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Abstract Commercial health plans need member racial/ethnic information to address

disparities, but often lack it. We incorporate the U.S. Census Bureau’s latest surname list

into a previous Bayesian method that integrates surname and geocoded information to

better impute self-reported race/ethnicity. We validate this approach with data from

1,921,133 enrollees of a national health plan. Overall, the new approach correlated highly

with self-reported race-ethnicity (0.76), which is 19% more efficient than its predecessor

(and 41% and 108% more efficient than single-source surname and address methods,

respectively, P \ 0.05 for all). The new approach has an overall concordance statistic (area

under the Receiver Operating Curve or ROC) of 0.93. The largest improvements were in

areas where prior performance was weakest (for Blacks and Asians). The new Census

surname list accounts for about three-fourths of the variance explained in the new esti-

mates. Imputing Native American and multiracial identities from surname and residence

remains challenging.
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1 Introduction

Efforts to measure racial/ethnic disparities in health care have been frustrated by limited

availability of racial/ethnic data, particularly for enrollees of commercial health plans

(Elliott et al. 2008b; Fremont and Lurie 2004). Collection of such data has proceeded

slowly despite recommendations by the Institute of Medicine and the National Academy of

Sciences that self-reported race/ethnicity data be voluntarily obtained from individuals

(Institute of Medicine 2002; National Research Council 2004). Efforts to collect such data

by self-report are under way in several states: Massachusetts health care reform legislation

now requires collection of race/ethnicity from all hospitalized patients (Boston Public

Health Commission 2006); California SB 853 and related regulations now require HMO

plans to collect race/ethnicity information (California State Senate 2007). Plans partici-

pating in the National Health Plan Collaborative (NHPC) to Improve Quality and Elimi-

nate Disparities also voluntarily collect their enrollees’ self-reported race/ethnicity

(National Health Plan Collaborative 2006). However, even plans that have made major

efforts to collect such self-reported data over a period of several years report that it is

challenging to obtain self-reported information on more than about a third of enrollees.

1.1 Surname and geocoding approaches

The absence of such data has spurred development of methods to estimate an individual’s

race/ethnicity indirectly from other sources. Two such methods are geocoding and surname

analysis.

Geocoding links an individual’s address to a census measure of their neighborhood’s

racial/ethnic population makeup and uses that measure as a basis for inferring the indi-

vidual’s race/ethnicity. Blacks are racially concentrated in many neighborhoods around the

country (Fremont et al. 2005); in those areas, geocoding alone can be fairly effective in

distinguishing Blacks from Whites. Because Hispanics, Asians, and many Native

Americans tend to live in far less segregated neighborhoods than Blacks (Logan 2001;

Massey and Denton 1989), geocoding alone cannot reliably identify members of these

minority groups. An alternative approach is simply to use the racial/ethnic prevalences

shown in the Census 2000 SF1 block group data as the probabilities of an individual

belonging to each of the major racial/ethnic groups. This latter approach, hereafter

‘‘Geocoding Only (GO),’’ more fully incorporates the available census information than a

‘‘cut point’’ approach and provides information for several multiple racial/ethnic groups

(see Elliott et al. 2008b).

Surname analysis infers race/ethnicity from surnames (last names) that are distinctive to

particular racial/ethnic groups. Initially, surname analysis entailed using dichotomous

dictionaries to identify Hispanics and various Asian nationalities (Abrahamse et al. 1994;

Falkenstein 2002; Kestenbaum et al. 2000; Lauderdale and Kestenbaum 2000; Perkins

1993). Construction of these lists emphasized high specificity (i.e., persons whose sur-

names appear on the list have a high probability of self-reported Hispanic ethnicity or

Asian race, respectively). Although useful, these lists do not fully utilize all the infor-

mation surnames might convey regarding race/ethnicity. First, no distinction is made
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among the more informative and less informative individual surnames on a list. Second,

the lists exclude surnames with only intermediate specificity, which still distinguish race/

ethnicity far better than chance.

1.2 Previous hybrid approaches

Both GO and surname analysis methods used alone have notable limitations: standard

surnames lists cannot distinguish Blacks from non-Hispanic Whites; geocoding is of

limited use in identifying Hispanics or Asians. Hybrid methods designed to combine both

methods, such as the Categorical Surname and Geocoding approach (CSG) (Fiscella and

Fremont 2006), can distinguish Blacks, Asians, and Hispanics from non-Hispanic Whites.

A subsequent Bayesian hybrid (Elliott et al. 2008b), the Bayesian Surname and Geocoding
method (BSG), made substantial improvements on the CSG, yielding 21% more efficient

use of data (121% the relative efficiency of CSG) for identifying individual race/ethnicity

than CSG (with the greatest gains for Blacks) and 74% more efficient use than geocoding

only (GO), where relative efficiency is defined as the average ratio of squared correlations

between estimated and self-reported racial/ethnic indicators.

The Bayesian approach is analogized from medical diagnostic testing, where the

(posterior) probability of having a disease depends upon (1) an individual’s ‘‘prior’’

probability of having the disease (e.g., the base rate for the individual’s risk group) and (2)

the outcome of a diagnostic test. Bayes’ Theorem updates prior probabilities with test

results by considering the sensitivity and specificity of the diagnostic test to produce an

updated (posterior) probability, the positive predictive value.

More general forms of Bayes’ Theorem allow for tests with more than two outcomes.

The BSG approach treated the racial/ethnic distribution of the Census 2000 block group

where an individual lives as a four-category prior (either Hispanic, African-American,

Asian, or non-Hispanic White/Other). It then used (1) the combined results of the Census

Bureau Spanish Surname List and the Lauderdale-Kestenbaum Asian Surname List as a

diagnostic test with three possible outcomes (surname appears on Asian list regardless of

appearance on Spanish Surname list, surname appears on Spanish but not Asian list,

surname appears on neither surname list); and (2) the sensitivity and specificity of these

lists to update the prior probabilities of membership in each of the four racial/ethnic

categories. This results in a final (posterior) set of four probabilities of membership in the

four racial/ethnic groups for each individual.

1.3 An improved surname list and an improved Bayesian approach

In 2007, the U.S. Census Bureau released a national tabulation of unprecedented detail,

showing surnames classified by self-reported race/ethnicity, based on almost 270 million

individuals with valid surnames enumerated on Census 2000 (see Word et al. (2008) for a

description and http://www.census.gov/genealogy/www/freqnames2k.html for a machine-

readable Excel file of data). Of six million unique surnames, just 275 accounted for 26% of

all individuals; conversely, fully 5 million other surnames each were listed by four or

fewer individuals. The 151,671 surnames listed by 100 or more individuals, along with

each surname’s self-reported racial/ethnic distribution, are publicly available and represent

89.8% of all individuals enumerated on Census 2000. In accordance with Office of

Management and Budget standards (U.S. Office of Management of Budget 1997), the

Census elicits a respondent’s Hispanic ethnicity, then asks the respondent to self-identify
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with one or more of the following six races: White, Black, American Indian/Alaska Native

(AI/AN), Asian, Native Hawaiian/Other Pacific Islander (PI), and Some Other Race.

‘‘Some Other Race’’ is endorsed by about 7% of individuals, primarily individuals of

Hispanic ethnicity (U.S. Office of Management of Budget 1997) seeking to indicate

national origin. Word et al. (2008) used standard Census procedures (Schenker and Parker

2003) to delete and reimpute race for these individuals; classified all of those who endorsed

Hispanic ethnicity as Hispanic; combined Asian and Pacific Islander categories; and

classified non-Hispanic individuals who chose more than one race (after these prior steps)

as ‘‘multiracial.’’ Thus, for each surname with 100 or more occurrences nationally, the

publicly available tabulation shows the frequency of occurrence in each of six mutually

exclusive categories—(1) Hispanic, (2) White, (3) Black, (4) Asian and Pacific Islander

(API), (5) American Indian/Alaska Native (AL/AN), and (6) Multiracial. To preserve

confidentiality, exact counts for specific racial/ethnic groups were suppressed for a given

surname when any of these six categories had fewer than five occurrences; and when only a

single category had fewer than five occurrences for a given surname, its count and the

category with the second fewest occurrences were suppressed.

We incorporated this additional information into the general framework of the previous

Bayesian algorithm in a new approach, referred to hereafter as the Bayesian Improved
Surname Geocoding method (BISG). Our focus below is a comparison of the accuracy of

this newly updated Bayesian approach to that of the earlier Bayesian approach (BSG). We

also compare the new method’s accuracy to that of geocoding only (GO) and the new

surname list only (NSO) in order to distinguish the value of the enhanced surname list from

other sources of information for inferring race/ethnicity.

2 Method

Table 1 provides an overview of the methods reviewed in this paper.

The new BISG method relies on new data combined with Bayesian methods for

inferring race/ethnicity. We describe the data, then our methods for determining race/

ethnicity, and finally our method for assessing the accuracy of BISG relative to the earlier

alternatives.

Table 1 Summary of four methods compared (GO, NSO, BSG, BISG)

Method Prior probabilities Test/updating of probabilities Output

GO 4-category census block group
race/ethnicity proportions

None 4-category
probability of
race/ethnicity

NSO 6-category race/ethnicity
proportions from surname
(new census list)

None 6-category
probability of
race/ethnicity

BSG 4-category census block group
race/ethnicity proportions

Membership on older Spanish and Asian
surname lists uses as test for Bayesian
updating

4-category
probability of
race/ethnicity

BISG 6-category race/ethnicity
proportions from surname
(new census list)

6-category census block group race/ethnicity
proportions relative to U.S. as a whole used
as ‘‘test’’ for updating

6-category
probability of
race/ethnicity
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2.1 Data for validation

We used 2006 national enrollment data from Aetna, a large national health plan. The data

set consists of self-reported race/ethnicity, surname, address of residence, and gender for

the 1,921,133 enrollees who voluntarily provided this information to the plan for quality

monitoring and improvement purposes (30% of all enrollees). Surname and address (linked

to block groups in the US 2000 Census SF1 file) were used as inputs in the estimation

algorithms. Self-reported race/ethnicity was used only to evaluate the algorithms’ per-

formance after they had estimated the race/ethnicity of individuals.

While voluntarily reported race/ethnicity was predominantly non-Hispanic White

(77.0%), the data set included a reasonable distribution of Hispanics (9.2%), Blacks

(8.2%), and Asians/Pacific Islanders (5.1%), with 0.3% American Indian/Alaska Native

(AI/AN) and 0.2% multiracial; 51.2% were female. As is typical of commercially insured

populations, Hispanics and Blacks were somewhat underrepresented, and Asians and

Whites somewhat overrepresented, relative to the U.S. population as a whole. This project

was reviewed by the RAND IRB and all data disclosed to the authors by health plans were

in compliance with HIPAA regulations.

2.2 Implementation of the BISG

2.2.1 Refinement of new surname probabilities

The new surname list has limitations: (1) the suppression of exact counts for surnames with

infrequent occurrences in some groups and (2) the omission of surnames with fewer than

100 occurrences.

When a surname had more than 100 occurrences but fewer than five of them fell in at

least one racial/ethnic category, exact counts were unavailable for k = 2–5 racial/ethnic

categories for a given surname, but both k and n, the sum of the occurrences in the missing

categories, were known (because total occurrences for the surname are provided).1 We

imputed the suppressed counts for the missing cells as n/k in such instances.2 This resulted

in a vector of six predicted probabilities for each of 151,671 names with 100 or more

occurrences, covering 89.8% of the general U.S. population (and 89.4% of our sample

population).

In order to infer the race/ethnicity of the one-tenth of the population with unlisted names

(i.e., names with fewer than 100 total occurrences), we subtracted the racial/ethnic counts for

listed surnames (i.e., names with 100 or more occurrences) on the US Census List from

racial/ethnic counts calculated from 2000 Census SF1 counts for all individuals.3 The

remaining counts in each racial/ethnic category describe the racial/ethnic distribution of the

‘‘unlisted name’’ population (i.e., all persons with surnames occurring fewer than 100 times

each on Census 2000): 70.5% White, 11.1% Hispanic, 11.3% Black, 7.0% API, 0.8%

multiracial, and 0.9% AI/AN (Jirousek and Preucil 1995). This distribution compares to

69.5% White, 12.5% Hispanic, 12.2% Black, 3.8% API, 1.2% multiracial, and 0.7% AI/AN

1 The specific counts that were suppressed were also known.
2 Exploratory analyses (not shown) demonstrated better overall predictive performance with this approach
than with several alternatives we considered.
3 Because the 2000 Census SF1 file includes an ‘‘other race’’ category not used in the Census surname list,
we reassigned responses at the level of the block group using Iterative Proportional Fitting (Jirousek and
Preucil 1995), an approach similar to that used by Word et al. (2008).
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for the overall Census 2000 population. Thus, those with low-frequency names (\100

occurrences) correspond closely to the entire US population, with the exception that they

were more likely to be Asians or Pacific Islanders.

2.2.2 BISG Bayesian updating formulas

We then used the vectors of six racial/ethnic probabilities for each listed surname (cor-

rected for suppression and for low-frequency surnames as described above) as input to the

new BISG algorithm. This algorithm updates these ‘‘prior probabilities’’ with geocoded

block group proportions for these same six groups from the (reassigned) 2000 Census SF1

file to generate posterior probabilities. The Bayesian calculations are as follows:

Let J equal 151,672, the number of names on the enhanced surname list plus one to

account for names not on the list and let K equal 208,125, the number of block groups in

the 2000 census with any population. We define the prior probability of a person’s race on

the basis of surname,4 so that for a person with surname j = 1,…, J on the list, the prior

probability for race, i = 1,…,6, is p(i|j) = proportion of all people with surname j who

report being of race i in the enhanced surname file (the probability of a selected race given
surname).

We then update this probability on the basis of Census block group residence. For block

group k = 1,…,K, r(k|i) = proportion of all people in redistributed SF1 file who self report

being race i who reside in Census Block Group k (the probability of a selected Block Group
of residence given race/ethnicity).

We require an assumption that the probability of residing in a given Block Group, given

a person’s race, does not vary by surname.

Let u(i, j, k) = p(i|j) 9 r(k|i) then q(i|j, k), the updated (posterior) probability of being

of race/ethnicity i given surname j and census block group of residence k, can be calculated

as follows, according to Bayes’ Theorem and the above assumption.

q ijj; kð Þ ¼ u i; j; kð Þ
u 1; j; kð Þ þ u 2; j; kð Þ þ u 3; j; kð Þ þ u 4; j; kð Þ þ u 5; j; kð Þ þ u 6; j; kð Þ

Note that all parameters needed for BISG posterior probabilities are derived only from

Census 2000 data, and that none are derived from health plan data or other administrative

sources. As such, BISG performance estimates in predicting race/ethnicity within health

plans do not reflect overfitting and are not subject to ‘‘shrinkage’’ in applications to other

data sets.

2.3 Summary comparison of the four algorithms

Next, we compare the performance of BISG, BSG, GO, and NSO. Table 1 compares these

four approaches in terms of their inputs, updating, and outputs. Because BSG and GO

produce a vector of four probabilities (Hispanic, Black, API, and White/Other), our pri-

mary comparisons combine three of the six categories from NSO and BISG (AI/AN,

multiracial, and White) into a single White/Other category for comparability with GO and

BSG. Secondary analyses for NSO and BISG employ the full six categories, noting that

performance differs only among the three categories subject to this recoding.

4 We present the results treating surname information as the prior that is updated by the geocoded infor-
mation; however, we would obtain the same results if we treated the geocoded information as the prior and
updated with the surname data.
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2.4 Evaluation

We compare the four approaches in terms of how closely the estimates of race/ethnicity

that they produce match those derived from self-reported race/ethnicity information for the

same individuals using the Aetna validation data. We describe a performance metric

applicable to all four approaches. We then compare the relative efficiency of the four

methods according to this metric—accuracy of predicting individual race/ethnicity—the

extent to which those assigned higher probabilities of a given race/ethnicity are more likely

to self-report that race/ethnicity.

Following Elliott et al. (2008b), we define the efficiency of prediction for a given racial/

ethnic category as the squared correlation between the predicted probability for a given

racial/ethnic category and the corresponding dichotomous indicator of true self-reported

race/ethnicity in the Aetna data (Black/not Black, Asian/not Asian, etc.).5 For each method,

we summarize performance across all four racial/ethnic categories with the average of

the six squared correlations weighted by the prevalence on each racial/ethnic group.

McCaffrey and Elliott (2008) establish that the efficiency of an analysis that directly uses

predicted racial/ethnic probabilities rather than true race/ethnicity indicators to estimate

racial/ethnic disparities on an outcome of interest in a regression model is well approxi-

mated by the above definition of efficiency (the squared correlation between estimated and

true race/ethnicity).6 Hence, we use the ratio of squared correlations for pairs of methods to

measure their relative efficiency in predicting each individual racial/ethnic category. We

summarize the overall performance through a weighted average of the six squared cor-

relations for individual racial/ethnic groups, weighting by the self-reported population

proportions. To say that method A has a relative efficiency of 300% when compared to

method B means that the accuracy of an analysis testing for difference in an outcome of

interest among racial/ethnic groups using method A with a sample of a given size is the

same as what would be obtained with three times the sample size using method B. In this

instance, we would also say that method A is (300–100%) = 200% more efficient than

method B.

We provide additional information about the performance of the BISG. First, we show

the distribution of BISG predicted probabilities for our 2006 Aetna data. Second, we

analyze BISG correlation with self-reported race/ethnicity separately by gender. Finally,

we calculate the concordance statistic (Hanley and McNeil 1982), or area under the curve,

to summarize the BISG’s performance with the Aetna data.

3 Results

3.1 Predicting individual race/ethnicity: comparing BISG, BSG, NSO, and GO

Table 2 displays the correlation of predicted race/ethnicity with self-reported race/ethnicity

for each of the four methods and four racial/ethnic groups in the primary data set. All

reported correlations are statistically significant and differ across methods at P \ 0.05.

5 Because the racial/ethnic categories are mutually exclusive, estimates for the groups are negatively
correlated.
6 A squared correlation of 0.49 between estimated race/ethnicity and self-reported implies approximately
49% efficiency relative to known race/ethnicity for estimating a disparity between two racial/ethnic groups
under the assumptions in that paper.
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BISG predictions correlate with individual indicators of race/ethnicity at 0.70–0.82, with a

weighted average correlation of 0.76. This represents an increase in efficiency over BSG

that averages 19% (119% the relative efficiency of BSG), ranging from 4% for Hispanics

to 25% for Asians and 27% for Blacks. Notably, the biggest improvement was where BSG

was weakest (Blacks) and the smallest improvement was where BSG was strongest

(Hispanics). BISG thus not only improved the performance of the BSG, but also made

performance less disparate across racial/ethnic groups, although performance is still

highest for Hispanics (0.82 correlation with self-report) and lowest for Blacks (0.70 cor-

relation with self-report).

Overall, BISG is 108% more efficient than GO and 41% more efficient than NSO,

suggesting a larger role for the new surnames than for census block group of residence. As

expected, since it combines the two sources of information, BISG exceeds the predictive

power of both NSO and GO for each racial/ethnic group, with NSO coming fairly close for

Hispanic and Asian individuals. Table 3 partitions the total predictive power of BISG

(variance of dichotomous self-reported indicators explained) into three sources—jointly

determined by residential location (GO) and surnames (NSO), unique to location, and

unique to surnames, using squared correlations from the GO, NSO, and BISG models.

If a, b, and c are the correlations of GO, NSO, and BISG with self-report, respectively,

(c2 - b2)/c2 represents the proportion of the squared BISG variance uniquely explained by

GO, (c2 - a2)/c2 represents the proportion uniquely explained by NSO, and (a2 ? b2 -

c2)/c2 represents the proportion jointly explained.

As can be seen, half of the total predictive power of BISG is unique to surnames (using

the new surname list), about a quarter is unique to location, and about a quarter is jointly

determined (could have been identified by either surname or residential location). As

expected, these proportions vary strongly by race/ethnicity, with surnames alone respon-

sible for 81% of BISG’s predictive power for Asians and 64% of BISG’s predictive power

for Hispanics, but only 33% of BISG’s predictive power for Blacks.

Table 2 Correlation of individual predicted race/ethnicity with self-reported race/ethnicity (n = 1,921,133)

Correlation with self-reported race/ethnicity Weighted average

Hispanic Asian Black White/Other

BISG 0.82 0.77 0.70 0.76 0.76

BSG 0.80 0.69 0.62 0.72 0.70

GO 0.49 0.34 0.57 0.55 0.53

NSO 0.79 0.74 0.40 0.64 0.64

All differences in correlations by methods are significant at P \ 0.05

Table 3 Proportion of BISG information explained by new surnames, geocoding (n = 1,921,133)

Proportion of BISG information explained Weighted average

Hispanic Asian Black White/Other

Jointly determined 0.31 0.13 0.01 0.23 0.24

Unique to GO 0.05 0.07 0.66 0.29 0.26

Unique to NSO 0.64 0.81 0.33 0.48 0.50
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Table 4 is similar to Table 2, but breaks down White/Other into White, AI/AN, and

multiracial; it also is restricted to BISG and NSO, the only methods applicable to six-

category race/ethnicity. By definition, performance is unchanged for Hispanic, Asian, and

Black individuals. Performance for Whites here is essentially the same as for Whites/

Others in the four-category predictions. Although correlations exceed chance (P \ 0.05 in

all cases), BISG prediction of AI/AN is poor (correlation of 0.11 with self-report) and

BISG prediction of multiracial is very poor (correlation of 0.01 with self-report).

3.2 Predicting individual race/ethnicity: additional evaluation of BISG

Table 5 shows the distribution of BISG probabilities for the six racial/ethnic categories in

the Aetna data. BISG probabilities of Hispanic, Asian, and Black have a bimodal distri-

bution, with 83.1–93.0% of probabilities below 0.05 and 2.5–2.9% of probabilities 0.90 or

higher. BISG probabilities of White have a bimodal distribution that roughly mirrors that

of these three groups with 68.3% of probabilities 0.90 or higher and 11.2% of probabilities

from 0.05 to 0.20. Less than 0.1% of cases have BISG probabilities of AI/AN or Multi-

racial exceeding 0.05.

Table 6 summarizes correlation of BISG predictions with self-reported race/ethnicity by

gender. For Hispanic and Asian categories, where surname lists are most important (see

Table 3), performance for males is moderately higher than for females, with relative

efficiencies that are 13% and 11% higher, respectively. Higher performance for males is

Table 4 Correlation of individual predicted race/ethnicity with self-reported race/ethnicity (n = 1,921,133)

Hispanic Asian Black AI/AN Multiracial White Weighted average

BISG 0.82 0.77 0.70 0.11 0.02 0.76 0.75

NSO 0.79 0.74 0.40 0.08 0.01 0.64 0.64

All differences in correlations by methods are significant at P \ 0.05

Table 5 Percentage of individuals with specified BISG probabilities, for each of the six predicted racial/
ethnic categories

Bayesian probability Hispanic Asian Black AI/AN Multiracial White

0 to \0.05 87.9 93.0 83.1 100.0 100.0 4.3

0.05 to \0.20 2.5 2.6 8.6 0.0 0.0 11.2

0.20 to \0.50 0.9 0.7 2.6 0.0 0.0 3.6

0.50 to \0.90 6.2 0.7 2.9 0.0 0.0 12.6

0.90 to 1 2.5 2.9 2.8 0.0 0.0 68.3

Table 6 Correlations of BISG predictions with self-report, by gender

Gender Hispanic Asian Black AI/AN Multiracial White Weighted by
self-reported frequency

Males 0.84 0.78 0.68 0.11 0.02 0.77 0.77

Females 0.79 0.74 0.71 0.09 0.02 0.74 0.75

M-F 0.05 0.04 -0.03 0.02 0.00 0.03 0.02

All differences in correlations by methods are significant at P \ 0.05 except for multiracial
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more modest for Whites and AI/AN; no gender differences are observed by Multiracial;

and for Black, probabilities correspond better to self-report for females than for males.

Weighting across all categories by self-report, correlations with self-report are slightly

higher for males (0.77) than for females (0.75).

Concordance statistics represent the probability that a randomly selected observation

self-reporting a given race/ethnicity would have a higher BISG probability of that race/

ethnicity than a randomly selected observation not self-reporting that same race/ethnicity.

The concordance statistics were 0.95 for Hispanic, 0.94 for API, 0.93 for Black and White,

0.77 for multiracial, and 0.61 for AI/AN, yielding a weighted average of 0.93 concordance.

Concordance statistics represent the area under a Receiver Operating Characteristic (ROC)

curve and, when multiplied by two with one subtracted, are equivalent to the Gini coef-

ficient (Hand and Till 2001), which runs from 0 at chance performance to 1 at perfect

prediction. The Gini coefficient for Hispanic predictions is thus 0.95 * 2 - 1 = 0.90, i.e.,

90% of the way between chance and perfect performance.

4 Discussion

We have described an improved Bayesian method (the Bayesian Improved Surname

Geocoding approach, BISG) for estimating race/ethnicity using a new surname list derived

from Census 2000. Applying the Bayes’ Theorem to geocoding and surname analysis

proves to be an effective means of integrating these two sources of information and

substantially improves a previous Bayesian approach (BSG). The BISG discriminates

Hispanics, API, Blacks, and Whites well, with concordance statistics of 0.93 or greater for

each of these groups.

The advantage of BISG over BSG stems from the use of a surname list of continuous,

rather than dichotomous, probabilities. Performance is slightly higher for males than for

females for the two categories most reliant on surnames- Hispanic and Asian, which likely

reflects more females than males acquiring new surnames less typical of their own race/

ethnicity at marriage.

Somewhat surprisingly, the new surname list afforded substantial improvements in the

identification of Blacks and non-Hispanic Whites (groups that generally lack distinctive

surnames). Among Blacks, there are several common surnames with more than a 50%

probability of belonging to Blacks, at rates far above the national prevalence of Blacks;

these include Washington (90% Black), Jefferson (75%), Banks (54%), and Jackson (53%)

(Word et al. 2008). While these surnames contain substantial information about race, they

lack the specificity to make a traditional dichotomous surname list useful. In contrast, there

are many surnames (including Yoder, Krueger, Mueller, Koch, Schwartz, and Novak) that

are highly specific to Whites, with more than a 97% chance of indicating non-Hispanic

White race/ethnicity (Word et al. 2008). Unfortunately, each of these highly specific White

surnames is very uncommon, and together they represent but a miniscule fraction of self-

identifying non-Hispanic Whites, so a dichotomous surname list would be insufficiently

sensitive. An important contribution of the new Census surname list (and of the BISG) is

the ability to capture more information from surnames than dichotomous lists allow.

Identifying AI/AN from surname and residence remains difficult at the national level.

Surnames contribute almost no information; the most predictive AI/AN surname is

Lowery, which indicates only a 4% chance of being AI/AN (Word et al. 2008). Residential

location would be highly informative for AI/AN living in several Native American res-

ervation areas in the southwest (Elliott et al. 2008a) but generally uninformative for the
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majority of community-dwelling AI/AN when the focus is national. Predicting multiracial

endorsement from address and surnames is not currently feasible. While a few names

indicate a 15–18% chance of self-identifying as multiracial (e.g., Ali, Khan, and Singh;

(Word et al. 2008), such names constitute only a miniscule proportion of those who

identify as multiracial.

Beyond its ability to estimate race/ethnicity, the BISG approach has substantial

potential for the design and evaluation of interventions to reduce racial/ethnic disparities.

Health plans and others could target an intervention at those most likely to belong to a

given race/ethnicity, setting the probability threshold at whatever level resources allow.

For example, consider a hypothetical intervention aimed at addressing Black-White health

disparities among a health plan’s members. One could sort members by the predicted

probability of being Black and target the 1,000 individuals with the highest probability of

being Black; or identify all members whose predicted probability of being Black exceeds

70%. Furthermore, one could proceed the same way within a subset of members (e.g.,

known diabetics); or to measure disparities in health and health care within a health plan or

hospital, tracking trends over time. As noted by Elliott et al. (2008b), it can also be used

when estimated race/ethnicity is to be a predictor in multivariate regression for covariate-

adjusted measurement of the association of race/ethnicity with any number of outcomes.

One limitation common to all methods of inferring race/ethnicity is that BISG requires

somewhat larger sample sizes to estimate disparities than is required with self-reported

race/ethnicity, as there is some inherent loss of information relative to a sample of the same

size. As a heuristic, imputed race/ethnicity will require about 1/r2 times the sample size as

would self-reported data for the same accuracy, where r is the correlation of imputed race/

ethnicity with self-report, so that BISG requires sample sizes 1.73 times as large as self-

report for the same accuracy, given an average r = 0.76.

The loss of information from modeling with predicted rather than self-reported race/

ethnicity need not result in bias, even though it must result in loss in precision when

compared to self-reported racial/ethnic data for the same sample size. For instance, with

linear models for the outcomes, modeling with the probabilities of race/ethnicity can yield

unbiased estimates of model coefficients, provided the probabilities are unbiased

(McCaffrey and Elliott 2008). For nonlinear models, consistent estimates can be obtained

by maximum likelihood conditional on the probabilities of racial/ethnic group member-

ships. Using the probabilities of racial/ethnic group membership to classify individuals into

groups and using these classifications for analyses would result in loss of efficiency and

biased estimates because of classification errors; such an analytic approach should be

avoided.

Although we used data from a large national plan with a diverse membership, results

may differ somewhat for those who lack health insurance, are insured by other commercial

plans, or are disinclined to report race/ethnicity. To address this concern in part, Table 7

provides a correction equation, based on a multinomial logistic regression (not shown), that

accounts for the selection into health insurance observed for this particular national plan.

This correction requires the assumption that those who did self-report their race/ethnicity

to the plan so far do not differ in race/ethnicity from nonresponders with the same sur-

names and residential Block Group. As an example, respondent with uncorrected proba-

bilities of 0.923 White, 0.026 Hispanic, 0.018 API, 0.017 Black, 0.015 Multiracial, and

0.001 AI/AN would be updated by Table 5 to values of 0.944 White, 0.015 Hispanic, 0.013

API, 0.024 Black, 0.001 Multiracial, and 0.003 AI/AN. These corrected probabilities

recalibrate for the ways in which the observed distribution of self-reported race/ethnicity

differ from the overall US population with similar surnames and residential addresses.
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If the above assumption holds more strongly than an alternative assumption that health

insurance coverage does not differ by race/ethnicity among those with the same surnames

and residential block group, corrected estimates may be preferable to uncorrected esti-

mates. If the reverse is true, uncorrected estimates may be preferable. Analyses not shown

suggest that corrected and uncorrected estimates are very similar in terms of their corre-

lation with true race/ethnicity (more important for estimating disparities). This is the only

equation presented in this paper that is fit to our validation data; as such, the extent to

which it generalizes to selection into other commercial health insurance is unknown. When

working with a different health plan, one might either apply the Table 7 coefficients (under

the assumption that similar patterns of selection into commercial health insurance occur in

other national plans) or use multinomial logistic regression to calibrate a selection cor-

rection to that plan’s self-reported distribution. Future applications to additional health

plans will reveal the extent to which patterns of selection are similar across plans.

Our approach requires an assumption that the probability of residing in a given Block

Group, given a person’s race, does not vary by surname. While one might not expect

surnames to vary substantially within race by block group, confidentiality requirements

preclude testing this assumption with publicly available data. The dominance of the

intended terms in the multinomial logit shown in boldface in Table 7, as well as additional

models not shown (which show that unadjusted and multinomial logit adjusted predictions

have extremely similar correlations with self-report), provides indirect evidence that this

assumption is reasonably satisfied.

While direct use of predicted probabilities is somewhat more complex than using

categorical racial/ethnic indicators, Elliott et al. (2008b) provide examples and sample

SAS code of how this can be done with BSG, BISG, or other methods that generate

predicted probabilities of race/ethnicity. On the other hand, a notable strength of the

(simple) BISG is its extreme parsimony and use of readily available data sources. The

BISG derives all of its parameters from publicly available Census Bureau data, and the

predictive performance illustrated here does not use the validation data to estimate any

aspect of the standard BISG predictions. Moreover, the means of combining surname and

address information comes directly from Bayes’ Theorem, not from fitting to validation

data. As such, BISG is not subject to overfitting or shrinkage, as empirically based

regression approaches are.

Despite their improvement in accuracy, indirect methods such as BISG cannot replace

the information gained from self-reported data. However, they are fast and not resource

intensive. Given the multi-year time horizon for health plans (and others) to collect enough

information to be actionable, and the strong desire of health plans and others to take action

to address racial/ethnic disparities in care, such methods can serve as a bridge until the time

when adequate self-reported data are available. Furthermore, when estimating mean values

or differences in health measures, self-reported and indirectly estimated racial/ethnic

indicators can be combined where both exist in order to smoothly bridge the transition to

more complete self-reported data. This could be done in several ways. First, estimates

using self-reported and indirect methods could be combined via composite estimation to

minimize mean-squared error in the estimates of health measures (see Elliott and Haviland

2007; Ghosh-Dastidar et al. in press). Second, if errors in estimating race/ethnicity are

uncorrelated with the health measures, one could integrate self-reported racial/ethnic

indicators (as ‘‘1’’s and ‘‘0’’s) and indirectly estimated probabilities into a single equation,

with a relative efficiency of z = p ? (1 - p)r2 when compared to a fully self-reported

sample of the same size (where r is the correlation of indirect estimates of race/ethnicity

with self-report and p is the proportion of observations for which self-report is available).
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We anticipate that new developments will allow even further improvements to this

general approach. The use of first name listings may improve prediction estimates, par-

ticularly for Blacks, and some Asian subgroups (Morrison et al. 2001), although first names

tend to be low in sensitivity. Similarly, future efforts may incorporate American Com-

munity Survey estimates to capture more recent demographic information.

Surname analysis and geo-coding offer health services researchers, demographers,

health plans, and other stakeholders powerful new ways to identify race/ethnicity from

administrative records. BISG extends the power of these methods to a variety of potential

applications—for example, to disparities in the work place or access to and enrollment in

public programs. Finally, because this information already has geographic links, geo-

graphic information systems (GIS) open the door to still greater insights.
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