
10
TH

 INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’08

11 – 12 NOVEMBER 2008, STOCKHOLM, SWEDEN

USING THE DESIGN-STRUCTURE-MATRIX FOR THE

AVOIDANCE OF UNNECESSARY ITERATIONS
J. Roelofsen1, H. Krehmer2, U. Lindemann1 and H. Meerkamm2
1 Institute of Product Development, TU München
2 Chair of Engineering Design, University Erlangen-Nürnberg

Keywords: avoidance of iterations, classification of iterations, design situation, development process

1 INTRODUCTION

Due to the growing application of electrical, software-based and electronic components in technical

systems the complexity in these systems and their development steadily increases. The participation of

many different domains such as mechanical engineering, automatic control engineering, software

design, electrical engineering, and information technology adds up to this challenge. Due to the often

unclear definition of interfaces between the different development partners and the increasing

complexity, a strong risk of unnecessary iterations during the development of those systems arises.

This points out the demand for an approach to avoid unnecessary and unwanted iterations in product

development processes. Those are iterations, which have no contribution to an increasing degree of

product maturity and thus are to be recognised as time-consuming and cost-intensive detours. The aim

of this contribution is to use the Design-Structure-Matrix as a tool for the preventive avoidance of

those kinds of iterations.

2 APPROACH TOWARDS THE AVOIDANCE OF UNNECESSARY

ITERATIONS

To be able to avoid unnecessary iterations and to distinguish the useful from the unwanted ones, it is

required to define criterions, which denote iterations as unnecessary or as advantageous. Therefore it is

necessary to classify the iterations regarding their possible causes and their influences on the

development process.

2.1 Classification of iterations
In prior work an “approach on the control of iterations in the multidisciplinary development of

technical systems” was presented [1]. This approach is based on a classification of iterations

depending on research for the causes and influences of different kinds of iterations. It identifies two

classes of iterations, the so called class of “large iteration” and the class of “small iteration”. Another

classification of iterations is presented in [2]. This classification identifies six different kinds of

iterations: “Exploration”, “Convergence”, “Refinement”, “Rework”, “Negotiation” and “Repetition”.

In the following chapter the six kinds of iterations according to Wynn [2] will be integrated into the

framework of the two classes of “large” and “small” iterations.

Small iteration

According to [1] the class of “small iteration” can be understood as a quantitative approximation

towards the optimal solution. This means, the developer has to approach iteratively through several

partial steps, which becomes necessary because often the solution cannot be found in one step due to

the complexity of modern technical systems. This small iteration is necessary for engineering design

and has to be supported. Four of the six kinds of iterations according to [2] can be integrated into this

class of “small iteration”:

“Exploration” according to [2] means an “iterative exploration of problem and solution spaces” which

is determined by a “repeated process of space divergence” in synthesis followed by convergence in

evaluation. This can be understood as the constant alternation from synthesis to analysis and vice

versa. “Convergence” according to [2] is the iterative approach towards a “satisficing design”, which

gets necessary because of the fact that a solution can not be found in one step [2].

“Refinement” is the third kind of iteration according to [2], which can be seen as a part of the class of

“small iteration” according to [1] and means the “further refinement to enhance secondary

209

characteristics”, in cases where the product meets its primary requirements. “Convergence” has to

precede “Refinement”, because the solution first has to approach (converge) the optimal solution, not

till then it is possible to refine this solution.

The fourth and last kind of iteration according to [2] which can be seen as part of the class of “small

iteration” is the “negotiation”. This means, that there are for example developers of different

disciplines that are contributing together to achieve an acceptable solution in spite of competing goals.

These four kinds of iterations according to [2] have in common, that they are helpful and absolutely

necessary in engineering design. So, all kinds of “small iterations” are to be supported during the

development of technical systems.

Large iteration

Triggers for this class of iteration for example can be a change in the information basis, unclear

requirements in the beginning of the process, a completion of the data basis by new cognitions

regarding the total system. This means, that the development process must be run through again, so

this class of iteration causes a return to the beginning of the product development process, why it is

called the class of “large iteration” [1].

The iteration called “Rework” according to [2] is an equivalent to the class of “large iteration” and

means that some “tasks may require rework in response to problems that emerge as analysis is

conducted”. Rework of one or less process steps can be seen as convergence.

The kind of iteration called “Repetition” can be seen as an outlier, which cannot be classified as

“small” or “large” iteration: In different phases of the process some (same) design activities are

conducted to achieve different goals. This is different from all the other kinds of iterations: In the other

kinds different activities are conducted repeatedly to achieve the same goals.

2.2 Design-Structure-Matrix for preventive avoidance of unnecessary iterations

After the classification of different kinds of iterations the approach towards optimised process

planning supported by a DSM will be introduced. It is the goal of this approach to prevent large and

unnecessary iterations and to identify potential support for the small ones. By conducting small

iterations as early as possible and preventing late time consuming large iterations an optimal result is

promoted and knowledge is generated as soon as possible. Moreover support for the selection of

development methods shall be provided later on in the research project. The approach will be

described using part of an exemplary development process. In this process the basic steps that have to

be carried out in order to generate the product concept are defined, but the sequence in which to carry

them out is not determined. The defined sub-steps are: ”Planning energy-supply”, “Planning flow of

energy”, “Planning flow of signals”, “Defining signal processing”, “Defining Energy conversion”,

“Defining geometrical layout”, “Preselecting material”, “Preselecting manufacturing method”, “Rough

dimensioning”, “Subdividing available space”, “Developing software concept”.

These sub-steps have to be arranged that way, that large iterations are prevented and small iterations

are supported. This is done by a DSM. The approach is based on the use of time-based DSM as

described in [4]. In this DSM the influence of the sub-steps on each other is represented according to

the development project on hand. Dependencies result from the dependency of one process step on the

results of another step or from a high demand for communication between different steps. The project

on hand is classified by certain parameters (industrial sector, risk assessment, type of product,

complexity of product). This project classification will be used to address different kinds of project

situations according to which the DSM will be filled differently. In this example the DSM was filled

by a team of experts as an algorithm for automatically filling the DSM is not developed yet. The

different kinds of situations are still to be developed. The suggestion for process planning derived

from this DSM is to start with the most active element as it provides most information for the

following steps. Thus downstream information flow is enabled and upstream information flow

prevented [3], which would result in a large iteration. Another possibility to use this DSM is to analyse

it for clusters and start these clusters as work packages in order to support short iterations by short

communication cycles.

210

1 2 3 4 5 6 7 8 9 10 11 Act ive sum Passive sum Activity Criticality

1 Plan energy-supply x x x x x x x 7 4 1,75 28

2 Plan f low of energy x x x x x 5 6 0,833333333 30

3 Plan f low of signals x x x 3 4 0,75 12

4 Define signal processing x x x x 4 4 1 16

5 Define Energy conversion x x x 3 3 1 9

6 Define geometrical layout x x x x 4 6 0,666666667 24

7 Preselection of material x x x 3 5 0,6 15

8 Rough dimensioning x x x x x 5 3 1,666666667 15

9 Preselection of manufacturing method x x 2 3 0,666666667 6

10 Subdivide available space x x x x x x 6 5 1,2 30

11 Develop software concept x x x 3 2 1,5 6

Passive sum 4 6 4 4 3 6 5 3 3 5 2

Figure 1. DSM displaying the influence of process steps

2.3 Benefits of the approach
This approach is meant to prevent the class of “large iterations” and support “small iterations” and

thus to reduce development time and cost. By planning the sequence of process steps according to

their activity a better downstream information flow is achieved. As the process steps that provide

information for other process steps are carried out first, late changes can be prevented. By conducting

small iterations as soon as possible at least the same knowledge can be generated as by conducting a

large iteration without the disadvantages of the large iteration. By starting clustered process steps at

the same time small iterations can be supported better, as co-work of the different domains is

simplified.

3 CONCLUSION AND OUTLOOK

This contribution introduces a DSM-based approach towards the prevention of iterations in system

design. Next step in enabling this approach will be to generate an algorithm to fill the described DSM

automatically concerning the project situation. Afterwards the concept will be validated at a partner

company affiliated to the research alliance this work stems from.

Acknowledgements

The projects this approach was developed in take place as part of the research alliance ForFlow

consisting of six Bavarian research institutes working on the fields of engineering design and

computer science collaborating with 21 companies that is promoted by the Bayerische

Forschungsstiftung.

REFERENCES
[1] Krehmer, H.; Stöber, C.; Meerkamm, H.: Approach on the control of iterations in the

multidisciplinary development of technical systems. In: Proceedings on the 10th International

Design Conference – DESIGN 2008, D. Marjanović (Ed.), FMENA, Zagreb, 2008.

[2] Wynn, D.; Eckert, C. M.; Clarkson, P. J.: Modelling iteration in engineering design. In:

Proceedings on the International Conference on Engineering Design, ICED´07, Paris, 2007.

[3] Grebici, K.; Goh, Y. M.; McMahon, C.: Uncertainty and risk reduction in engineering design

embodiment process. In: Proceedings on the 10th International Design Conference – DESIGN

2008, D. Marjanović (Ed.), FMENA, Zagreb, 2008.

[4] Browning, T.: Applying the Design Structure matrix to System Decomposition and Integration

Problems: A Review and New Directions. In: IEEE Transactions on Engineering management,

Vol. 47 No. 3, 2001

Contact: J. Roelofsen

Technische Universität München

Institute of Product Development

Boltzmannstraße 15

85748 Garching

Germany

+49 89 289 151 54

+49 89 289 151 44

roelofsen@pe.mw.tum.de

211

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Using the Design-Structure-Matrix for the

Avoidance of Unnecessary Iterations

J. Roelofsen1

H. Krehmer2

U. Lindemann1

H. Meerkamm2

1Institute of Product Development, Technische Universität München
2Chair of Engineering Design, University Erlangen Nürnberg

10th International DSM Conference 2008- 2

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Agenda

� Introduction

� Iterations

� Approach

� Benefits

� Conclusion and Outlook

212

10th International DSM Conference 2008- 3

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Introduction

� increased application of electrical, software-based and electronic

components in technical systems

� participation of many different disciplines

� growing complexity of products and development processes

� unclear definition of interfaces and requirements causes iterations in

development processes, that do not contribute to product maturity

demand to help the designer to prevent time-consuming and

cost-intensive iterations

10th International DSM Conference 2008- 4

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Iterations - Causes and Influences

� causes for iterations

– complexity of products and development processes

– high degree of division of labor (SE, CE)

– lack of communication

– undetermined boundary conditions

– faulty decisions on basis of unclear or uncertain assumptions

� influences of iterations

– extended development period

– difficult traceability of the development process

– less and challenging reuse of existing solutions

– increasing costs

213

10th International DSM Conference 2008- 5

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Classification of Iterations

� Small iteration

– solution cannot be found in one step

iterative approach through several partial steps

(quantitative approximation towards the best solution)

� small iteration is necessary in engineering design and has to be

supported

� Large iteration

– change of requirements / boundary conditions

– unclear requirements in the beginning of the development process

– false assumptions due to unclear or uncertain data basis

– lack of communication

jumping back to prior process steps

repeated passing through the hole development process

10th International DSM Conference 2008- 6

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Kinds of Iterations

Small iterations

– exploration: constant alternation from synthesis to analysis

– convergence: iterative approach towards the best solution

– refinement: further refinement of secondary characteristics
(product meets the requirements)

– negotiation: contributing experts form different discipines

Large iteration

– Rework Process steps need rework to solve problems that
emerge in later process steps

Outlier

– Repetition same design activities are conducted in different
phases to achieve different goals

Source: Wynn, D.; Eckert, C. M.; Clarkson, P. J.: Modelling iteration in engineering design. (ICED´07)

214

10th International DSM Conference 2008- 7

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Approach

� consideration of dependencies between process steps depending on the

design situation

� start with the most active process step to prevent changes in later

process steps

� identify independent process steps

� identify clusters of steps with high communication-demand to start

simultaneously

� communicating the results of one step with its „neighbor“ is simplified

large stepbacks during the development process shall be avoided

� approach shall help to „make things right“ the first time by arranging

process steps sensibly

10th International DSM Conference 2008- 8

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Definition of Design Situation

� parameters:

– type of product (mechanic or mechatronic)

– degree of novelty (new product, development of variants, changes in

existing product)

– product complexity (low, medium, high)

– units produced (single unit, small batch, large batch, mass

production)

– customer (easy to work with – hard to work with)

– development risk (small, medium, high)

215

10th International DSM Conference 2008- 9

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Process Steps to Create a Design Concept

Developing

software

concept

Defining signal

processing

Planning

energy-supply

Defining Energy

conversion

Preselecting

manufacturing

method

Planning

flow of energy

Rough

dimensioning

Defining

geometrical

layout

Planning

flow of signals

Preselecting

material

Subdividing

available space

10th International DSM Conference 2008- 10

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Filling the DSM

� DSM showing the dependencies between the process steps according to

the design situation is filled and analysed

� an example is given for the situation:

– type of product: mechatronic

– degree of novelty: new product

– product complexity: medium

– units produced: small batch

– customer: easy to work with

– development risk: medium

216

10th International DSM Conference 2008- 11

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

DSM

after

triangularization

10th International DSM Conference 2008- 12

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Derived Sequence of Process Steps

Developing

software

concept

Defining signal

processing

Planning

energy-supply

Defining Energy

conversion

Preselecting

manufacturing

method

Planning

flow of energy

Rough

dimensioning

Defining

geometrical

layout

Planning

flow of signals

Preselecting

material
Subdividing

available space

: Cluster to be carried out simultaneously

217

10th International DSM Conference 2008- 13

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Benefits

� Benefits

– designer is supported in the avoidance of preventable and

unnecessary iterations

– knowledge about the technical system is generated as soon as

possible in the development process

– small iterations (as are to be carried out in clustered steps) are

recognized and carried out as soon as possible to prevent major

fallbacks in the development process

– reduction of development time

– reduction of costs

10th International DSM Conference 2008- 14

MANAGE COMPLEX SYSTEMS

FOLLOW THE FLOW OF INFORMATION!

Conclusion and Outlook

� approach to plan development processes according to the design

situation

� next steps:

– validate derived process sequences in a development project

– generate an algorithm that fills the DSM automatically according to

the assessment of the design situation

218

