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Abstract—The concept of background seismicity is strictly

related to the identification of spontaneous and triggered earth-

quakes. The definition of foreshocks, main shocks and aftershocks

is currently based on procedures depending on parameters whose

values are notoriously assumed by subjective criteria. We propose a

method for recognizing the background and the induced seismicity

statistically. Rather than using a binary distinction of the events in

these two categories, we prefer to assign to each of them a prob-

ability of being independent or triggered. This probability comes

from an algorithm based on the ETAS model. A certain degree of

subjectivity is still present in this procedure, but it is limited by the

possibility of adjusting the free parameters of the algorithm by

rigorous statistical criteria such as maximum likelihood. We

applied the method to the seismicity of southern California and

analyzed the sensitivity of the results to the free parameters in the

algorithm. Finally, we show how our statistical declustering algo-

rithm may be used for mapping the background seismicity, or the

moment rate in a seismic area.

Key words: Seismic background, declustering, epidemic

model, maximum likelihood.

1. Introduction

Temporal clustering, as commonly observed dur-

ing aftershock sequences, constitutes strong evidence

for time-dependent behavior of the seismic process

and its departure from a simple spatially-variable,

time-independent Poisson process. Nevertheless,

seismicity is often modeled by a process with a rate

constant in time, and most earthquake damage miti-

gation measures in seismic areas are based on this

assumption. The tectonic processes causing seismic

activity apparently change only on a geologic time

scale, so that the driving stress and seismic moment

rate can be considered constant over a long-term

observation.

Regardless of the behavior of the seismicity in

time, it is widely recognized that the magnitude dis-

tribution of earthquakes follows the well-known

Gutenberg–Richter (G–R) law (GUTENBERG and

RICHTER, 1944) modeled by Eq. 5 in the Appendix.

The value of the b parameter in the G–R law is typi-

cally close to 1.0 in different areas of the world and for

different magnitude ranges, so expressing a universal

property of the seismicity (BIRD and KAGAN, 2004).

The validity of the G–R law is limited to a range

of magnitude where the lower limit is generally

connected to the minimum magnitude reported with

completeness by the observation system, and the

upper limit is related to the maximum size of the

rupture produced by the seismogenic process in a

given region. Without an upper limit to the magnitude

distribution, the total moment rate of any region

would be infinite. Therefore, several modifications to

the linear trend have been proposed (see KAGAN, 2002

and BIRD and KAGAN, 2004 for a thorough analysis of

this issue).

Seismologists have traditionally labeled earth-

quakes as ‘‘foreshocks’’, ‘‘main shocks’’ or ‘‘after-

shocks’’, assuming that only the main shocks can be

described by a time-independent stationary process (see

e.g., GARDNER and KNOPOFF, 1974 and REASENBERG,

1985). However, a quantitative physical definition of

main shock has never been given, and the separation of

the above mentioned three classes of earthquakes is

based on empirical subjective definitions that are

checked against the stationarity of the main shock rate

in time.

In order to overcome the above-mentioned prob-

lems, a number of people (e.g., KAGAN and KNOPOFF,
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1976; KAGAN, 1991; KAGAN and JACKSON, 2000;

ZHUANG et al., 2002, 2004, 2008; ZHUANG and OGATA,

2006) have already described some form of stochastic

declustering. Their methods are based on the appli-

cation of models whose parameters are fit by

maximum likelihood criteria. While KAGAN and

KNOPOFF (1976) used a branching model of earth-

quake occurrence, ZHUANG et al. (2002) made use of a

similar model called Epidemic Type Aftershock

Sequence (ETAS), in which the background and the

clustered structure are estimated in non-parametric

and parametric ways, respectively (see Sect. 3 for

more details on this model). In this study we used the

same kind of method used by ZHUANG et al. (2002),

with the only difference being that they used variable

kernel functions to estimate the backround rate, while

our method uses FRANKEL’S (1995) method. More

recently, MARSAN and LONGLINÉ (2008) introduced an

iterative procedure that finds the best declustering

algorithm in a way that the result is somewhat inde-

pendent of the initial maximum likelihood model

parameters. In their algorithm the background and the

clustering structure are both estimated in non-para-

metric ways.

Based on criteria already applied in previous

studies, our method makes use of an iterative proce-

dure for obtaining a spatially variable model of the

seismicity, suitable for seismological applications

and seismic hazard estimates. However, we are not

aiming at producing a catalog where some of the

events are removed, but rather a catalog where the

events receive a weight proportional to the proba-

bility of being independent.

The data used for all the numerical applications

are drawn from the seismic catalog of the Southern

California Earthquake Data Center (SCEDC) (http://

www.data.scec.org/catalog_search/date_mag_loc.php).

Southern California is one of the most densely sam-

pled seismic regions of the world.

2. A Smoothing Algorithm for a Spatially Variable

Poisson Model

Figure 1a shows the epicenter distribution of

60,480 earthquakes with magnitude equal to or larger

than 2.0 reported by SCEDC from 1984 to 2002. The

area taken for the analysis is a rectangle 360 km 9

440 km wide, centered on the point of geographical

coordinates 34.5�N and 117.0�W. As clearly shown

in Fig. 1b, the catalog can be considered complete in

the period of time chosen for the analysis. Even if

some small magnitude events are missing, especially

soon after other larger magnitude earthquakes, the

Figure 1
a Epicentral distribution of the earthquakes with magnitude

M C 2.0 reported by the Southern California Earthquake Data

Center in the time period 1984–2002. b Frequency-magnitude

distribution of the earthquake catalog considered in this study
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circumstance does not affect the results in terms of

background seismicity distribution. This is because,

as explained in the introduction, and discussed later

on in this paper, these early events, if recorded, would

be strongly down-weighted by the algorithm for the

computation of the background seismicity.

In order to obtain a continuous rate density

k0(x,y), we applied an algorithm for smoothing the

discrete epicenter distribution. Applications of algo-

rithms making use of smoothing kernels for seismic

hazard assessment can be found in KAGAN and

JACKSON (1994, 2000), JACKSON and KAGAN (1999),

and HELMSTETTER et al. (2007), whose ideas are lar-

gely reflected in this study.

Here we compute a gridded smooth geographical

distribution of the seismic rate density at each node k

of a regular grid through the method introduced by

FRANKEL (1995):

~Nk ¼
P

l Nl exp �D2
kl=d2

� �

P
l exp �D2

kl=d2
� � ; ð1Þ

where Nl is the number of events in each cell centered

on the lth node, Dkl is the distance between nodes k

and l, and d is a free parameter.

The spatially variable rate density k0(x,y) (used

in Eq. 5 of the Appendix) is computed dividing by

the observation time interval the value obtained

from linear interpolation of ~Nk among the four

nearest grid nodes. The free parameter d is deter-

mined by maximizing the likelihood of the

seismicity contained in the later half of the catalog

under the model obtained from the earlier half. In

this study the best fit of the d value has been carried

out by maximizing the likelihood of the SCEDC

earthquake catalog (M C 2.0) from 1993 to 2002

under the time-independent Poisson model obtained

from the same catalogue in the period from 1984 to

1992. Figure 2 shows the epicenter distributions for

the two separate time periods. These two maps show

a remarkable similarity, indicating that the spatial

distribution of the seismic activity is rather stable in

time, though the map of the first period exhibits

stronger activity in the area of the Landers (1992)

earthquake and the map of the second period shows

concentration of epicenters in the areas of the

Northridge (1994) and Hector Mine (1999)

earthquakes.

Figure 3 shows the plot of the likelihood of the

second part of the catalog estimated from the first

part, as a function of the correlation distance d. A

maximum is visible around d = 5.0 km, which is the

value taken for the following analysis. The smoothed

Figure 2
a Epicentral distribution of the earthquakes with magnitude

M C 2.0 observed in Southern California in the time period

1984–1992. b As in a, for the time period 1993–2002
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geographical distribution so obtained for the whole

data set is shown in Fig. 4.

3. Modeling the Earthquake Catalog by the ETAS

Model

As shown in Fig. 5 (line a), the cumulative

number of all the earthquakes in the catalog is

strongly irregular, because of the presence of after-

shock sequences. We may suppose, in agreement

with assumptions underlying the ETAS model (see

e.g., OGATA, 1998, 1999 CONSOLE and MURRU, 2001;

HELMSTETTER and SORNETTE, 2002, 2003; CONSOLE

et al., 2007 and references therein) that the seismicity

has two components. The first is assumed to have a

time-independent Poisson behavior, and the second is

represented by the triggered earthquakes. A short

outline of the ETAS model is reported in Appendix.

Note that stationarity of the background rate and the

parameters of the ETAS model is assumed in this, as

in many other studies, though it cannot be really

validated.

We aim at a spatial distribution that does not

include the triggered component of the seismicity,

still preserving the total seismic moment released by

the seismicity, which is approximately proportional

to the total number of earthquakes. With this purpose,

we applied an iterative process based on a clustering

(epidemic) time dependent model (see also MARSAN

and LONGLINÉ, 2008):

1. We started by finding the maximum likelihood set

of free parameters using the initial distribution of

the smoothed seismicity k0(x,y) by interpolation of

the gridded distribution obtained through Eq. 1;

2. We computed the probability of independence pi

as the ratio between the independent component

fr�k0(xi,yi,mi) and the composite rate density

k(xi,yi,mi,ti) for every event i in Eq. 4 of the

Appendix;

3. Then, without adjusting the d parameter again, we

computed a new distribution of k0(x,y) through

Eq. 1 as in step 1, but introducing the weights pi as

a multiplying factor for each event, and dividing

by fr to normalize the result to the total number of

events in the catalog;

4. The new smoothed distribution was used in a

new maximum likelihood best fit of the free

parameters;

5. We proceeded again from step 2, and so on, until a

reasonable convergence was reached.

In order to limit the time needed for the maximum

likelihood best fit, which is rather computer

demanding, step 1 of the above-mentioned process

was carried out using a threshold of magnitude 3.0

both for the triggering and the triggered earthquakes

Figure 3
Plot of the likelihood of the Southern California 1993–2002

earthquake catalog under the time-independent Poisson model

representing the smoothed spatial distribution of the 1984–1993

catalog, versus different values of the d parameter of the smoothing

algorithm

Figure 4
Smoothed distribution of the Southern California (1984–2002)

seismicity obtained by the smoothing algorithm of Eq. 1 with a

correlation distance d = 5.0 km. The color scale represents the

number of events occurred in cells 2 km 9 2 km wide over the

total duration of the catalog (i.e., 19 years)
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(for a total of 5,733 events). The time required for

carrying out the same computations, but with a

magnitude threshold one unit lower, would have been

about 100 times longer. The smoothed distribution of

the spatial density, however, was computed on the

basis of the entire data set with a lower magnitude

threshold equal to 2.0. The best fit values of the

parameters obtained after five iterations of the pro-

cedure described above are reported in Table 1. The

parameters affected by the largest variations are those

modeling the spatial distribution (d0 and q), while the

parameters related to the time decay are considerably

more stable. Moreover, there is a negative correlation

(as expected) between the productivity parameter K

and d0, because both are related to the total number of

triggered events. Parameter d0 is probably influenced

also by the location errors of the epicenters reported

in the catalog, which is not taken in consideration in

our simple algorithm.

Figure 6 shows the map of the new smoothed

distribution, using the algorithm described in step 3

and the model parameters obtained after the final

iteration. Comparing this map with that shown in

Fig. 4, we note a more diffuse distribution of the

seismicity, and a better correspondence to the fault

system.

As it can be clearly noted in Fig. 5 (line b), the

cumulative distribution of pi over the time spanned

by the catalog, normalized to the total number of

events, is much closer to a linear trend than the

starting cumulative number of events. This gives a

good indication of the ability of our algorithm to

remove the contribution of the triggered seismicity,

without really deleting any event from the catalogue.

4. Constraining the Weighting Process for the Most

Uniform Total Rate

The total earthquake rate over the region is rep-

resented by the slope of the cumulative number of

events versus time. Our iterative procedure results in

Figure 5
a Cumulative distribution of the number of events in the Southern

California (1984–2002) earthquake catalog. b Cumulative distri-

bution of the weights pi over the time spanned by the Southern

California (1984–2002) earthquake catalog, normalized to the total

number of events; see point 2 in Sect. 3 of the text for the definition

of pi; the model parameters used for obtaining this plot are those

shown in the last column of Table 1. c As in b; the model

parameters used for obtaining this plot are those shown in the last

column of Table 1, with the substitution of the value K = 0.12 for

this parameter. d As in b; the model parameters used for obtaining

this plot are those shown in the last column of Table 1, with the

substitution of the value K = 0.17 for this parameter

Table 1

Values obtained for the parameters of the epidemic model in the progressive adjustment of the background seismicity

Initial Iter. 2 Iter. 3 Iter. 4 Iter. 5

K (daysp-1) 0.0637 0.0673 0.0674 0.0678 0.0698

d0 (km) 0.504 0.502 0.499 0.498 0.478

q 1.884 1.859 1.853 1.850 1.812

c (days) 0.0154 0.0154 0.0152 0.0155 0.0154

p 1.080 1.079 1.081 1.081 1.082

a 0.563 0.544 0.546 0.546 0.549

fr 0.0772 0.0838 0.0840 0.0817 0.0822

lnL 49,985.4 50,086.5 50,101.1 50,104.4 50,107.1
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a fairly uniform total rate of background events, yet,

it is quite evident that a bump is left in the cumulative

distribution. This bump shows that the effect of the

aftershock sequence of the Landers (1992) earth-

quake has not been completely removed. We make

the arbitrary assumption that an ideal weighting

algorithm should achieve a uniform total rate of

background seismicity. In this respect, we are inter-

ested in exploring the idea that a modification of the

parameters of the ETAS model could achieve a more

uniform background rate without compromising the

likelihood too much.

We define the parameter Dn (the same used in the

Kolmogorov–Smirnov or K–S test; see for instance

GIBBONS and CHAKRABORTI, 2003) to express the

mismatch between the actual cumulative distribution

and the desired linear trend with the same total

earthquake count:

Dn ¼ max F̂nðiÞ � F0ðiÞ
�
�

�
�; ð2Þ

where F̂nðiÞ is the observed value of the normalized

cumulative distribution at the event i, and F0(i) is the

theoretical normalized linear trend, so that F̂nðnÞ ¼
F0ðnÞ: The value of this parameter for the ETAS

model parameters reported in the last column of

Table 1 and the cumulative distribution shown in

Fig. 5 (line b), is Dn = 0.083.

Through a set of empirical tests, we searched for

the value of K in the ETAS model that minimizes Dn.

Figure 7, where the results of this search are reported,

shows how, increasing the K value, Dn decreases

substantially, and then it increases again after having

reached a minimum (Dn = 0.033) at K = 0.12

(almost twice the value obtained from the maximum

likelihood best fit, see Table 1).

The new cumulative distribution, obtained using

the previous set of best fit parameters, but with the

substitution of K = 0.12, is shown in Fig. 5 (line c).

Figure 8 shows the corresponding map of the

smoothed spatial distribution, using the algorithm

described in Sect. 3 and the model parameters with

the value of K adjusted at K = 0.12. A comparison

between the maps of Figs. 6 and 8 shows a very slight

change in the smoothed seismicity distribution,

though the value of the K productivity parameter has

been raised by more than 70%. This can be explained

considering that the ETAS model using the maximum

likelihood estimate of K is already capable of sup-

pressing nearly all the clustered activity. However,

the map of Fig. 8 is characterized by a degree of

smoothing slightly higher than that of Fig. 6.

We computed the log-likelihood of the same

catalog used in the previous analysis, with a lower

magnitude threshold equal to 3.0, using the final best

fit parameters of the ETAS model reported in the last

column of Table 1, but with the smoothed seismicity

distribution obtained using the value of K adjusted at

K = 0.12 as shown in Fig. 8. This test provided a

Figure 6
Smoothed distribution of the Southern California (1984–2002)

seismicity obtained by the smoothing algorithm applied to the

weighted catalog as described in Sect. 3 of the text and the model

parameters shown in the last column of Table 1

Figure 7
Plot of the Dn parameter, showing a measure of the departure of the

cumulative distribution of events from a theoretical linear trend,

versus the K value of the ETAS model used for giving a weight to

each event in the seismic catalog

824 R. Console et al. Pure Appl. Geophys.



value of 50,111.4 for the log-likelihood, which is

slightly better than that of the best fit obtained with

the smoothed density distribution of Fig. 6, obtained

from the best fit value of K = 0.07. Of course, we use

K = 0.12 only for the preparation of the smoothed

seismicity, because this value, if used in the ETAS

model, would yield a much smaller value of the

likelihood.

A visual inspection shows that the new total

background rate of Fig. 5 (line c) is not yet uniform.

This is also confirmed by the fact that the K–S test for

a linear distribution is not passed at a 90% confidence

level. A further increase of the parameter K, together

the complete disappearance of the effect of the

aftershock sequences on the cumulative distribution,

produces a decrease of the slope just at the time of the

Landers (1992) earthquake. As an example, Fig. 5

(line d) shows the plot of the cumulative distribution

obtained for K = 0.17.

5. Testing the Model on Independent Data

It is generally acknowledged that testing a fore-

cast model requires a data set which is completely

independent of the one used in the learning process

(see e.g., CONSOLE, 2001; CONSOLE et al., 2003;

HELMSTETTER et al., 2007). In line with this rule, we

have tested the quality of the ETAS model relative to

a time-independent, spatially variable model, using a

new data set for the same area of southern California,

spanning the time period 2003–2007. At the same

time, we have also tested the impact of the different

choices for the seismicity smoothing algorithm used

for obtaining the background spatial distribution. In

these tests we have considered both the lower mag-

nitude threshold m0 = 3.0 used in the learning phase

(including only N3 = 185 target events), and an even

lower magnitude threshold m0 = 2.0 (including

N2 = 1772 target events), which allows a more

robust test on a number of events about ten times

larger. The main results are reported in Table 2.

Table 2 shows in a clear way the overall better

performance of the models including the weighting

technique for the smoothed seismicity, compared

with the standard unweighted smoothing algorithm.

However, if we look at the log-performance factor,

obtained as the difference between the log-likelihood

of the ETAS model and that of the Poisson model

(and at its average, also called probability gain per

earthquake), we notice that it decreases from the

model using the standard unweighted smoothing

algorithm to those including the weighting technique.

This is clearly a consequence of the better perfor-

mance of the new background distribution applied to

a time-independent model. If we compare, instead,

the performances of the two weighted background

distributions (the one with K = 0.07 and the other

with K = 0.12), we notice very little difference. The

overall likelihood is improved from the former to

the latter for m0 = 3.0, but gets worse for m0 = 2.0,

The performance factor and the probability gain per

earthquake obtained from these two approaches are

also not significantly different.

We may conclude that the use of the procedure

described in Sect. 3 is useful for obtaining a better

time-independent spatial distribution of the seismic-

ity, which significantly improves the likelihood of the

earthquakes catalogs under this model. It also gives a

moderate improvement to the resulting ETAS model,

which includes the effect of triggered seismicity.

However, the arbitrary change of the K parameter in

Figure 8
Smoothed distribution of the Southern California (1984–2002)

seismicity obtained by the smoothing algorithm applied to the

weighted catalog as described in Sect. 3 of the text and the model

parameters shown in the last column of Table 1, with the

substitution of the value K = 0.12 for this parameter
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the smoothing algorithm, even producing a more

straight cumulative number of events in time, does

not significantly affect the spatial seismicity model,

and does not represent an advantage for the perfor-

mance of the ETAS model.

6. Spatial Distribution of Seismic Moment

The information about the geographical distribu-

tion of the earthquake rate k0 may have relevant

consequences for the seismic hazard assessment in a

given area. For instance, assuming that all tectonic

stress is fully released by earthquakes, and that the

magnitude distribution is a truncated Gutenberg–

Richter distribution, it is possible to obtain the

expected seismic moment rate _M0 from the number of

earthquakes observed per unit space and time k0

(WARD, 1994; CATALLI et al., 2008):

_M0 ffi k0M�0S
b

1:5� b
10 1:5�bð Þ mmax�m0ð Þ � 1
h i

ð3Þ

where:

b is the parameter of the Gutenberg–Richter mag-

nitude distribution,

m0 is the lower magnitude threshold of the catalog

mmax is the assumed maximum possible magnitude

M�0 is the seismic moment of an earthquake of

magnitude m0, and S is the area of the seismogenic zone

Taking into account that only a fraction of the

tectonic moment rate is released by earthquakes, Eq. 3

must be retained as a constraint putting a lower limit on

the estimate of the moment rate. The practical estimate

of the moment rate _M0 is conditioned by the constraint

that the seismogenic volume used for the application

of Eq. 3 should be small enough as to allow the

assumption of a spatially uniform value of _M0: At the

same time the number of observed earthquakes should

be large enough to justify the assumption of stationa-

rity for the seismic process. These constraints are

obviously in conflict within each other, so that a rea-

sonable compromise should be chosen.

A map of the moment rate can be obtained

through Eq. 3, after having multiplied the seismic

moment of each event by a weight pi equal to its

probability of independence. A value of the maxi-

mum magnitude mmax = 8.0 (BIRD and KAGAN, 2004)

has been assumed in this application. As for the rate

density, the moment rate was then normalized by a

factor equal to the ratio between the total number of

events in the catalog and the sum of pi over all these

events. This was done in order to preserve the total

seismic moment released by the earthquakes in the

period of time covered by the catalog. Figure 9 shows

the map obtained for the area considered in our study,

using the spatial distribution of the occurrence rate

shown in Fig. 6 (K = 0.07). This map is suitable for

a comparison with analogous maps obtained from

geodetic observations.

7. Discussion and Conclusions

Following the method proposed by ZHUANG et al.

(2002), and adopting an iterative procedure as

Table 2

Performance of the ETAS model on the seismicity of the test period (2003–2007) with different models of the time-independent background

seismicity distribution

Unweighted

smoothing

Weighted smoothing

with K = 0.07

Weighted smoothing

with K = 0.12

lnLe (m0 = 3.0) 1,560.8 1,586.5 1,588.4

lnLe - lnL0 (m0 = 3.0) 1,739.3 1,704.4 1,704.4

(lnLe - lnL0)/N3 (m0 = 3.0) 9.40 9.21 9.21

lnLe (m0 = 2.0) 20,109.0 20,149.0 20,147.5

lnLe - lnL0 (m0 = 2.0) 18,622.0 18,071.4 18,022.9

(lnLe - lnL0)/N2 (m0 = 2.0) 10.51 10.20 10.17

L0—Likelihood of the time-independent, spatially variable Poisson model

Le—Likelihood of the time-dependent ETAS model

826 R. Console et al. Pure Appl. Geophys.



suggested by MARSAN and LONGLINÉ (2008), our

method finds the optimal set of parameters for the

ETAS model, taking also into account their effect on

the best spatial distribution. The results reported in

Table 1 show that the parameters related to the spa-

tial distribution of the seismicity are most affected by

the iterative procedure, while the temporal parame-

ters are more robust.

Moreover, we have shown also that the maximum

likelihood set of parameters does not guarantee a

constant background rate. A more linear trend can be

achieved by an appropriate change of the productivity

parameter K of the ETAS model.

The method developed in this study was chosen to

produce an earthquake catalog that fulfils the property

of stationarity for the seismic process without the need

of removing events from the catalog. Each event is

assigned a weight proportional to the probability of

independence according to the ETAS model with

suitable values of the parameters. The probability is a

number that can assume any value between 0 and 1.

Figure 10 shows the distribution of the probability of

independence for the 60,480 events of the SCEDC

catalog analyzed in this study. It can be noted that

about 50% of the events are characterized by a

probability of independence close to zero. Note that

among these events even earthquakes traditionally

defined as main shocks could be included, if these

main shocks had been preceded by significant seismic

activity commonly defined as foreshocks. For

instance, the main shock of the Landers (M = 7.3)

1992 sequence has been assigned a probability of

independence p = 0.00007 only, because of the

influence of some previous foreshocks. The event that

most probably triggered the main shock was a small

earthquake of magnitude 2.3, which occurred about

20 h before the main shock, with an epicenter shifted

by 0.5 km to the west. This event had a probability of

independence p = 0.38. These results clearly contra-

dict the usual geophysicist’s intuition that the main

shocks should be independent events. Note also that

the initial M 2.3 earthquake (definable as a foreshock

in a strict sense) triggered 2.6 aftershocks in its first

generation (in probabilistic sense), while the magni-

tude 7.3 main shock triggered 211.9 aftershocks in its

first generation. The total number of M C 2.0 after-

shocks in the whole sequence was larger than 15,000.

This means that the ETAS model assigns most of the

events to next generations. This is consistent with the

low value found for the productivity parameter a by

the maximum likelihood best fit (a = 0.55). In our

ETAS model the numerous low magnitude events

trigger a total number of events larger than the number

of events triggered by the few big ones. This result, as

for other ETAS results, is difficult to interpret in

geophysical terms, because this model is based on a

statistical, rather than a geophysical parameterization.

This analysis shows that for a very large fraction

of earthquakes the probability of independence does

not justify a clear separation between independent

Figure 9
Map of the seismic moment rate obtained by Eq. 3 from the

earthquakes observed in Southern California in the time period

1984–2002, using the value K = 0.07 for the productivity

parameter

Figure 10
Distribution of the probability of independence for the 60,480

events of the Southern California earthquake catalog
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and triggered events. About 20% of earthquakes in

the analyzed catalog exhibit a probability of inde-

pendence larger than 0.5, but for few of them the

probability is very close to 1. For comparison,

MARSAN and LONGLINÉ (2008) found that the back-

ground rate of M C 3 earthquakes corresponds to

19.5% of the total rate.

The background seismicity distribution obtained

by down-weighting the events of the catalog accord-

ing to their probability of independence still exhibits

large peaks of the spatial density. This is clearly the

case for the Landers and Oceanside areas, as shown in

both Figs. 6 and 8. A detailed analysis of the proba-

bility of independence of the earthquakes included in

these small zones shows that these high values of the

spatial density do not come from the aftershock

sequences, but from a rather persistent moderate

seismic activity. For instance, for a square of

10 km 9 10 km centered on the epicenter of the

Landers (1992) main shock (34.2�N, 116.4�W), the

analysis shows that the total weight of the events

included in the first day of the aftershock series (101

events) is only 0.0082. For the first 10 days (447

events) the total weight is 0.097, and extending the

count to the first 100 days (941 events) we obtained a

total weight equal to 0.94. Note that the weight is

fairly proportional to the time duration of the con-

sidered period, and not to the number of events

contained in every period. The smaller proportion of

activity in the first day can be ascribed to the increased

detection threshold of the first hours in the network.

In the case of the Oceanside area (33.0�N,

117.8�W), the same kind of analysis shows a seismic

activity even more sparse in time, with many more

events of relevant probability of independence dis-

tributed all over the observation period. Therefore,

the ETAS model achieving the maximum likelihood

accommodates this circumstance with a relatively

high level of the time-independent component.

Any attempt to derive a background earthquake

rate using a short catalog is going to encounter serious

difficulties and challenges. It is clear from the density

maps in this paper, as well as from many maps pub-

lished by other researchers in the 2007(1) SRL special

issue (FIELD, 2007), that such a background rate model

is not unique. Even when we used all of the available

historic data to produce the map (KAGAN et al., 2007),

one can still see that the rate is likely to be too low in

certain places, and too high in others. Perhaps, only by

using geodetic and geologic information (SHEN et al.,

2007; BIRD and LIU, 2007) one could obtain a map of a

really long-term background rate. However, such a

geodetic/geologic map would fail to correctly predict

earthquakes on the 5- or 15-year time-span, since

these events are likely to occur near sites of recent

activity. Thus, the ‘‘background’’ rate needs a proper

definition — what kind of forecast is being consid-

ered, is it 5-, 15-, 30-, or 50-year? KAGAN and JACKSON

(1994) argue that the time horizon of a prediction

should be comparable to the length of an earthquake

catalog used in the forecast.

KAGAN et al. (2010) discuss general drawbacks of

the ETAS model. Particularly, because the c value in

the Omori’s law parameterization is not scaled with

magnitude, the model fit to earthquake patterns might

be strongly biased. This is related to aftershock

number deficiency after strong earthquakes (see e.g.,

KAGAN, 2004; HELMSTETTER et al., 2006). However,

KAGAN et al. (2010) (this issue) removed all of the

close-in-time aftershocks and recalculated the model

parameters, and they found that the results do not

change significantly. This is consistent with the

strong similarity we have noted between the back-

ground seismicity distribution obtained by a large

range of values for the K parameter.

Even taking into account the above-mentioned

difficulties in the search for the background rate, and

meaning of the background rate itself, maps of the

smoothed seismicity produced by our algorithm may

represent a spatially variable, time-independent Pois-

son model useful as a null hypothesis against which

to test short-term or medium-term time-dependent

forecast models.
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Appendix

The expected occurrence rate density of earth-

quakes, k(x,y,t,m), at any time and location, is

modeled as the sum of the independent, or time-

invariant ‘‘spontaneous’’ activity and the contribution

of every previous event:

kðx; y; t;mÞ ¼ fr � k0ðx; y;mÞ

þ
XN

j¼1

Hðt � tjÞ � kjðx; y;m; tÞ; ð4Þ

where k0(x,y,m) is the rate density of the long-term

average seismicity, expressing the Gutenberg–Richter

magnitude distribution as

k0ðx; y;mÞ ¼ k0ðx; yÞbe�bðm�m0Þ; ð5Þ

fr is the failure rate (fraction of spontaneous events

over the total number of events) of the process;

b is related to the most widely known b value by the

relationship b = b ln10;

m0 is a reference magnitude;

H(t) is the step function;

and kj(x,y,t,m) is a kernel function that depends on the

magnitude of the triggering earthquake, the spatial

distance from the triggering event, and the time

interval between the triggering event and the time of

interest. We factor this function in three terms

depending, respectively, on time, space and magni-

tude, as:

kjðx; y; t;mÞ ¼ K � f ðx� xj; y� yjÞ � hðt � tjÞ
� be�bðm�m0Þ; ð6Þ

where K is a constant parameter, while f(x,y) and

h(t) represent the space and time distributions,

respectively.

The spatial distribution of the triggered seismicity

is modeled by a function with circular symmetry

around the point of coordinates (xj,yj). This function

in polar coordinates (r,h) can be written as:

f ðr; hÞ ¼
d2

j

r2 þ d2
j

 !q

; ð7Þ

where r is the distance from the point (xj,yj), q is a

free parameter modeling the decay with distance, and

dj is the characteristic triggering distance. We assume

that dj is related to the magnitude mj of the triggering

earthquake:

dj ¼ d010aðmj�m0Þ=2; ð8Þ

where d0 is the characteristic triggering distance of an

earthquake of magnitude m0 and a is a free parameter,

i.e., the distance distribution is scaled with magnitude.

For the time dependence we adopt the modified

Omori law (OGATA, 1983):

h tð Þ ¼ t þ cð Þ�p p [ 1ð Þ; ð9Þ

where c and p are characteristic parameters of the

process.

The free parameters for the ETAS model actually

estimated in this study are the following:

– K (productivity coefficient),

– d0 (characteristic triggering distance),

– q (exponent of the spatial distribution of triggered

events),

– a (coefficient of the exponential magnitude pro-

ductivity law),

– c (time constant of the generalized Omori law) and

– p (exponent of the generalized Omori law).

The fraction of spontaneous events over the total

number of events of the process, fr, is constrained by

these free parameters. The b value is estimated from

the entire catalog independently from the other

parameters.

We may note that neither the spatial (Eq. 7) nor

the temporal (Eq. 9) kernel distributions are nor-

malized. This might produce biases in the parameters

of the model that control the productivity of triggered

seismicity. In particular, this is the case for K and the

spatial parameters d0, q and a. In spite of these biases,

the best fit process always converges to stable results,
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independently of the guess choices for the parame-

ters’ values to initiate the optimization algorithm.
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