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T
he world has entered the Anthropocene, characterized by 
unparalleled human impact on the global environment1,2 
and associated with devastating biodiversity losses3,4. Despite 

this, we still have limited information about the spatial patterns  
and intensity of the threats responsible for this crisis5,6. This is  
particularly true for pressures such as overexploitation, pollution 
and invasive species, for which no suitable remotely sensed proxies  
exist7–9. Additionally, for threats where remotely sensed data are 
available, these data measure physical processes such as habitat  
conversion or the expansion of infrastructure10–12. However, the  
specific impact on species and habitats does not necessarily scale 
with the intensity of these processes but is highly context specific13. 
As a result, existing representations of pressures may not adequately 
capture impacts on ecosystems and species, and lack the detail 
required to target conservation actions efficiently14,15. Better infor-
mation on the spatial intensity of threats and how they affect species 
on the ground is critically important for improving conservation 
responses5.

The International Union for Conservation of Nature (IUCN) 
Red List of Threatened Species (hereafter ‘Red List’) is one of the 
richest and most authoritative data sources in conservation16 and 
is derived from tens of thousands of hours from expert volunteer 
contributors worldwide17. To date, over 100,000 species have been 
assessed against the IUCN Red List Categories and Criteria, includ-
ing all amphibians, birds and mammals18. For assessed species, 
experts have evaluated the threats affecting individual species using 
a standardized method and classification scheme19. However, infor-
mation on the spatial occurrence of threats affecting a given species 

within its distribution is not collected systematically and is limited 
to documenting whether the species is affected by a given threat 
anywhere in its range. Additionally, there are no comprehensive 
spatial summaries of these threats to species.

Here we address these knowledge gaps by developing global 
maps for the six main threats affecting terrestrial amphibians, birds 
and mammals (23,271 species assessed by the IUCN Red List): 
(1) agriculture, (2) hunting and trapping, (3) logging, (4) pollu-
tion, (5) invasive species (including pathogens such as chytrid), 
and (6) climate change4. To generate these maps, we use data from 
the thousands of species assessed in the Red List in a probabilistic 
framework that explicitly incorporates the spatial uncertainty intro-
duced by knowing only that a species is affected somewhere in the 
range. Our approach is inspired by methods from citizen science, 
which face similar issues resulting from large quantities of data with 
unknown and varying precision of the individual observations. We 
first used a set of simulated threat maps, with the same proper-
ties as the Red List, to develop our model framework and assess 
the ability of different model parameterizations to reproduce our 
simulated threat data (Extended Data Fig.  1). After choosing the 
model that showed the highest concordance with the simulated data 
(Extended Data Fig. 2), we mapped the impact probability of each 
of the six threats using the actual Red List data. We then evaluated 
the predictions of the best-fit model against two independent data 
sources: one on threats assessed by experts within about 6,000 Key 
Biodiversity Areas (KBAs)20 and a dataset based on remotely sensed 
forest change10. Both evaluations showed that our predictions were 
consistent with empirical data (Supplementary Figs. 5–11), giving  
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us confidence in the validity of our approach to mapping the 
impacts of threats at a global scale.

Results and discussion
Major threats across taxa and space. Our method estimates the 
‘impact probability’, which is the probability that a randomly selected 
species occurring in a given grid cell is impacted in that cell by a par-
ticular threat, while accounting for the spatial uncertainty inherent 
in the Red List data. Across the six threats, amphibians had higher 
average impact probabilities (median threat probability across cells 
(M), 0.11; 95% confidence interval (I95%), 7 × 10−3 to 0.42), followed 
by mammals (M = 0.10; I95%, 0.04 to 0.21) and birds (M = 0.05;  

I95%, 0.01 to 0.19). This accords with the higher overall extinction risk 
of amphibians21. The largest uncertainties in the estimated impact 
probabilities were observed in the Congo Basin for amphibians and 
across the Sahara and Central Asia for birds and mammals (Figs. 1h, 
2h and 3h). For amphibians, agriculture was the most prevalent of 
any threat, having the highest probability of impact in 44% of the 
mapped area (Fig.  1g), while hunting and trapping was the most 
prevalent threat for birds (in 50% of the mapped range; Fig. 2g) and 
overwhelmingly for mammals (73% of the mapped range; Fig. 3g). 
Our findings support existing non-spatial assessments5 and policy 
syntheses4. There are sizeable continental areas in which there was 
a greater than 50% chance that any given amphibian, mammal or 
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Fig. 1 | Probability of impact for amphibians. a–f, Probability that a randomly selected amphibian occurring in a 50 km × 50 km cell is impacted by logging 

(a), agriculture (b), hunting (c), pollution (d), invasive species (e) and climate change (f). Darker colours indicate higher probabilities. A value of 0 

indicates that no species is affected, and 1.0 indicates that all species occurring are affected. Grey indicates areas with fewer than ten species for which 

the impact probability has not been estimated. g, The threat with the highest probability of impact in each cell. The colours correspond to the maximum 

colour scales in a–f. h, The variability of the estimates calculated by resampling the threat classes of each species on the basis of the proportion of Data 

Deficient species in a given cell (Methods).
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bird species was threatened by logging, hunting and trapping, agri-
culture, invasive species or climate change (between 1.6 and 10.8 
million km2; Extended Data Fig. 3).

Southeast Asia, particularly the islands of Sumatra and Borneo, 
as well as Madagascar, exhibited high probabilities of impact across 
all threats and all taxa (Figs. 1–3). For amphibians, Europe stood 
out as a region with high impact probabilities, driven by a combina-
tion of agriculture, invasive species (typically chytrid fungus) and 
pollution (Fig.  1), while polar regions, the east coast of Australia 
and South Africa showed the highest impact probabilities for  
climate change, driven in particular by impacts on birds (Fig. 2). For 
mammals and birds, high probabilities of species being impacted 
by hunting and trapping were found across much of the terrestrial 
surface (Figs. 2 and 3).

Across all taxa, agriculture had the highest average impact 
probability, followed by hunting and trapping and then by logging 
(Extended Data Fig.  3), while the probability of being impacted 
by pollution was low in most parts of the terrestrial world. The 
probability of a species being impacted by invasive species was 
on average low for amphibians (M = 0.01; I95%, 2.3 × 10−10 to 0.65), 
mammals (M = 0.05; I95%, 1.7 × 10−9 to 0.21) and birds (M = 0.04; 
I95%, 8.4 × 10−11 to 0.13). However, this probability of impact was 
elevated in some locations for birds and amphibians. For birds,  
the higher probabilities were seen on the islands included in our 
models. For amphibians, they were located on the east coast of 
Australia, in the dry forests of Madagascar, in Europe and in North 
America, the latter being consistent with observational data on 
recorded chytrid outbreaks22.
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Fig. 2 | Probability of impact for birds. a–f, Probability that a randomly selected bird occurring in each 50 km × 50 km cell is impacted by logging (a), 

agriculture (b), hunting (c), pollution (d), invasive species (e) and climate change (f). Darker colours indicate higher probabilities. A value of 0 indicates 

that no species is affected, and 1.0 indicates that all species occurring are affected. Grey indicates areas with fewer than ten species for which the impact 

probability has not been estimated. g, The threat with the highest probability of impact in each cell. The colours correspond to the colour scales in a–f.  

h, The variability of the estimates calculated by resampling the threat classes of each species on the basis of the proportion of Data Deficient species in a 

given cell.
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Our approach is also able to highlight where knowledge gaps 
about species distributions and threats most influence the certainty 
of our predictions by including the proportion of Data Deficient 
species in our analyses. While not a perfect proxy for knowledge cer-
tainty, the proportion of Data Deficient species is likely to correlate 
with overall certainty in knowledge in a given region. It is therefore 
reasonable to assume that if particular regions are less well studied, 
there will also be less certainty about the distribution, conservation 
status and threats to species in that region. We show that the largest 

uncertainties in the estimated impact probabilities were observed in 
the Congo Basin for amphibians and across the Sahara and Central 
Asia for birds and mammals (Figs. 1h, 2h and 3h). These regions 
have previously been identified as data-poor23, and increased  
sampling would probably improve both our model predictions and 
our understanding of threats to species in these areas.

Priorities for threat mitigation. To identify areas of priority for 
threat mitigation, it is necessary to combine the estimates of the 
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Fig. 3 | Probability of impact for mammals. a–f, Probability that a randomly selected mammal occurring in each 50 km × 50 km cell is impacted by logging 

(a), agriculture (b), hunting (c), pollution (d), invasive species (e) and climate change (f). Darker colours indicate higher probabilities. A value of 0 

indicates that no species is affected, and 1.0 indicates that all species occurring are affected. Grey indicates areas with fewer than ten species for which the 

impact probability has not been estimated. g, The threat with the highest probability of impact in each cell. The colours correspond to the colour scales in 

a–f. h, The variability of the estimates calculated by resampling the threat classes of each species on the basis of the proportion of Data Deficient species 

in a given cell.
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probability that a threat impact occurs with information on the  
spatial pattern of biodiversity importance. We therefore developed 
conservation risk maps for each threat by multiplying our probability  
of impact with species richness (Extended Data Figs. 4–6). For each 
threat and taxonomic group, we then identified hotspot areas as  
the top decile (Fig.  4). Given the resolution of the Red List data  
and that of our maps (50 km × 50 km), our maps are not intended 
for guiding local conservation action but illustrate overall patterns 

of conservation priorities for mitigating threats to biodiversity 
across Earth.

Hotspots of the highest risk from agriculture, hunting and  
trapping, and logging were primarily located in the tropics. 
Conversely, hotspots of risk from pollution were found in Europe, 
driven by impacts on amphibians and mammals (Fig. 4a–f). Except 
for the Australian east coast, invasive species risk hotspots showed  
distinct patterns for the three taxa. Amphibians and mammals 
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Fig. 4 | Global hotspots of threat. a–f, Global threat hotspots (90th percentile of risk, the product of the probability of impact and the species richness) 

for amphibians, birds and mammals for the six principal threats: logging (a), agriculture (b), hunting and trapping (c), pollution (d), invasive species and 

diseases (e), and climate change (f). The colours indicate whether an area falls within a threat hotspot for one or more taxon groups. g, Key for a–f.  

h, The relative importance of each pixel across species and threats. This is the number of times a pixel falls into a hotspot region for any taxon or threat,  

so pixels with higher values fall in the 90th percentile for many taxonomic groups and threats.
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were particularly threatened in different parts of the New World 
and Europe, while hotspots of risk for birds were found on islands  
(consistent with existing syntheses7,8,24), along coastal areas and 
across eastern and southern Africa.

Hotspots of risk for different taxa rarely overlapped, and over-
all, 50% of the terrestrial surface was identified as a hotspot of 
risk from at least one threat for one taxonomic group (Fig.  4h). 
High-priority areas for threat mitigation were identified as the 
Himalayas, Southeast Asia, the east coast of Australia, the dry for-
est of Madagascar, the Albertine Rift and Eastern Arc Mountains 
in eastern Africa, the Guinean forests of West Africa, the Atlantic 

Forest, the Amazon basin and the Northern Andes into Panama and 
Costa Rica in South and Central America (Fig. 4h).

Augmenting existing threat maps. Existing global threat maps 
estimate the extent of pressures or changes to the natural world such 
as land use, human settlements and infrastructure11,12,25. These maps 
capture the intensity of some of the most important human pres-
sures on the environment, but they do not measure how these drivers  
and processes affect species and habitats13 and do not include all  
of the most important threats to biodiversity5,26,27. Our method, 
based on Red List data on threats to thousands of species, provides 

1.0

80

60

40

20

0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

a

b

c

d

e

f

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1.0

–1.0 –0.5 0

PTh – HFI

P
T

h
 (

la
n

d
 u

s
e

)
P

T
h
 (

h
u

n
ti
n

g
)

P
T

h
 (

c
lim

a
te

)

HFI

P
ix

e
l 
c
o

u
n

t

0.5 1.0

Fig. 5 | Comparison between probability of impact and pressure. a–c, Relationship between the Human Footprint Index (HFI) and the probability of 

threats (PTh) estimated from the Red List for amphibians, birds and mammals for land use (a) and for two threats that the HFI does not explicitly include: 

hunting and trapping (b) and climate change (c). The grey lines indicate a 1:1 linear relationship. d–f, Residuals from unity. Negative values (red) indicate 

where the standardized HFI is higher than PTh, and positive values (blue) indicate where PTh is higher than the standardized HFI.

NATURe eCOLOGy & eVOLUTION | VOL 5 | NOVEMBER 2021 | 1510–1519 | www.nature.com/natecolevol 1515

http://www.nature.com/natecolevol


ARTICLES NATURE ECOLOGY & EVOLUTION

valuable complementary information. To assess the difference 
between maps based on drivers and processes and maps based on 
impacts on species, we compared our maps of impact probability 
with the latest version of the Human Footprint11.

We first created a new composite land-use impact probability 
layer as the mean of agriculture and logging for each pixel, to better  
compare with the land-use component of the Human Footprint.  
We found a weak positive relationship between our measure of 
probability of impact from land use and the Human Footprint 
(Fig.  5a). However, there were discrepancies, with the Human 
Footprint generally showing lower pressures from land use in  
wilderness areas and higher pressures in urbanized areas compared 
with our impact probability map (Fig. 5d). This divergence was even 
more pronounced for hunting and trapping, with Human Footprint 
values relatively low across most of the tropical forests, where  
our maps suggest high impacts from hunting and trapping 
(Fig.  5b,e). The largest discrepancy was with climate change, for 
which some areas (especially in the Arctic) show a low Human 
Footprint but high impacts from climate change (Fig.  5c,f). Our 
results indicate that current global descriptions of pressure poten-
tially underestimate the impact of human threats to biodiversity,  
particularly in the most pristine areas that are likely to be of  
high importance for nature conservation28–30. However, given the 
constraints associated with the species-based threat assessment 
used in the Red List, it is also plausible that our approach could 
overestimate the probability of impact for areas that, in reality,  
have low levels of threat and might serve as refugia for species. Our 
findings thus suggest that multiple approaches are needed, travers-
ing drivers, processes and effects to better understand the multi-
faceted nature of human pressures on biodiversity. Additionally, 
while our threat maps represent the impacts on extant species  
due to threats from human drivers, they omit impacts from  
pressures that have already led to extirpations or extinctions. 
For example, in Europe, where a large part of the original fauna 
has already been lost31, maps of accumulated drivers (such as the  
Human Footprint) might better represent the true extent of human 
impacts than the response of the remaining species to current 
threatening factors32.

Filling important knowledge gaps. Our approach helps address 
important data and knowledge gaps in more direct measures of 
threats based on field assessments by using a globally consistent, 
robust, and high-quality dataset16,33,34. For hunting and trapping, 
pollution, and invasive species, all of which are implicated in  
dramatic population declines of native species around the  
world7,35–37, our approach provides in some instances the only way of 
mapping their impacts on biodiversity at regional to global scales9. 
Even for threats for which remotely sensed maps of human activity 
exist (for example, agriculture and forest loss), our maps add addi-
tional information on where species seem to be adversely impacted 
by these activities. Regional analyses have also included information 
about species distributions to account for where threats are likely 
to affect most individuals38, but while valuable, such analyses still 
assume that threats are uniformly likely across the species range. 
Our results show that patterns of impact often differ from patterns  
of occurrence of threatening processes or the number of species 
affected by a given threat39. This discrepancy in part relates to 
current threat representations omitting some types of threats (for 
example, ‘empty forest syndrome’ resulting from pervasive hunting 
and trapping in apparently pristine forests6,40,41). Additionally, the 
effect of a threat varies with the specific context, so the same inten-
sity of a threatening process can have different impacts in different 
places or on different species. For example, forest loss affects a larger 
proportion of species in Southeast Asia, where little primary forest 
is left, than in the Amazon, where substantial forest remains despite 
high rates of loss in both places10.

Our analysis and maps do not cover any plant or invertebrate 
groups, many of which are severely impacted by multiple threats42–44 
and whose hotspots of diversity and conservation importance do 
not always overlap with those of terrestrial vertebrates45. Our work 
is also limited in terms of its representation of freshwater taxa. 
Additionally, our threat representation estimates the probability 
of a random species in a given location being affected by a threat. 
While we believe that this is closer to measuring the impact than 
mapping the drivers of threats, it does not capture the severity of 
the impact46. Thus, while our maps show that invasive alien species 
are not affecting very large numbers of species overall, the native 
species affected are often undergoing rapid population declines as 
a consequence8,47,48, particularly on many oceanic islands7,8,24. We 
acknowledge that it is possible that expert predispositions may 
influence assessments of some threats to some species on the Red 
List. However, the Red List assessment process is explicitly designed 
to mitigate this risk by ensuring that assessments are grounded in 
evidence from peer-reviewed and other vetted sources, properly  
documented, applied in a consistent fashion and subjected to 
independent review (see the Supplementary Information for a full 
description of the Red List assessment process).

Improving future threat mapping. The current biodiversity crisis 
derives from current levels of action and resources being insuffi-
cient or misaligned to mitigate and reverse the increase in human 
pressures on the environment3,49. Thus, while the ultimate objec-
tive of conservation is to preserve biodiversity, understanding  
and addressing threats to nature is essential to ensure that action is 
targeted at the places most in need. Our maps provide an important 
step towards a more complete understanding of the distribution and 
impact of threats. However, this does not suggest that these maps 
cannot be improved. Indeed, a key strength of our approach is that 
it demonstrates a new way forward. The maps can help stimulate 
and inform models of how biodiversity is currently being impacted 
by a broader range of human activities than is typically considered. 
They can also help inform future red-listing assessments by pro-
viding a more systematic understanding of potential threats within 
the ranges of focal species. Additionally, other sources of data on 
anthropogenic pressures on biodiversity (such as from acoustic 
monitoring, camera traps, drones and satellite imagery) will be 
critical to help augment and improve our maps and develop more 
robust statistical synthesis of the impacts of threats to biodiversity. 
There is substantial potential for these maps to drive conservation 
science and policy. However, given the resolution of the maps and 
the precision of the underlying data, we caution against using these 
maps to guide local conservation action. Their value is in illumi-
nating global patterns and demonstrating an approach to mapping 
threat impacts as well as informing decisions within the context of 
international policy processes such as the Convention on Biological 
Diversity and Sustainable Development Goals, recognizing that 
understanding where different threats impact terrestrial vertebrate 
species is essential for designing effective conservation responses15.

Methods
Species-level data. Species range maps were derived from BirdLife International 
and NatureServe50 and the IUCN51. �e threat data were from the IUCN �reats 
Classi�cation Scheme (Version 3.2), which contains 11 primary threat classes 
and almost 50 subclasses52. In Red List assessments, assessors assign those 
threats that impact the species. For birds, the scope of the impact is also recorded 
categorically as the percentage of the species population that the threat impacts 
(unknown, negligible, <50%, 50–90% or >90%) and the severity, describing 
the scale of the impact on population declines: unknown, no decline, negligible 
declines, �uctuations, slow but signi�cant declines (<20% over ten years or three 
generations), rapid declines (20–30%) or very rapid declines (>30%).

Model development approach. We designed our analytical framework with 
three considerations in mind. First, the threat location information is limited: 
for each species, the data only describe whether a species is threatened by a 
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given activity anywhere within its range (data on the timing, scope and severity 
of threats are available only for birds and are not spatially explicit). Second, we 
wanted to compare the spatial patterns of threat against independent data on 
spatial distributions of human activities. Third, for many activities, the relationship 
between human activity (for example, hunting or invasive species and diseases) and 
biodiversity response is poorly understood. We therefore chose not to incorporate 
known patterns of human activity as explanatory variables in our models.

In the absence of global datasets on the spatial patterns of the impact 
probability of each threat, we used a simulation approach to develop our models 
and assess the ability of different model parameterizations to reproduce our 
simulated threat. This process had four steps (Extended Data Fig. 1).

Simulated threat intensity maps. First, we simulated a continuous synthetic threat 
across sub-Saharan Africa. The concept behind this is that a credible model should 
be able to reproduce a ‘true’, synthetic threat pattern on the basis of information 
comparable to that available in the Red List. To test this, we generated a set of 
synthetic, continuous surfaces of threat intensity with different levels of spatial 
autocorrelation and random variation (Supplementary Fig. 1). This was achieved 
by taking a grid of 50 km × 50 km (2,500 km2) pixels across the Afrotropic 
biogeographic realm (i.e., sub-Saharan Africa). Threat intensity was modelled as 
a vector of random variables, Z, one for each pixel i, generated with a correlation 
structure given by the distance matrix between points weighted by a scalar value, 
r, indicating the degree of correlation (equations (1–3)). Four values of r were 
used: 1 × 10−6, which yields very strong autocorrelation; 1 × 10−4, which yields 
strong autocorrelation; 0.05, which yields moderate autocorrelation; and 0.3, which 
produces a low-correlation, localized pattern (Supplementary Fig. 1). The model 
included the following equations:

Z(r) = U

T

Norm (n, 0, 1) (1)

W = UU

∗

(2)

W = e

(−rD)
(3)

where r is a scalar determining the degree of spatial autocorrelation (as r decreases, 
the autocorrelation increases), D is the Euclidean distance matrix between each 
pair of pixels, W is the matrix of weights for the threat intensity, U and U* are the 
upper triangular factors of the Choleski decomposition of W and its conjugate 
transpose, UT is the transpose of U and n is the number of pixels.

We chose the Afrotropic biogeographic realm (sub-Saharan Africa) as 
our geography within which to develop the modelling approach because it 
permitted more rapid iterations than a global-scale simulation while also 
retaining characteristics of importance for the model evaluation such as strong 
environmental gradients and heterogeneity in species richness. However, for the 
simulation, no information from the geography or overlapping species ranges 
was used, except the spatial configuration of the polygons. Thus, the use of the 
Afrotropic realm was purely to avoid generating thousands of complex geometries 
for the purpose of the simulation. Using a real geography and actual species ranges 
ensures that our simulation contains conditions that are observed in reality (for 
example, areas of high and low species richness also observed in the real world). 
We took the simulated threat maps generated through this process to be our ‘true’ 
likelihood of a randomly drawn species that occurs in that location being impacted 
by the synthetic threat (Supplementary Fig. 1).

Simulating the red-listing process. Second, we wanted to simulate the red-listing 
process whereby experts evaluate whether a threat is impacting a species on the 
basis of the overall threat intensity within its range. For this, we used the range 
maps for all mammal species in Africa and assigned a binary threat classification 
(that is, affected or not affected) to each species on the basis of the values of the 
synthetic threat within each species’ range. We assumed that the binary assessment 
of threat for a species is based on whether the level of impact across a proportion 
of its range is judged as significant. This step was intended to replicate the real 
red-listing process, where assessors define threats that impact the species on the 
basis of an assessment of the information available on threatening mechanisms 
and species responses. In practice, this was done by overlaying the real range maps 
for mammals over the four simulated threat surfaces and assessing the intensity 
of synthetic threat within each species range map. We wanted to assign species 
impacts considering that species will be more likely to be impacted if a greater part 
of their range has a high threat intensity. Understanding how to set a threshold 
for what intensity would constitute sufficient threat to be assessed as affected 
is a complicated exercise. We thus tested three thresholds to capture different 
assumptions. These thresholds were chosen after discussion with leading experts 
on the red-listing process. More specifically, we calculated the 25th, 50th and 75th 
percentiles of threat intensity across pixels within the species range. We then used a 
stochastic test to convert these quantiles to binary threat class, C. For each species, 
we produced a set of ten draws from a uniform distribution bounded by 0 and 1.  
If over half of the draws were lower than the threat intensity quantile, the species 
was classified as threatened for that percentile.

The above simulation assumes perfect knowledge of the threat intensities 
across the species range, which might not always be the case in the actual 
red-listing process. In real life, certain areas within species ranges are less  
well known for a suite of different reasons. To incorporate some uncertainty  
about the knowledge of the red-listing experts about the ‘true’ threat intensity,  
we constructed a layer to describe the spatial data uncertainty associated with  
the Red List. This aspect was intended to simulate the imperfect knowledge of  
the simulated ‘Red List assessors’. This layer was calculated as the proportion  
of species present in a given location that are categorized as Data Deficient— 
in other words, there is insufficient information known about the species to assess  
its extinction risk using the IUCN Red List Criteria (Extended Data Fig. 7).  
Then, when calculating the 25th, 50th and 75th percentiles of threat intensity 
across each range, we weighted this calculation by one minus the proportion of  
Data Deficient species, so that more uncertain places (those with a greater 
proportion of Data Deficient species) contributed less to the calculation than 
locations where knowledge was more certain. These were then converted to a 
binary threat class accounting for uncertainty in expert knowledge among the 
simulated ‘assessors’, CUncertain, using the same stochastic process described above  
for the calculation of C.

This step produced, for each species, a threat classification analogous to the 
threat classification assigned by experts as part of the IUCN Red List process. Six 
sets of threat classifications were produced for each synthetic threat surface, on 
the basis of the 25th, 50th and 75th percentiles with perfect (C0.25, C0.5 and C0.75) or 
uncertain (CUncertain-0.25, CUncertain-0.5 and CUncertain-0.75) spatial knowledge.

Model formulation and selection. Third, using all species polygons with assigned 
threat assessments from step 2 (that is, affected or not affected), we fitted nine 
candidate models and predicted the estimated probability of impact for each grid 
cell. Then, in a fourth step, we compared the predicted probabilities of impact 
produced in step 3 with the original synthetic threat maps created in step 1 to test 
the predictive ability of our models.

The Red List threat assessment does not contain information on where in the 
range the impact occurs. Therefore, a species with a very small range provides 
higher spatial precision about the location of the impact, whereas a species with 
a large range may be impacted anywhere within a wide region. To address this 
lack of precision in the impact location, we took the area of each species range to 
serve as a proxy for the spatial certainty of the impact information. The certainty 
that a species was impacted or not impacted in a given cell depended on its range 
size, R. The models we evaluated therefore incorporated R in different ways 
(Supplementary Table 1).

The models were fitted as a binomial regression with a logit link function. For 
each pixel, the model predicts the probability of impact, PTh—in other words, the 
probability that if you sampled a species at random from those that occur in that 
pixel, the species would be impacted by the activity being considered. To account 
for uncertainties in the simulation of the threat assessment process (thresholds for 
impact and perfect or imperfect knowledge), models were fitted to the six sets of 
threat codes (C0.25, C0.5, C0.75, CUncertain-0.25, CUncertain-0.5 and CUncertain-0.75), and the root 
mean squared error (RMSE) was calculated between PTh and the simulated threat 
intensity, Z(r), for each value of r. For each simulation, we ranked the different 
models according to their model fit as measured by the RMSE. We assessed these 
ranks across all simulations and sets of threat codes. We evaluated the models on 
the basis of the ranks of RMSE, across the threat code sets and threat intensity 
maps. Rank distributions for each model are shown in Extended Data Fig. 2, and 
the results from these models are shown in Supplementary Tables 1 and 2.

All models were correlated (Pearson’s r2 > 0.5), albeit with some variation 
between model types and across the simulation parameters (Supplementary Fig. 2). 
However, some models had greater predictive accuracy when evaluated using the 
RMSE. The top four ranking models were, in order of decreasing summed rank, 
(1) inverse of cube root of range size as a weight, (2) inverse 2.5 root of range size 
as a weight, (3) inverse square root of range size as a weight and (4) inverse natural 
logarithm of range size as a weight. The fact that these four models showed good 
model fit suggests that the best model structure had a measure of range size as a 
weight but that the model was not particularly sensitive to the transformation of 
range size.

The best-fitting model across the range of simulation parameters was an 
intercept-only logistic regression where the response variable was the binary threat 
code (1 = threatened, 0 = not threatened) for each species in the pixel and where 
the inverse cube root of the range size of each species was used as a weight. The 
model was concordant across the set of simulated datasets with a relationship that 
was predominantly linear with r2 between 0.47 and 0.7, depending on simulation 
parameters for Z(r) in 0.05, 10−4 and 10−6, centred around unity and with the 
RMSE ranging between 0.129 and 0.337 depending on simulation parameters 
(Supplementary Figs. 2 and 3). The choice of the inverse cube root range size 
weight was based on the performance of this against eight other model types 
(Supplementary Fig. 4 and Supplementary Table 1).

We conducted a decomposition of variance in model performance using a 
binomial regression model, with RMSE as the dependent variable and model 
type, knowledge level and autocorrelation structure as the independent factorial 
variables. This showed that knowledge about the threats underlying each species 
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range and how that threat information is used in the assessment explained the vast 
majority (94.7%) of the variation in RMSE outcomes (Supplementary Fig. 4).

For birds, further information on the scope of the threat was available as an 
ordinal variable describing the fraction of range that the threat covers. We explored 
the use of scope in our models but concluded that to avoid arbitrary decisions 
about the scope of non-threatened species (where they are either not threatened 
anywhere or threatened in only a small part of their range), and for consistency 
with other taxonomic groups, we would model birds using the same model 
structure as used for mammals and amphibians (see the Supplementary Methods 
for further details).

Mapping probability of impact. Once the best-performing model was identified 
using the simulated data, we then used this model on the actual Red List threat 
and range data to develop threat maps. This model produced threat maps for each 
taxonomic group (amphibians, birds and mammals) of the probability of impact, 
PTh, for each individual threat. For a given pixel, threat and taxonomic group, this 
estimates the probability that a randomly sampled species with a range overlapping 
with that pixel is being impacted by the threat, while taking into account spatial 
imprecision in the Red List data.

Threat maps were generated using range map data and threat assessments 
from the IUCN Red List18. We intersected range maps for 22,898 extant terrestrial 
amphibians (n = 6,458), birds (n = 10,928; excluding the spatial areas within the 
range that are associated with ‘Passage’—where the species is known or thought 
very likely to occur regularly during relatively short periods of the year on 
migration) and mammals (n = 5,512; including those with uncertain ranges) with 
a global 50 km × 50 km (2,500 km2) resolution, equal-area grid for the terrestrial 
world. This provided, for each 50 km × 50 km pixel, a list of the species whose 
range overlapped it, along with the associated range size of each species. For each 
pixel and taxonomic group (amphibians, birds and mammals) independently, 
we then modelled the probability of impact, PTh,Activity (for example, PTh,Logging for 
logging, PTh,Agriculture for agriculture or PTh,Pollution for pollution), for each of the six 
threats: agriculture, hunting and trapping, logging, pollution, invasive species 
and diseases, and climate change. We focused on these as the six main threats as 
defined by the Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services4, but our methodological framework is flexible and could be 
expanded to other threats in the IUCN classification19. We used only taxonomic 
groups with a sufficiently high total number of species and where they have been 
comprehensively assessed so that potential biases associated with the groups of 
species prioritized by experts are avoided.

Calculating uncertainties for the threat probability. We estimated a measure  
of uncertainty associated with our impact probability predictions using maps  
of the proportions of Data Deficient species in each cell within each taxonomic 
class (amphibians, birds or mammals) as a measure of knowledge certainty  
in that cell. The rationale for this approach is that places with more Data Deficient 
species with unknown threatened status should have greater uncertainty in the 
probability of impact. We therefore created greater variation in the data where 
there were more Data Deficient species. We used the knowledge-certainty map 
to probabilistically draw a sample of 100 threat codes for each species, on the 
basis of the median Data Deficiency across the species range. The random sample 
changed the species threat code with a probability related to the proportion of 
Data Deficient species within its range. If the median proportion of Data Deficient 
species was zero, then we assumed that there was a small probability (0.005) that 
the species could have been incorrectly coded. Where the median proportion was 
greater than zero, the probability increased linearly. So, for a species with 5% Data 
Deficient species within its range, the sample changed the species threat code 
with a probability close to 5%; if the median proportion was equal to 0.5, then 
the probability of the species being incorrectly assigned was equal to 0.5. We then 
fitted the impact probability model with each of the 100 species threat codes and 
generated a distribution of predicted threat probabilities in each grid cell, from 
which we took the 95% confidence intervals as the uncertainty estimates  
(Extended Data Figs. 8–10).

Evaluating modelled threat patterns. We evaluated the spatial patterns of threat 
on the basis of the real Red List threat assessment data against empirical data 
in two independent ways. First, we compared the probability of impact from 
logging and agriculture combined within forested biomes (that is, corresponding 
to remotely detected forest loss, which we refer to as the probability of impact 
from forest loss, PTh,Forest-loss) with data on forest cover change10. Forest cover 
change was aggregated from their native 30 m × 30 m (900 m2) resolution pixels 
to our 50 km × 50 km resolution pixels using Google Earth Engine. For each 
50 km × 50 km pixel, we calculated the total area lost between 2000 and 2013 and 
the area lost as a proportion of the area in 2000. We restricted our analysis to 
forested biomes: (1) tropical and subtropical moist broadleaf forests, (2) tropical 
and subtropical dry broadleaf forests, (3) tropical and subtropical coniferous 
forests, (4) temperate broadleaf and mixed forests, (5) temperate coniferous 
forests and (6) boreal forests/taiga, following the World Wildlife Fund’s ecoregions 
classification53. The relationship between forest loss and the probability of impact 
from forest loss as captured by agriculture and logging overall showed a significant 

positive correlation: PTh,Forest-loss increased with increasing forest cover loss 
(P < 1 × 10−5, Supplementary Fig. 5) but also showed some nuances.

Second, we evaluated threat levels against threat for about 6,000 KBAs assessed 
by specialists through a rigorously tested and standardized approach developed 
by Bird Life International20. For a given activity, we calculated the median of 
predicted impact probabilities within each KBA and then grouped these KBA 
estimates by KBA severity class. On average, PTh was higher in KBAs assessed as 
having a high severity of threat from an activity than in KBAs classed as having 
low threat. Significant relationships (P < 0.05, Wilcoxon test) were found in one 
or more taxonomic groups for logging, agriculture, hunting and climate change. 
For both evaluations, we conclude that the modelled spatial patterns of threat were 
consistent with expectations from the empirical data (Supplementary Figs. 5–11). 
We subsequently shared threat maps with taxon-specific experts from the Red List 
assessment groups, who qualitatively reviewed the patterns and assessed them as 
consistent with expert knowledge. Further details on the evaluation methods can 
be found in the Supplementary Methods.

We suggest that the broad concordance with empirical data in two independent 
evaluations demonstrates that the maps of impact probability are sufficiently 
plausible to underpin the findings of this study. We provide a framework that can 
easily be updated with future versions of the IUCN data, and we also stress that 
our approach should be viewed as an initial attempt to map patterns of threat 
impacts, which should be used iteratively to guide the collection of new data and 
improvement of the mapping approaches used.

Comparing threat occurrence likelihoods and the HFI. HFI data for the year 
2009 were taken from Venter et al.11. The native resolution of the index was 1 km2, 
so we calculated the mean HFI in each 50 km × 50 km pixel used in our analysis. 
The HFI was standardized to lie within the bounds 0 and 1 by dividing by the 
maximum HFI value (50).

We compared the standardized, averaged HFI values to the predicted likelihood 
of threat occurring from land use change, hunting and trapping, and climate change. 
For land use change, we combined agriculture and logging by calculating the 
unweighted mean threat occurrence likelihood across taxa for these two threats. For 
hunting and trapping, we took the mean threat occurrence likelihood across taxa, 
while for climate change we used the predicted threat occurrence likelihood for birds.

To plot the spatial relationship between HFI and mean threat occurrence 
likelihood, we used a two-dimensional kernel density estimator (MASS package54) 
to estimate the variation in the density of pixels for a given HFI and mean threat 
occurrence likelihood.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The data on range maps are freely available at https://www.iucnredlist.org/
resources/spatial-data-download and http://datazone.birdlife.org/species/
requestdis. The IUCN threat classification assessment data can be downloaded 
using the Red List API (http://apiv3.iucnredlist.org/api/v3/docs) or on request 
from the IUCN’s Global Species Programme Red List Unit (redlist@iucn.org). 
Other data are freely available using citations in the manuscript.

Code availability
The code is available from the GitHub repository (https://github.com/mikeharfoot/
ThreatMapping).

Received: 26 March 2021; Accepted: 15 July 2021;  
Published online: 30 August 2021

References
 1. Ste�en, W., Grinevald, J., Crutzen, P. & McNeill, J. �e Anthropocene: 

conceptual and historical perspectives. Phil. Trans. R. Soc. A 369,  
842–867 (2011).

 2. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? 
Nature 471, 51–57 (2011).

 3. Tittensor, D. P. et al. A mid-term analysis of progress toward international 
biodiversity targets. Science 346, 241–244 (2014).

 4. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 
Services, 2019 (�e IPBES Global Assessment on Biodiversity and Ecosystem 
Services, Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services, 2019).

 5. Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352,  
416–418 (2016).

 6. Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. &  
Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced 
mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).

 7. Early, R. et al. Global threats from invasive alien species in the twenty-�rst 
century and national response capacities. Nat. Commun. 7, 12485 (2016).

NATURe eCOLOGy & eVOLUTION | VOL 5 | NOVEMBER 2021 | 1510–1519 | www.nature.com/natecolevol1518

https://www.iucnredlist.org/resources/spatial-data-download
https://www.iucnredlist.org/resources/spatial-data-download
http://datazone.birdlife.org/species/requestdis
http://datazone.birdlife.org/species/requestdis
http://apiv3.iucnredlist.org/api/v3/docs
https://github.com/mikeharfoot/ThreatMapping
https://github.com/mikeharfoot/ThreatMapping
http://www.nature.com/natecolevol


ARTICLESNATURE ECOLOGY & EVOLUTION

 8. Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive 
species. Sci. Adv. 3, e1603080 (2017).

 9. Wilson, K. et al. Measuring and incorporating vulnerability into conservation 
planning. Environ. Manage. 35, 527–543 (2005).

 10. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover 
change. Science 342, 850–853 (2013).

 11. Venter, O. et al. Sixteen years of change in the global terrestrial human 
footprint and implications for biodiversity conservation. Nat. Commun. 7, 
12558 (2016).

 12. Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic 
biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).

 13. Balmford, A. et al. Capturing the many dimensions of threat: comment on 
Salafsky et al. Conserv. Biol. 23, 482–487 (2009).

 14. Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the 
radar: mitigating enigmatic ecological impacts. Trends Ecol. Evol. 29,  
635–644 (2014).

 15. Tulloch, V. J. D. et al. Why do we map threats? Linking threat mapping  
with actions to make better conservation decisions. Front. Ecol. Environ. 13, 
91–99 (2015).

 16. Brooks, T. M. et al. Harnessing biodiversity and conservation knowledge 
products to track the Aichi targets and Sustainable Development Goals. 
Biodiversity 16, 157–174 (2015).

 17. Ju�e-Bignoli, D. et al. Assessing the cost of global biodiversity and conservation 
knowledge. PLoS ONE 11, e0160640 (2016).

 18. �e IUCN Red List of �reatened Species Version 2019-3 (IUCN, 2019); 
https://www.iucnredlist.org

 19. Salafsky, N. et al. A standard lexicon for biodiversity conservation: uni�ed 
classi�cations of threats and actions. Conserv. Biol. 22, 897–911 (2008).

 20. Monitoring Important Bird Areas: A Global Framework Version 1.2. (BirdLife 
International, 2006).

 21. Ho�mann, M. et al. �e impact of conservation on the status of the world’s 
vertebrates. Science 330, 1503–1509 (2010).

 22. Hof, C., Araujo, M. B., Jetz, W. & Rahbek, C. Additive threats from 
pathogens, climate and land-use change for global amphibian diversity. 
Nature 480, 516–519 (2011).

 23. Mammides, C. et al. Increasing geographic diversity in the international 
conservation literature: a stalled process? Biol. Conserv. 198, 78–83 (2016).

 24. Holmes, N. D. et al. Globally important islands where eradicating invasive 
mammals will bene�t highly threatened vertebrates. PLoS ONE 14,  
e0212128 (2019).

 25. Sanderson, E. W. et al. �e human footprint and the last of the wild. 
Bioscience 52, 891–904 (2002).

 26. Secretariat of the Convention on Biological Diversity Global Biodiversity 
Outlook 5 (Convention on Biological Diversity, 2006).

 27. Hulme, P. E. Protected land: threat of invasive species. Science 361,  
561–562 (2018).

 28. Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).
 29. Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl 

Acad. Sci. USA 100, 10309–10313 (2003).
 30. Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. 

Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 
573, 582–585 (2019).

 31. Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. 
Assessing the causes of Late Pleistocene extinctions on the continents. Science 
306, 70–75 (2004).

 32. Yackulic, C. B., Sanderson, E. W. & Uriarte, M. Anthropogenic and environ-
mental drivers of modern range loss in large mammals. Proc. Natl Acad.  
Sci. USA 108, 4024–4029 (2011).

 33. Butchart, S. H. M. et al. Using Red List indices to measure progress towards 
the 2010 target and beyond. Phil. Trans. R. Soc. B 360, 255–268 (2005).

 34. Rodrigues, A. S. L. et al. Spatially explicit trends in the global conservation 
status of vertebrates. PLoS ONE 9, e113934 (2014).

 35. Di Minin, E. et al. Identifying global centers of unsustainable commercial 
harvesting of species. Sci. Adv. 5, eaau2879 (2019).

 36. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
 37. Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s 

mammals. R. Soc. Open Sci. 3, 160498 (2016).
 38. Evans, M. C. et al. �e spatial distribution of threats to species in Australia. 

BioScience 61, 281–289 (2011).
 39. Schipper, J. et al. �e status of the world’s land and marine mammals: 

diversity, threat, and knowledge. Science 322, 225–230 (2008).
 40. Redford, K. H. �e empty forest. Bioscience 42, 412–422 (1992).
 41. Stokstad, E. �e empty forest. Science 345, 396–399 (2014).
 42. McCullough, D. G., Work, T. T., Cavey, J. F., Liebhold, A. M. & Marshall, D. 

Interceptions of nonindigenous plant pests at US ports of entry and border 
crossings over a 17-year period. Biol. Invasions 8, 611–630 (2006).

 43. �eoharides, K. A. & Dukes, J. S. Plant invasion across space and time: 
factors a�ecting nonindigenous species success during four stages of invasion. 
N. Phytol. 176, 256–273 (2007).

 44. Pyšek, P. et al. Geographical and taxonomic biases in invasion ecology.  
Trends Ecol. Evol. 23, 237–244 (2008).

 45. Jung, M. et al. Areas of global importance for terrestrial biodiversity, carbon, 
and water. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2020).

 46. Hulme, P. E. et al. Greater focus needed on alien plant impacts in protected 
areas. Conserv. Lett. 7, 459–466 (2014).

 47. Lydeard, C. et al. �e global decline of nonmarine mollusks. Bioscience 54, 
321–330 (2004).

 48. McGeoch, M. A. et al. Global indicators of biological invasion: species 
numbers, biodiversity impact and policy responses. Divers. Distrib. 16, 
95–108 (2010).

 49. Coad, L. et al. Widespread shortfalls in protected area resourcing signi�cantly 
undermine e�orts to conserve biodiversity. Front. Ecol. Environ. 17,  
259–264 (2019).

 50. Bird Species Distribution Maps of the World (BirdLife International, 
NatureServe, 2017).

 51. Red List of �reatened Species Version 2017.3 (IUCN, 2017).
 52. IUCN–CMP �reats Classi�cation Scheme Version 3.2.20 (International Union 

for the Conservation of Nature, Conservation Measures Partnership, 2019).
 53. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on 

Earth. Bioscience 51, 933–938 (2001).
 54. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn 

(Springer, 2002).

Acknowledgements
We thank the thousands of people who participate in the Red List. We also thank  

S. Stuart for valuable input on the amphibian maps. We thank N. Dulvy and S. 

Stuart for early input on the approach. This work is supported by the Cambridge 

Conservation Initiative collaborative grants programme (all), the EU’s Horizon 2020 

Marie Skłodowska-Curie action (grant no. 706784, J.G.), VILLUM FONDEN (grant no. 

VKR023371, J.G.), Independent Research Fund Denmark’s Sapere Aude (grant no.  

0165-00018B, J.G.), UK Research and Innovation’s Global Challenges Research Fund: 

Trade, Development and the Environment Hub project (grant no. ES/S008160/1,  

N.D.B and M.B.J.H) and the KR Foundation and Hempel Foundation (‘Designing a 

brighter future for biodiversity’, N.D.B. and M.B.J.H.).

Author contributions
J.G. conceived the study. M.B.J.H. and J.G. designed the study and analysis with 

substantial input from A.J.; M.H., S.H.M.B. and C.H.-T. facilitated access to the data and 

provided important context for its use. J.G. and M.B.J.H. led the interpretation of the data 

and writing of the manuscript, with valuable input from A.B., N.D.B., S.H.M.B., M.P.D., 

C.H., C.H.-T., M.H., N.J.B.I., L.L.I., A.J., C.L.O. and P.V. throughout the process.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41559-021-01542-9.

Supplementary information The online version contains supplementary material 

available at https://doi.org/10.1038/s41559-021-01542-9.

Correspondence and requests for materials should be addressed to 

Michael B. J. Harfoot or Jonas Geldmann.

Peer review information Nature Ecology & Evolution thanks the anonymous reviewers 

for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 

the Creative Commons license, and indicate if changes were made. The images or other 

third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in a credit line to the material. If material is not included in 

the article’s Creative Commons license and your intended use is not permitted by statu-

tory regulation or exceeds the permitted use, you will need to obtain permission directly 

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2021

NATURe eCOLOGy & eVOLUTION | VOL 5 | NOVEMBER 2021 | 1510–1519 | www.nature.com/natecolevol 1519

https://www.iucnredlist.org
https://doi.org/10.1038/s41559-021-01528-7
https://doi.org/10.1038/s41559-021-01542-9
https://doi.org/10.1038/s41559-021-01542-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natecolevol


ARTICLES NATURE ECOLOGY & EVOLUTIONARTICLES NATURE ECOLOGY & EVOLUTION

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Framework for model generation. Step one involves the generation of an artificial simulated threat likelihood surface. In step 2 real 

range-maps are overlaid this surface and for each range, a category of either “affected” or “not affected” is assigned based on the values of the threat 

surface. Several different approaches based on median, mean, max was tested. In step three the ranges with the binary threat categorization are modelled 

using a series of probabilistic models. In step 4 the models from step 3 are correlated with the original simulated threat surface to identify the modelling 

approach that best re-produced the simulated surface. Once the best model is identified we progressed to validate it against two independent datasets.
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Extended Data Fig. 2 | Rank frequency distributions for each of the models evaluated against simulated maps of threat intensity with different spatial 

autocorrelation (SAC) structures, (Low SAC r = 0.3, Medium SAC – r = 0.05, High SAC – r =  1 × 10-4, Very high SAC – r = 1 × 10-6) and uncertainties of 

knowledge used to generate threat codes (C0.25, C0.5, C0.75, CUncertain-0.25, CUncertain-0.5, CUncertain-0.75).

NATURe eCOLOGy & eVOLUTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ARTICLESNATURE ECOLOGY & EVOLUTION ARTICLESNATURE ECOLOGY & EVOLUTION

Extended Data Fig. 3 | Distributions of the pixel occurrence likelihood values for the six threats and for each taxonomic group, arranged in descending 

order of mean impact probability across taxa per threat.
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Extended Data Fig. 4 | The expected number of amphibian species in each 50 × 50 km cell impacted by (a) logging, (b) agriculture, (c) hunting, (d) 

pollution, (e) invasive species, and (f) climate change. Darker colours indicate higher numbers. Grey indicates areas with fewer than 10 species for which 

the threat probability models were not calculated.
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Extended Data Fig. 5 | The expected number of bird species in each 50 × 50 km cell impacted by (a) logging, (b) agriculture, (c) hunting, (d) pollution, 

(e) invasive species, and (f) climate change. Darker colours indicate higher numbers. Grey indicates areas with fewer than 10 species for which the threat 

probability models were not calculated.
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Extended Data Fig. 6 | The expected number of mammal species in each 50 × 50 km cell impacted by (a) logging, (b) agriculture, (c) hunting, (d) 

pollution, (e) invasive species, and (f) climate change. Darker colours indicate higher numbers. Grey indicates areas with fewer than 10 species for which 

the threat probability models were not calculated.

NATURe eCOLOGy & eVOLUTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ARTICLESNATURE ECOLOGY & EVOLUTION ARTICLESNATURE ECOLOGY & EVOLUTION

Extended Data Fig. 7 | Map of the proportion of Data Deficient amphibian, bird or mammal species relative to the total number of species from these taxa 

occurring in each cell.
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Extended Data Fig. 8 | Uncertainty associated with estimated threat probabilities for mammals in response to (a) logging, (b) agriculture, (c) hunting,  

(d) invasive species, (e) pollution and (f) climate change. Uncertainty is calculated as the 95-per cent range of estimated threat probabilities from  

100 draws of threat codes taking into account uncertainty of knowledge about each species informed by the proportion of Data Deficient species across 

each species range.
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Extended Data Fig. 9 | Uncertainty associated with estimated threat probabilities for birds in response to (a) logging, (b) agriculture, (c) hunting,  

(d) invasive species, (e) pollution and (f) climate change. Uncertainty is calculated as the 95-per cent range of estimated threat probabilities from  

100 draws of threat codes taking into account uncertainty of knowledge about each species informed by the proportion of Data Deficient species across 

each species range.
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Extended Data Fig. 10 | Uncertainty associated with estimated threat probabilities for amphibians in response to (a) logging, (b) agriculture, (c) hunting, 

(d) invasive species, (e) pollution and (f) climate change. Uncertainty is calculated as the 95-per cent range of estimated threat probabilities from  

100 draws of threat codes taking into account uncertainty of knowledge about each species informed by the proportion of Data Deficient species across 

each species range.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used

Data analysis R version 3.6.3 (x64) was used for data analysis and visualisations. Code is available from the github repository https://github.com/
mikeharfoot/ThreatMapping

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data on range maps are freely available at https://www.iucnredlist.org/resources/spatial-data-download and http://datazone.birdlife.org/species/requestdis. IUCN 
threat classification assessment data can be downloaded using the Red List API (http://apiv3.iucnredlist.org/api/v3/docs) or on request from IUCN’s Global Species 
Programme Red List Unit (redlist@iucn.org). Other data are freely available using citations in the manuscript.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We use expert-derived information from the IUCN Red List on the range of species occurrence and threat classification assessment 
for 23,271 species, representing all terrestrial amphibians, birds and mammals, to estimate impact probability for six major threats to 
these groups: agriculture, hunting & trapping, logging, invasive species, pollution, and climate change. The study uses expert-derived 
spatial data and binary threat assessment data. Our study is spatially explicit, using a 50km x 50km global grid. The modelling 
approach was developed using simulated data then evaluated using datasets most closely related to spatial threat distribution: global 
deforestation data (Hansen et al., Science, 2013) and threat assessments for Key Biodiversity Areas. Models of the impact probability 
were parameterised independently for each pixel and were only considered valid where there were more than 10 species present 
within the grid cell.

Research sample Our sample was all terrestrial amphibians, birds and mammals as assessed by the IUCN Red List.

Sampling strategy We chose to use the comprehensively assessed taxonomic groups within the IUCN Red List, in order to avoid spatial bias in modelling 
that might result from sampling bias towards locations where taxa are more likely to be assessed. These groups have also been 
assessed against the Red List Threat Classification scheme.

Data collection Data was obtained from the IUCN Red List as described in the Data availability statement above

Timing and spatial scale The Red List Assessment process if an assessment of the threat status of contemporary organisms and is continually being updated. 
We used the Red List version 2017-3. The data is global in scale.

Data exclusions When fitting models for each of the groups (amphibians, birds or mammals) data was excluded where it occurred in spatial pixels for 
which fewer than 10 species from that taxonomic group were estimated to occur in that cell. This threshold was used as a 
conservative estimate of the data needed to constrain our simple models and to avoid spurious results.

Reproducibility We did not conduce experiments, however we have ensured that the data used in our analysis and the code used for the analysis is 
freely available. 

Randomization Organisms were grouped according to their taxonomy reflecting qualitatively different ways in which they may be be impacted by 
human activities.

Blinding Blinding was not relevant for our study because we were not testing for differential effects between groups

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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