is satisfied as well.

Assume there is a pair (x, y) ∈ A×Awith x Py such that (i) f (x)Px and yP f (y) or
(ii) x P f (x) and f (y)Py holds. W.l.o.g. assume x (1)P f (x (1)) (the case f (x (1))Px (1)

can be treated in analogous manner). Let

x (�) := max
{
x (i) ∈ A|x (i)P f (x (i)) and f (x (i+1))Px (i+1)

}
. (7)

Clearly, by assumption � < n holds and x (�) exists, i.e.,

{
x (i) ∈ A|x (i)P f (x (i)) and f (x (i+1))Px (i+1)

}

is non-empty. Let xi = x (�) and x j = x (�+1). Obviously, (7) corresponds to

xi P f (xi )P f (x j )Px j . (8)

Observe that from (8) xi+1Px j−1 follows. Note that

{xi+1, xi+2, . . . , x j−2, x j−1} ∩ A = ∅

is implied by the definition of xi = x (�) and x j = x (�+1).
Due to Trading, we get A ∼ A1 := (A ∪ {xi+1, x j−1})\{xi , x j }. Note that also

A ∼b A1 holds.
If xi+1 = f (xi ) or f (x j−1) = f (x j ), then A1 ∩ B �= ∅, and by Case 1 A1 �

B ⇐⇒ A1 �b B holds. Due to transitivity, with A ∼ A1 and A ∼b A1 we hence
get A � B ⇐⇒ A �b B.

Otherwise, by (8) there is a unique smallest number s ∈ N, s ≥ 2, such that xi+s =
f (xi ) or x j−s = f (x j ). Note that by f (xi )P f (x j ) (see (8)) we have xi+h Px j−h for
all 1 ≤ h ≤ s. Let Ah := Ah−1 ∪ {xi+h, x j−h}\{xi+(h−1), x j−(h−1)}, h ∈ {2, . . . , s}.
By repeated application of Trading we get Ah ∼ Ah−1 for each h ∈ {2, . . . , s}. By
transitivity, As ∼ A1 ∼ A, and hence As ∼ A follows. Observe that As ∼b A holds as
well. Analogously to above, As ∩ B �= ∅, and, with Case 1, As � B ⇐⇒ As �b B
follows; by transitivity, with A ∼ As and A ∼b As we can conclude that A � B ⇐⇒
A �b B is satisfied. ��

123
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5 Borda-sum ranking for sets of unequal cardinality

In the previous section we provided a characterization of the Borda-sum ranking on
sets of equal cardinality. In this section, we are interested in whether this can be
extended to a more general characterization of the Borda-sum ranking. However, the
comparison of sets of objects of unequal cardinality via the Borda-sum ranking ismore
demanding. Whenever we want to compare sets of unequal cardinality, there exists
the issue of ambiguity, as any positive affine transformation might lead to a different
ranking of the sets.7

Example 2 Let X = {x1, x2, x3, x4, x5, x6} and the ranking P be such that
x1Px2P...Px5Px6. Assume the two Borda score vectors b = (5, 4, 3, 2, 1, 0) and
b̂ = (6, 5, 4, 3, 2, 1).8 As easily observed, comparing sets of equal size leads to the
same ranking irrespective of the used Borda score vector. However, comparing set
A = {x1} with set B = {x3, x5, x6} based on vector b, leads to A �b B, as A receives
a score of five whereas B a score of four. If we base the comparison on vector b̄ we
get B �b̄ A, i.e., set B (score of seven) is considered strictly better than set A (score
of six).

Hence, given the above ambiguity we will focus on one particular Borda-sum
ranking, namely the one based on the most frequently used Borda score with scoring
vector b = (n − 1, n − 2, . . . , 1, 0). Actually, it can be shown that to characterize
this Borda-sum ranking, we only need one additional axiom to the three axioms used
before. We call this axiom Irrelevance of Worst Object. It requires that the addition of
the worst object to any set not containing it does not increase its value and therefore
determines an origin to our Borda scores.9 Axioms that determine origins are used in
characterization results, and Irrelevance of Worst Object can, in principle, be easily
enforced by adding an object of essentially zero value. However, it is worth noting that
this makes the ranking vulnerable to the ambiguity issue indicated above concerning
a change in the size of X , the total number of objects considered. Formally we state
the axiom as follows:

Irrelevance of Worst Object: For all A ∈ X , A ∼ A ∪ {xn}.
We present two additional lemmata before providing our main result which state

certain monotonicity properties.
Lemma 2 shows that for a ranking satisfying Trading, for any set A there must be

a set of the same cardinality that is indifferent to A such that it does not contain the
worst object xn or is contained in the set of |A| + 1 worst objects.

Lemma 2 Let � be a complete binary relation on X that satisfies Trading. Then, for
any A ∈ X with |A ∩ W|A|| < |A| there is a set A∗ ∈ X with A∗ ∼ A, |A∗| = |A|
such that (i) xn /∈ A∗ or (ii) A∗ ⊂ W|A| holds.

7 We are grateful to an anonymous referee for highlighting this issue.
8 Actually, b̂ was the original scoring vector used by Borda, whereas b is most commonly used in the
literature on voting (see, e.g., Saari 1995).
9 It has a certain similarity to the principle of addition of insignificant options in the literature on freedom
of choice (see Jones and Sugden 1982).
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Proof Assume the opposite, i.e., there is a set Ã ⊂ X with | Ã ∩ W|A|| < | Ã| for
which there is no set A∗ ⊂ X with A∗ ∼ Ã, |A∗| = | Ã| such that (i) xn /∈ A∗ or
(ii) A∗ ⊂ W| Ã| holds. Among all such sets Ã let A be one for which min(X\A) is

minimal, i.e., min(X\ Ã)P min(X\A) or min(X\ Ã) = min(X\A) holds.
Clearly, xn /∈ A contradicts with our assumption. Assume xn ∈ A. Note that

|A ∩ W|A|| < |A| implies |W|A|\A| ≥ 2, which, in turn, yields |X\A| ≥ 2. Let

X\A = {yi1 , yi2 , . . . , yin−|A| }

with yi j Pyi j+1 , for each j ∈ {1, . . . , n − |A| − 1}. By xn ∈ A, it follows that

yin−|A| �= xn (9)

holds. Let

xq := max{xh ∈ A|xh+1 ∈ X\A, h ∈ {1, . . . , n − 1}}.

Now, |A ∩ W|A|| < |A| implies that

– {xh ∈ A|xh+1 ∈ X\A, h ∈ {1, . . . , n−1}} is non-empty (since otherwise from (9)
A ⊂ W|A| follows), and

– xq+1 �= yin−|A| holds (and thus, in particular xq+1Pyin−|A| is satisfied), since oth-
erwise again A ⊂ W|A| follows.

Finally, note that yin−|A| ∈ X\A and yin−|A|+1 ∈ A\X hold. Thus, by Trading we get
A ∼ A′, where A′ := A ∪ {xq+1, yin−|A| }\{xq , yin−|A|+1}. Clearly, A′ is of the same
size as A. Note that min(X\A) = yin−|A| and min(X\A′) = yin−|A|+1; hence, with
yin−|A| Pyin−|A|+1 we get min(X\A)P min(X\A′) in contradiction with the choice of
A. ��

The following Lemma 3 states that for any weak order satisfying Extension Rule,
Strict Independence and Irrelevance of Worst Object, a subset of a set B cannot be
preferred over B.

Lemma 3 Let � be a weak order on X that satisfies Extension Rule, Strict Indepen-
dence and Irrelevance of Worst Object, and let A, B ∈ X . Then A ⊆ B implies
B � A, with strict preference B � A if x ∈ B\A for some x �= xn.

Proof The proof proceeds by induction on the size d := |B| − |A| = |B\A|. For
d = 0 it follows that B = A and hence B ∼ A.

Assume that for some r ≥ 1, the statement of the lemma holds for all A, B ∈ X ,
A ⊆ B, with d = r − 1. Let A, B ∈ X , A ⊆ B, such that d = r .

Assume xn ∈ B\A. By Irrelevance of Worst Object A ∼ A′ := A ∪ {xn} follows.
Clearly, |B\A′| = r − 1. By our induction assumption, B � A′ holds, with strict
preference B � A′ if x ∈ B\A′ for some x �= xn . With A ∼ A′ and transitivity of �
the lemma follows in this case. It is not difficult to see that the case xn ∈ A\B follows
analogously.
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If xn ∈ A ∩ B, by Irrelevance of Worst Object we have A ∼ A\{xn} and B ∼
B\{xn}. Thus, we can restrict the attention to the remaining case of xn /∈ A ∪ B.
Since xn /∈ A ∪ B and d ≥ 1 hold, there must exist x ∈ B\A with x �= xn . Due
to Extension Rule {x} � {xn} follows. For a ∈ A by Strict Independence it follows
that {a, x} � {a, xn} holds; by repeated application of Strict Independence adding the
remaining objects of A yields A∪{x} � A∪{xn} ∼ A, where the indifference results
from Irrelevance of Worst Object. In particular,

A ∪ {x} � A (10)

follows from the transitivity of�. Observe that B ⊇ A∪{x} and |B\(A∪{x})| = r−1,
consequently B � (A ∪ {x}) holds by induction assumption. With (10), B � (A ∪
{x}) � A follows which implies B � A again due to transitivity. ��

Now we can state the main result of this section, namely the characterization of
the Borda-sum ranking over X (unique up to a positive linear transformation: any
vector bδ = δb with δ > 0 will yield the same ranking as vector b (see also Sect. 2)).
Hence, Theorem 2 in fact provides a characterization for the whole family of rankings
�bδ .

Proposition 2 On X it holds that �bδ=�b for any choice of δ > 0.

Theorem 2 A weak order � onX satisfies Extension Rule, Strict Independence, Irrel-
evance of Worst Object and Trading if and only if �=�b.

Proof It is not difficult to verify that �b is a weak order on X that satisfies all of the
stated axioms.

Assume the weak order � on X satisfies Extension Rule, Strict Independence,
Irrelevance of Worst Object and Trading. Let A, B ∈ X , with d := |B| − |A|. The
goal is to show that

A � B ⇐⇒ A �b B (11)

holds. Let A = {x (1), x (2), . . . , x (|A|)}, where x (i)Px (i+1) holds for any i ∈
{1, . . . , |A| − 1}.

The proof proceeds by induction on d. Based on the induction assumption that (11)
holds for some d = r − 1, r ≥ 1, we show that (11) is satisfied for any A, B ∈ X
with d = r . Observe that the induction basis (d = 0) holds by Theorem 1.

INDUCTION ASSUMPTION

We assume that for some r ≥ 1, A � B ⇐⇒ A �b B holds for all A, B ∈ X with
d = r − 1.

INDUCTION STEP: d = r FOR SOME r ≥ 1.
Clearly, |A| �= |B|. W.l.o.g. assume |A| < |B|. Consider the set

W|A| = {xn−|A|, xn−|A|+1, . . . , xn},
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Using the Borda rule for ranking sets of objects 411

i.e., the set of the (|A| + 1) bottom ranked objects in P . Note that by |A| < |B| we
have A ⊂ X and thus W|A| is well-defined.

Case 1: xn /∈ A. Then, for the set A′ = A∪{xn} we have A′ ∼ A by Irrelevance of
Worst Object. Clearly, A′ ∼b A holds as well. Due to |B|−|A′| = r−1, the induction
assumption yields A′ � B ⇐⇒ A′ �b B; by transitivity, with A ∼ A′ and A ∼b A′
we hence get A � B ⇐⇒ A �b B.

Case 2: xn ∈ A. If xn ∈ A, we distinguish the following cases.
Case 2a: A ⊂ W|A|. With |B| > |A| and A ⊂ W|A| it follows that B �b A is

satisfied. We will show that B � A holds as well.
Let z be the unique object in W|A|\A. With xn ∈ A, z �= xn follows. Thus, Lemma 3
impliesW|A| � A. Note that |B|− |W|A|| = r −1. From our induction assumption we
know that B � W|A| ⇐⇒ B �b W|A| holds. In fact, it is easy to see that B �b W|A|
is satisfied, and therefore B � W|A| holds. B � W|A| and W|A| � A hence imply
B � A due to transitivity.

Case 2b: |A ∩ W|A|| < |A|. Applying Lemma 2 yields a set A∗ of the same size as
A such that A∗ ∼ A where xn /∈ A∗ or A∗ ⊂ W|A| is satisfied.

– If xn /∈ A∗, by Case 1 we have A∗ � B ⇐⇒ A∗ �b B. It is not hard to verify
that A ∼b A∗ (Trading was applied to “construct” A∗) holds. Therewith, we can
conclude A � B ⇐⇒ A �b B due to transitivity of �.

– If xn ∈ A∗, then A∗ ⊂ W|A| holds. Thus, by Case 2a we know that both B �b A∗
and B � A∗ hold, and thus B �b A and B � A are satisfied.

Therewith, either case we have A � B ⇐⇒ A �b B which completes the proof. ��

6 Independence of Axioms

In this section we show the independence of the above axioms. As will be proven,
whenever a weak order satisfies all but one of the above axioms, there are additional
weak orders besides the Borda-sum ranking �b that satisfy the remaining axioms.

Theorem 3 The axioms Extension Rule, Strict Independence, Irrelevance of Worst
Object, and Trading are independent.

Proof In order to show independence of the axioms, we present four weak orders over
X each of which satisfies all but one of them. Let A, B ∈ X .

All but Trading. Consider the lexicographic-type ordering �lex on X , defined by
A �lex B :⇐⇒ ∑

x∈A �(x) ≥ ∑
y∈B �(y) with

�(x) =
{
0 if x = xn
2b(x) otherwise.

It is easy to verify that the weak order �lex satisfies Extension Rule, Strict Indepen-
dence and Irrelevance ofWorst Object. Trading, however, is not satisfied. For instance,
for any two xi , x j ∈ A\{xn} with xi+1Px j−1 such that xi+1 /∈ A and x j−1 /∈ A,
Trading would require �(xi ) + �(x j ) = �(xi+1) + �(x j−1) which corresponds to
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2n−i + 2n− j = 2n−i−1 + 2n− j+1; this, however, requires i = j − 1 which is ruled
out because xi+1Px j−1 implies i < j − 2.

All but Irrelevance of Worst Object. Let b∗(x j ) := b(x j ) + 1 for x j ∈ X , i.e.,
b∗(x j ) = n − j + 1. Then, it is not hard to see that the weak order �b∗ on X ,
defined by A �b∗ B :⇐⇒ ∑

x∈A b
∗(x) ≥ ∑

y∈B b∗(y) satisfies Extension Rule,
Strict Independence and Trading. On the other hand, Irrelevance of Worst Object is
not satisfied by �b∗ because of b∗(xn) = 1.

All but Strict Independence. Let�T be the weak order onX defined as follows. For
n �= 3, let �T coincide with �b. For n = 3, let �T be given by {x1} ∼T {x1, x3} �T

{x1, x2} ∼T {x1, x2, x3} �T {x2} ∼T {x2, x3} �T {x3}.
By Theorem 2, for n �= 3 theweak order�T satisfies all four axioms. Now, consider

the case n = 3. In this case,�T satisfies Extension Rule due to {x1} �T {x2} �T {x3}.
In addition, �T satisfies Irrelevance of Worst Object because of {x1} ∼T {x1, x3},
{x1, x2} ∼T {x1, x2, x3}, and {x2} ∼T {x2, x3}. Trading is trivially satisfied since
xi+1Px j−1 cannot hold for any pair (xi , x j ) in the case n = 3. On the other hand, Strict
Independence is not satisfied because both {x2} �T {x3} and {x1, x3} �T {x1, x2}
hold.

All but Extension Rule. Total indifference, i.e., the weak order �I defined by
A ∼I B for any A, B ∈ X , obviously satisfies Strict Independence, Irrelevance
of Worst Object and Trading, but does not satisfy Extension Rule. ��

7 Conclusion

In this paper we have investigated the comparison of sets of objects based on their total
Borda scores of the single elements. We provided two characterizations of families
of Borda-sum rankings for the comparison of sets of objects of equal and unequal
cardinality. The characterization results have been achieved without explicitly using
additivity assumptions. Besides twowell-known axioms from the literature,Extension
Rule and Strict Independence, we introduced two new (and in certain contexts reason-
able) axioms, Trading and Irrelevance of Worst Object, to achieve those results. The
independence of those axioms has also been established. Highlighting the drawbacks
that may arise, we have shown that the use of Borda scores for such comparisons also
comes at a certain price.

To some extent the paper thus provides both, arguments for and against the use
of scoring vectors in the comparison of sets of objects. Hence, whether such an
approach can be seen as a plausible alternative to comparisons using best and/or
worst objects from the sets to be compared does still depend on the specific situation
considered.
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