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The shape of the optimal rod determined in the work meets the condition of mass conservation in relation to 
the reference rod. At the same time, this rod shows a significant increase in resistance to axial force. In the 
examples presented, this increase was 80% and 117%, respectively, for rods with slenderness of 125 and 175. A 
practical benefit from the use of compression rods of the proposed shapes is clearly visible. 

The example presented in this publication shows how great the utility in the structural mechanics can be, resulting 
from the applications of complex analysis (complex numbers). This approach to many problems can find its solutions, 
while they are lacking in the real numbers domains. What is more, although these are operations on complex numbers, 
these solutions have often their real representations, as the numerical example shows. 

There are too few applications of complex numbers in the technique and science, therefore it is obvious that 
the use of complex analysis should have an increasing range.  

One of the first people to use complex numbers was Girolamo Cardano. Cardano, using complex numbers, 
was solving cubic equations, unsolvable to his times – as the famous Franciscan and professor of mathematics 
Luca Pacioli put it in his paper Summa de arithmetica, geometria, proportioni et proportionalita (1494). It is 
worth mentioning that history has given Cardano priority in the use of complex numbers, but most probably they 
were discovered by another professor of mathematics – Scipione del Ferro (cf. [1]). 

We can see, that already then, they were definitely important (complex numbers). 
 

Key words: compressed rod, hollow rod, shape optimization, buckling criterion, analytical approach,  
Erfi function, program MathematicaTM. 

 
1. Introduction  

 
 Buckling is a special case of a wider group of phenomena referred to as loss of structural stability. 

Buckling is a sudden transition from one form of deformation: axial compression to a qualitatively different 
form of deformation – to bending. This phenomenon causes a rapid redistribution of internal forces, which is 
dangerous for the construction. Theoretically, if the compressed rod is perfectly symmetrical and its 
compressive force is perfectly axial and centric, there is exactly one deformation state, in which the balance 
is maintained. If, on the other hand, the influence of bending on the change of internal forces, the so-called 
second order effects, is taken into account, then an other solution is possible, which exists only when the 
compressive force reaches a certain value called the critical force. 

 For centuries, although this branch of science developed relatively recently, scientists have sought 
for such shapes of compressed elements, with which it was possible to reduce their mass. Thus, the search 
process leading to the minimization of the weight of the structure, while maintaining stability criteria, 
especially in spatial shaping, can be considered as an optimization of stability. In the ancient times, technical 
solutions, which used a slight bulge, thickening of the column’s shaft in the Dorian style, by overlapping the 
expanding stone segments up to 2/3 of the height – i.e. enthasis, were applied (see Fig.1). This procedure was 
designed to abolish the optical illusion, manifested in the impression of the concavity of the columns, as well 
as – presumably to increase the load capacity (comp. [2], [3]).  
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      
L

2 2 2
0 z w

0

r L f x f x dx    , (2.2) 

 
which after some rearrangements (made in MathematicaTM; comp. [8]) binds the radii of particular cross-
sections – at the ends of the rod and inside it 
 

    /m m pr r r A B   (2.3) 

where 

  

 / / /

/

Erfi α Erfi

Erfi α Erfi Erfi

α Erfi Erfi

Erfi Erfi Erfi

α Erfi Erfi

21 4 2 1 2 1 4
0

2 2

1 4

1 1
A 2 e 1 r 2e 4e 1

2 2

1 1 1
2 2 2 2

22 2

1 1
2 4 2 t

2 2

1 1 1
2 2e 1 2 2

2 2 2

1 1
2 4 2

2 2

                 
       
 

        
                 

     pr t
 

  

 (2.4) 

and 

  

/ / Erfi α Erfi

αErfi Erfi αErfi ,

1 2 1 4 1 1
B 2 2e 2e 2 1

2 2

1 1 1
2 2 2 t

2 2 2

                
      

 (2.5) 

wherein 

       Erfi erf exp ,
iz

2

0

2i
z i iz u du    

   (2.6) 

 

is a complex or imaginary error function (while the function    erf exp ,
x

2

0

2
x u du 

 
 

is referred to as 

the Gaussian error curve). 
 It follows from the definition (2.6) that 
 

     Erfi / . oraz  Erfi / . .1 2 0 61495 1 2 0 95344   (2.7) 

 
 Let the rod under consideration be subjected to axial compression. We assume that it is simply 

supported at the ends and that it is burdened with initial geometrical imperfection, expressed as 
 

    sin0f x e x
L


  (2.8) 

 
where e0 presents the amplitude ( / [ ]0e L 250 mm ). 
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 The graphic presentation of the above assumptions is shown in the static scheme (Fig.5). 
 

 
 

Fig.5. Static scheme of the system. 
 

3. The objective function and a set of constraints 
 

 Due to the problem posed, the objective function is the maximum compressive force 
 
  max.F   (3.1) 

 
 Suppose that the rod is to work in the linearly elastic range. Therefore, the necessity of an 

examination of the problem arises: searching for the maximum compressive force, the value of which will 
not result in plasticizing the material of the rod (Fupl) 

 
  (max)max .upl uplF F F    (3.2) 

 
 In the case of the yield force, the relationship should be maximized 
 

  · ·
· ·

upl y

m

L
I

L 2
F f A

L L L2 I r A
2 250 2

 
               

   

 (3.3) 

wherein 
 

 fy – yield stress of the steel used to make the rod, 
 A(x) – variable cross-section area [mm2] is defined by the relationship 

 

         ,2 2
z wA x f x f x    (3.4) 

 
 I(x) – variable moment of inertia of the cross-section [mm4] is given by the relationship 

 

        .4 4
z wI x f x f x

4


   (3.5) 

 
 Relation (3.3) follows from the relations (3.6) expressing maximal stresses at the middle section of 
the rod (comp. Fig.6) and its limitation by the yield stress fy 
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  .0   (3.10) 

 

 Strength constraints: 
 

 impassability of the yield stress  yf  at the end of the rod and half its length 

 
     , / ,rz y rz y0 f L 2 f     (3.11) 

 

 impassability of the critical stress values of the cylindrical shell (local loss of stability of the 
compressed cylindrical shell) at the end of the rod and half its length 

 
         ( ) ( ), / /rz gr p rz gr s0 0 L 2 L 2       (3.12) 

 
where the symbol rz  denotes the actual stresses in the bar (or, more precisely, in the wall), while 
additionally the limit stresses are described by the relations 

 

   
   ( ) ,gr p

2

1 E t
0

R 03 1


 

 
 

   

   
   ( ) / ,

/gr s
2

1 Et
L 2

R L 23 1
 

 
 (3.13) 

wherein 
 

        .z w
1

R x f x f x
2

   (3.14) 

 
 The search for the extreme (the maximum, to be more precise) of the force (3.3), was carried out in 

the MathematicaTM program. This process is fully implemented by the Maximize procedure (making it 
possible to find the global maximum of functions in the area defined by the limitations), although in the 
given problem, due to the complexity of calculations, a “derivative command” was used, using an iterative 
(numerical) sequence – N Maximize, performing the same task. It was requested that the iterative pattern 
would use the stochastic optimization method, namely the Differential Evolution algorithm (the differential 
evolution results from Ken Price's attempts to solve the problem of Chebyshev polynomials suggested by 
Rainer Storn, when Ken Price invented a way to distort the vector population using vector differences. The 
algorithm was officially published in 1997 in the paper: Price, K. and Storn R. "Differential Evolution." Dr 
Dobb's J., Issue 264, 18-24 and 78, Apr. 1997.). The method available in the referenced program ensures that 
complicated calculations based on non-linear relations are carried out, and what is more – it is “a simple, yet 
effective evolutionary algorithm, solving the problem of global continuous optimization” (cf. [9]). The 
number of iterations was limited to 500. 
 At this point, it is worth remembering about another optimization problem, more fundamental, 
namely, it can be assumed that the shape of a cylindrical tube should be determined, which will also show 
the feature of transferring the increased value of compressive force. However, as shown by the calculations, 
the shape of the rod proposed in the article definitely is more beneficial than the shape of the cylindrical tube 
in the considered context. 
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4. Numerical examples 
 

 Let us look at two numerical examples. Let the geometrical and physical parameters  
of the cylindrical reference rod be as follows: 

 
 case 1: 

 cross-section radius: ,0r 4mm  

 rod length:     ,L 250mm  

 rod slenderness:   / / ,0L i 2L r 125     

 material – steel:     . MPa, . , MPa,5
yE 2 110 0 3 f 235     

 

 case 2: 
 cross-section radius: ,0r 10mm  

 rod length:     ,L 875mm  

 rod slenderness:   / / ,0L i 2L r 175     

 material – steel:     . MPa, . , MPa.5
yE 2 1 10 0 3 f 235      

 
 The results of the analysis performed (optimization) are presented in Tab.1. Figures 6 and 7 present 

axial cross-sections of the determined shapes of rods (In both figures, the cross-section of the reference rod is 
marked with a dotted line.) 

 
Table 1.  A summary of the values of decision variables and critical forces of reference, tubular and optimal 

rods. 
 
 

 
Reference   

rod 
Tubular  

 rod 
Optimal rod   

Length 
L 

[mm] 

Slend
erness 
λ 

Yield 
stress  

fy 

[MPa] 

value of   
max. 

compressive 
strength 
Fref (max) 

[N] 

 
value of max. 
compressive 

strength  
Frur (max) 

[N] 
 

 
value of max. 
compressive 

strength 
Fopt  (max) 

[N] 
 

increase in 
load 

capacity in 
relation to 
the ref. rod 

[%] 

decision variable values 

  
 

[mm] 

t rp rm 

250 125 235 5906.2 7096.7 10624.4 80 1.47 0.50 10.0 16.3

875 175 275 35997.4 55802.5 78121.4 117 1.24 1.05 35.0 49.9

 
5. Characteristics and application of Erfi functions in the issue under consideration 
 

 As a result of the initial assumption, namely due to assuming the equality of the masses of the 
considered non-prismatic ring rod and the standard cylindrical rod of the same length, we obtained a 
relationship that expresses the relation between certain geometric parameters of the non-prismatic rod – 
between the outer radius of the solid in the middle of its length and the outer radius of the solid of the rod at 
its ends (cf. relations (2.2) – (2.4)). We can see that in the relations referred to, there is the special Erfi 
function, which was defined by the relation (2.5). It is worth emphasizing that in a general form, it is a 
complex function of a complex variable. 
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