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Using the Extreme Groups Strategy When
Measures Are Not Normally Distributed
Robert L. Fowler

University of South Florida

The extreme groups research strategy is a two-
stage measurement procedure that may be
employed when it is relatively simple and inexpen-
sive to obtain data on a psychological variable (X)
in the first stage of investigation, but it is quite
complex and expensive to measure subsequently a
second variable (Y). This strategy is related to the
selection of upper and lower groups for item dis-
crimination analysis (Kelley, 1939) and to the
treatments x blocks design in which participants
are first "blocked" on the X variable and then

only the extreme (highest and lowest means) blocks
are compared on the Y variable, usually by a t test
or an analysis of variance. Feldt (1961) showed
analytically that if the population correlation
coefficient between X and Y is p = .10, the power
of the t test is maximized if each extreme group
consists of 27% of the population tested on the X

variable. However, Feldt’s derivation assumes that
the X and Y variables are normally distributed. The
present study employed a monte carlo simulation
to explore the question of how to optimize power
in the extreme groups strategy when sampling from
non-normal distributions. The results showed that
the optimum percent for the extreme group selec-
tion was approximately the same for all population
shapes except for the extremely platykurtic (uniform)
distribution. The power of the extreme groups
strategy under conditions of normality was com-
pared to the power of other research strategies,
and an extension of the extreme groups approach
was developed and applied in an example. Index
terms: construct validation; extreme-group design;
monte carlo technique; non-normal distributions;
statistical power; upper-lower index.

The extreme groups research strategy is a two-stage procedure that sometimes is employed when
it is relatively simple and inexpensive to measure a psychological variable (X) in the first stage of
investigation, but it is quite complex and expensive to obtain data subsequently on a second variable
(Y). This situation often exists in the early stages of validating a concept such as was done, for exam-
ple, by Taylor (1951) with the Manifest Anxiety Scale and by Glass (1977) with the Type A Behavior
Pattern. This approach is related to the treatments x blocks experimental design (Myers, 1979) in
which participants are first &dquo;blocked&dquo; on the X variable and then only the extreme (highest and lowest
means) blocks are used in collecting data on the Y variable. The means of the two blocks then are

compared, usually by a t test or an analysis of variance (ANOVA).
Feldt (1961) showed analytically that if the population correlation coefficient between X and Y

is p = .10, the power of the t test is maximized if each extreme group consists of 27 Vo of the popula-
tion tested on the X variable. As p increases, the optimum percent decreases slightly; for example,
at p = .8, power is greatest when 23% of each tail of the X distribution is used. This is similar to
the result obtained by Kelley (1939) in the selection of upper and lower groups for item discrimina-
tion analysis, in which the point-biserial correlation coefficient (algebraically convertible to t for

statistical significance testing) is often used as an index of discriminability. Cureton (1957), in a more
formal mathematical proof of the same relationship, assumed not only bivariate normality, but also

independence of the tails of the Y distribution (the equivalent of p = 0). Subsequently, D’Agostino
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& Cureton (1975) showed that when the assumption of correlated tails is incorporated into the
analysis, the optimum percent for the upper and lower groups is closer to 21%. In general, during
the second phase of the study when information on Yis to be obtained, it is a more powerful strategy
to use the extreme 25~Io of each tail of the X distribution than to split the X distribution at the median
and use all of the participants. In essence, greater power is achieved by &dquo;throwing away&dquo; data-by
not using all of the data in the second (Y) phase.

All of the derivations mentioned above assumed that the X and Yvariables are normally distributed
and linearly related. It is increasingly apparent that real psychological data are rarely normally
distributed. For example, Micceri (1989) investigated the distributional characteristics of 440 large-
sample achievement and psychometric measures and found all to be non-normal by standard tests
of significance. Micceri reported that approximately two-thirds of the 231 achievement test score
distributions were at least moderately asymmetric, over 18% of the 125 psychometric measures were

exponentially asymmetric, and only 16% of the psychometric distributions were relatively symmetric.
The effects of skewness on the statistical power of the extreme groups strategy may have accounted

for some unusual results reported by Kendall (1954) in an early validation of Taylor’s Manifest Anx-
iety Scale. After obtaining anxiety scores on 93 participants, Kendall selected the upper and lower
27% of that distribution (which was positively skewed) to undergo a more extensive clinical evalua-
tion. A t test of the difference between the mean clinical ratings of the original two extreme groups
failed to reach the .05 level of significance ( p = .083), but a subsequent t test on the upper and lower
13% of the anxiety score distribution yielded a clearly significant outcome (p = .001), in spite of
the loss of over half of the degrees of freedom.

The primary purpose of the present study was to explore the question of how to select extreme
groups in order to maximize the power of t to detect the presence of a relationship when the X and
Y score distributions are non-normal. A monte carlo simulation was conducted to examine the power
of t when samples are drawn from several population distributions, which differed in varying degrees
of skewness and/or kurtosis. The study also investigated the effects of the following on the power
of t: the proportion in the extreme groups (p), the population correlation coefficient (p), and the
ratio of the number in the upper group (nu) to the number in the lower group (n¡). Additionally, the
power in extreme groups research strategies when X and Y are normally distributed was examined

analytically.

Method

The power of t was examined for nine different theoretical population distribution shapes. The
first three distributions were symmetric but differed in kurtosis and included: (1) normal (mesokur-
tic) ; (2) uniform (platykurtic); and (3) logistic (leptokurtic). The next three distributions were skewed
and leptokurtic: (4) truncated or three-quarters normal (slightly skewed); (5) half normal (moderate-
ly skewed); and (6) exponential (extremely skewed). The remaining three distributions were symmetric
but had long or heavy tails. Sampling from these distributions tends to produce outliers. The remain-
ing three were: (7) normal/uniform; (8) Cauchy; and (9) mixed normal.

The procedure used to generate these distributions by computer was similar to that described by
Fowler (1987). Different population shapes were created by using a series of unit uniform pseudoran-
dom numbers, ui. The methods for generating the various distributions were:
1. Normal or Gaussian (G): G; = (-2 log,,Mj)~cos27i:M;,, after a technique developed by Box & Miller

(1958);
2. Uniform (U): Ui = ui - .5;
3. Logistic (L): Li = (3)1/210gAu/(1 - ui)]In;
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4. Truncated normal (T): Ti was the G distribution, except that no values of G; > .6741891 were

included;
5. Half normal (H): 1-I; _ -~GZ~;
6. Exponential (E): Ei = log,ui + .693147;
7. Normal/Uniform (G/U): (G;/U~);
8. Cauchy (C); C; = G;/C~;+1; and
9. Mixed normal (M): Simulated by sampling from N(0,1) with probability .9, from N(0,9) with

probability .095, and from N(0,100) with probability .005. This distribution also is known as
a contaminated normal.

The values for each distribution were produced by first drawing IV scores from one of these popula-
tions. These scores (X) represented the performance of each of the lV participants in the first phase
of the investigation. Next, for each X value, a second score (Y) was drawn from the same distribution
and regressed on X such that the population correlation, Pxn was .1, .3, or .5. These values of p
correspond to Cohen’s (1977) small, medium, and large effect sizes, respectively, and represent the
range of relationships encountered in most psychological research. Then, the X and Yvalues in alter-
nate X,Y pairs were exchanged, so that the regression of X on Y would be approximately equal to
the regression of Yon X. This step produced identically shaped non-normal populations while main-
taining the desired p,,. Finally, after ranking the X,Y pairs on the X variable, all possible propor-
tions for the extreme groups, including the case of groups of unequal size, were evaluated by means
of estimates of the power parameter for t, which can be expressed as

(Feldt, 1961, Equation 2), where Y and S2 are the sample mean and variance, respectively, of an

upper (U) or lower (L) extreme group. This allowed comparisons to be made for a constant value
of IV without regard to level of significance. Five simulations of N = 10,000 using each value of p
(.1, .3, .5) were run for each of the nine distributions.

Monte Carlo Results

In the empirical phase of the study, all possible proportions for the upper extreme group were
combined with all possible proportions for the lower extreme group within the range of .OS < p < .50

in increments of .01. Table 1 presents the results for the extreme groups of equal size case. The values
are the points of power maximization (converted to percents) based on the median values for the
five simulations conducted with each of the 27 combinations of p and distribution shape. The points
of optimization at p = .1 tended to disagree somewhat with those at the higher values of p, but
the agreement between the empirical and theoretical normal distributions was otherwise quite good.
With some of the non-normal populations, notably the E and C distributions, the results of the simula-
tions at p = .1 often made it difficult to locate a true maximum for the empirical power function
because of its flatness over a very wide range of p. This suggests that optimization of power may
not be as meaningful in these cases. The most remarkable finding among the groups of equal size
is the apparent optimization of power when less than 25 070 of the extremely platykurtic (uniform)
distribution was in each of the extreme groups. This is in marked contrast to Cureton’s (1957) analytical
proof for this distribution in which the maximum of the function was at 33%. However, Cureton
was working with the complete theoretical X distribution rather than a concomitant variable Y which
is related to X only to the extent of p.

It was also of interest to determine whether power would be greater in the skewed distributions
if more cases were selected from the skewed tail than from the shorter tail. Table 2 shows the median
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Table 1
Power Parameter Optimum Percents for Two
Extreme Groups of Equal Size as a Function
of Distribution Shape for Three Levels of p

power parameter values for a number of combinations of upper and lower percent extreme groups
for the three negatively skewed distributions. For p = .1, there seemed to be a slight increase in
power when a larger percentage was selected from the lower tail (LOJo) than from the upper tail (U%)
of these distributions, but just the opposite appears to be the case when p was moderate or large.
That is, power tends to be lost when IJ°7o > Lo7o in the negatively skewed distributions when p = .1,
compared to the equal percent case. At p = .3 and p = .5, however, power decreased when
IJ°7o < L01o. Perhaps the instability of the outcomes obtained in the small effect size situation

accounts for this anomaly. This argues against using unequal group sizes to increase power when

Table 2

Median Power Parameters Based on N = 10,000 for Various Combinations of Upper (U)
and Lower (L) Percent Extreme Groups in Three Negatively-Skewed Distributions
[Truncated Normal (T), Half Normal (H), Exponential (E)] for Three Levels of p
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working with small effects in skewed distributions.
Because the monte carlo simulation revealed minimal effects of non-normality on selecting

optimum cut-off points for extreme groups, it appears that the &dquo;27% rule&dquo; (Cureton, 1957) gen-
erally would be applicable in most measurement situations. Consequently, the extreme groups strategy
(Feldt, 1961), which is based on assumptions of normality, appears to be a viable approach to

increasing power in the validation of psychological measurements. Although there are several ver-
sions of the extreme groups strategy that have been derived analytically for normal distributions,
precise power comparisons among them as a function of the cut-off point p seem not to have been
made in the applied measurement literature.

Power in Extreme Groups Strategies With Normal Data

Feldt (1961) demonstrated the superiority of the extreme groups strategy over the alternative strategy
of selecting a random sample from the entire X distribution and correlating these X scores with the

corresponding Y scores on the 2pIV participants selected. Alf & Abrahams (1975) demonstrated

analytically that there is a more powerful strategy than either of the strategies considered by Feldt.
Their strategy uses the covariance information that is lost when the X scores of the extreme groups
are dichotomized to form the two groups for the t test. In essence, a Pearson r is calculated only
on the X,Y pairs of the extreme groups. Thus, the Pearson r is superior to the t test (point-biserial
r) for the extreme groups strategy, for the same reason that there always will be a loss of power (in
a normal distribution) when graduated data are dichotomized artificially (Cohen, 1983).

Alternatively, it might be expected that if the number of blocks in the extreme groups strategy
is increased beyond the two most extreme blocks-or if the two extreme groups are each subdivided
into greater and lesser extreme parts, thereby restoring some of the &dquo;lost&dquo; rank categorical
information-the power also would increase. This approach is the functional equivalent of convert-

ing a point-biserial r for widespread classes (Peters & Van Voorhis, 1940) into a point-polyserial r
for widespread classes. The power comparisons of the four strategies can be made for a linear rela-
tionship, p, between two normally distributed variables, X and Y by computing ratios of their respec-
tive power parameters, ~.

The power parameter for the Alf & Abrahams (1975) covariance approach (Strategy 1) for extreme

groups of equal size may be expressed as:

where x is the standard score in a unit normal distribution cutting off the upper p proportion
of the distribution,

z is the ordinate at x, and

p is the proportion in each extreme group.
The power parameters for the Feldt (1961) extreme groups (Strategy 2) and random sample (Strategy

3) techniques are given, respectively, by:
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and

The power parameter for the proposed alternative (Strategy 4), which involves subdividing the cor-

responding tail points of the extreme groups into two blocks each (for a total of four blocks), can
be derived by extending Feldt’s (1961) proof (see Appendix) and can be expressed algebraically as:

where x, is the standard score in a unit normal distribution cutting off the upper p, proportion
of the distribution,

zl is the ordinate at xl, and

p, is the proportion in the most extreme block or subgroup.
The power parameters for Strategies 2, 3, and 4 relative to Strategy 1 were examined. These ratios

are shown in Figure 1 for p = .3, as a function of the proportion in each extreme group. In the
case of Strategy 4, it was assumed that the normal curve tails were subdivided into two equal area

segments; however, it makes little difference up to a ratio of 5:1 between the two segments. Although
the relative power of Strategy 4 does not change much as a function of p (the proportion in an
extreme group), it is the least powerful strategy when p > .2 (see Figure 1). However, in terms of
the effect size index, f = ~l(~a~1’Z, where ~c is the mean number of measurements per block (see
Appendix), Strategy 4 is always higher than Strategy 2. Figure 2 depicts the ratio of (D4 to <1>2 and

the ratio of f4 to f2 for p = .1 (small effect size) and p = .5 (large effect size) as a function of the
proportion in each extreme group. As the proportion in the extreme groups increases, higher effect

Figure 1
Power of Three Alternative Strategies Relative to the Most Powerful Strategy (Strategy 1)
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Figure 2
Effect Size ( f ) and Power (4$) Ratios of Strategy 4

to Strategy 2 for Small and Large Effect Sizes

sizes are obtained when two blocks in each extreme group are created, rather than using the tradi-
tional two (extreme) group version. Up to p = .5, the power of Strategy 2 is always superior to that
of Strategy 4, regardless of the value of p.

Applying Extreme Groups Strategies

Maximizing power by using the extreme groups approach in test validation research can be an

important consideration for organizations, depending on the relative costs of measurement at each
of the two stages, as Abrahams & Alf (1978) have shown. Usually, the predictor is less costly to measure
than the criterion, but sometimes the reverse is true. Suppose that an organization uses a forced distribu-
tion performance appraisal technique and has rated its employees in the following groups with the
indicated percentagese (1) superior, 10070~ (2) above average, 20~/09 (3) average, 40%; (4) below average,
0, (5) Poor, 10%.
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By using ANOVA (or point-polyserial r) to compare the mean test score performance of the four
groups (excluding the average category), the concurrent postdiction validity statistic will be greater
than that for any of the combinations involving only two extreme groups. However, the power to
detect a relationship between predictor and criterion will be highest if the top two categories and
the bottom two categories are combined into upper and lower extreme groups, respectively.

The power ratios depicted in Figures 1 and 2 are based on parameters reflecting asymptotic results
and cannot be used directly to determine power ratios for small and moderate size samples. In order
to estimate the power of Strategies 2 and 4 in a particular situation, it is necessary to convert the

power parameters to effect sizes by the relationships f2 = ~Zl(Np)I’2 and f4 = iP4/(Np/2)1;2 , respec-
tively (see Cohen, 1977, pp. 274-284). Suppose that the population correlation between the predictor
and criterion measures in the above example is p = .36. If p = .3, x = .524, z = .3478, p, _ .1,
xl = 1.2817, and z, = .1755, then ¡; = .439 and f4 = .473. The power of Strategies 2 and 4 to
detect a relationship may be estimated for any sample size at three conventional levels of signifi-
cance by using Cohen’s (1977, pp. 289-354) power tables. Specifically, for a = .05 and N = 40, the
power of Strategy 2 with upper and lower extreme 30% groups can be found by interpolation
in Cohen’s tables (p. 311; u = 1, n = pN = 12, f = .439) to be .54, compared to a power for Strategy
4 (p. 315; u = 3, n = pNl2 = 6, f = .473) of .40. It also can be shown that using upper and lower
10% extreme groups (superior vs. poor categories only) would result in a power for Strategy 2 (p.
311, u = 1, n = pN = 4, f = .669) of only .36. If the sample size is increased to N = 80, the

power estimates of these same three applications of the two strategies increase to .84, .75, and .71,
respectively.

In this case, the cost factor may be a consideration if the incumbents, on whom job performance
criterion information is already available, must be given time off from work to be measured on the

proposed predictor being validated. Thus, eliminating the middle 40% of the criterion distribution
from the analysis not only conserves employee production time, but also can result in increased power
to detect the presence of a predictor-criterion relationship.

Appendix

The quantity p/(l - p2)’’2 that appears in each of the power equations given by Feldt (1961, Equa-
tions 7 and 11) and by Alf & Abrahams (1975, Equation 12) is equivalent to the effect size index
f, in the F test on means in ANOVA (Cohen, 1977, p. 284). That is,

In turn, f is simply the ratio of the between-groups sum of squares (SSb) to the within-groups sum
of squares (SSJ in a one-way ANOVA (Cohen, 1977, pp. 281-283) or

The derivation of the power parametcr ~ for Strategy 4 can be accomplished by extending the proof
for two extreme groups of equal size (Feldt, 1961, pp. 308-310) to the case of four extreme subgroups
(with the corresponding upper and lower subgroups of equal size) and expressing it in ANOVA terms.
Assume that X and Y are each N(0,1) and are correlated at some value p.

Let p = the proportion in the upper (or lower) extreme group;
x = the standard score in a normal distribution cutting off the upper p proportion of
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the distribution;
z = the normal curve ordinate at x;
N = the total sample size;

~,~ = the population mean of the upper extreme group; and

ilL = the population mean of the lower extreme group.
The subscripts 1 and 2 refer to the more extreme subgroup and less extreme subgroup, respectively,
and the notations [2] and [4] distinguish between quantities based on two groups and four groups,
respectively.

The relationship between the power parameter ~ and the effect size f is given by Cohen (1977,
p. 275) as f = ~/(n)1’z, where n = pNis the number of measurements in each group. Thus, the power
parameter for the two extreme groups strategy ((D2) given by Feldt (1961, p. 310, Equation 7) can be
converted to the effect size as

Then, for the unit normal curve (IV = 1) in a one-way ANOVA with two groups of equal size, the SSb
can be determined by

which reduces to

Substituting the appropriate value for the mean of an extreme segment of the normal curve (pz/p)
given by Feldt (1961, pp. 309-310) yields

r

which is 2p times the numerator of Equation 8. Therefore, the SS,, must be 2p times the denominator
of Equation 8 or

If the two extreme groups are each subdivided (with the corresponding upper and lower subgroups
equal size), the SSb can be determined by

which reduces to
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In a one-way ANOVA, the total sum of squares (SS,) remains the same regardless of the number of
groups, so that

which means that

and

Substituting the results of Equations 11, 12, and 14 into Equation 17, and noting that 4, = pz/p¡
and ~t2 = p(z - z¡)/(p - p,), the effect size index becomes

The power parameter for the F test in ANOVA is given by Cohen (1977, p. 275) as q) = f(n)l¡2, where
n is the average sample size per group. In the present case, each of the four subgroups contains an

average of pN12 measurements, yielding the final form of the power of Strategy 4 in the case of nor-
mal data as
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