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Abstract

Background—Administrative health care databases are increasingly used for health services and 

comparative effectiveness research. When comparing outcomes between different treatments, 

interventions or exposures, the ability to adjust for differences in the risk of the outcome occurring 

between treatment groups is important. Similarly, when conducting health care provider profiling, 

adequate risk-adjustment is necessary for conclusions about provider performance to be valid. 

There are limited validated methods for risk-adjustment in ambulatory populations using 

administrative health care databases.

Objectives—To examine the ability of the Johns Hopkins’ Aggregated Diagnosis Groups 

(ADGs) to predict mortality in a general ambulatory population cohort.

Research Design—Retrospective cohort constructed using population-based administrative 

data.

Subjects—All 10,498,413 residents of Ontario, Canada between the ages of 20 and 100 years 

who were alive on their birthday in 2007. Subjects were randomly divided in derivation and 

validation samples.

Measures—Death within one year of the subject’s birthday in 2007.

Results—A logistic regression model consisting of age, sex, and indicator variables for 28 of the 

32 ADG categories had excellent discrimination: the c-statistic (equivalent to the area under the 

ROC curve) was 0.917 in both derivation and validation samples. Furthermore, the model 

demonstrated very good calibration. In comparison, the use of the Charlson comorbidity index or 
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the Elixhauser comorbidities resulted in a minor decrease in discrimination compared to the use of 

the ADGs.

Conclusions—Logistic regression models using age, sex, and the John Hopkins ADGs were 

able to accurately predict one-year mortality in a general ambulatory population of subjects.
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1. Introduction

The ability to characterize the comorbidity burden of a population is of great importance in 

many areas of health services and comparative effectiveness research. When using 

observational or non-randomized studies to compare outcomes between subjects receiving 

different treatments, exposures, or interventions, the ability to adjust for systematic 

differences in outcome risk between treatment groups can reduce bias when comparing 

outcomes between treatment groups. Furthermore, adjusting for comorbidity burden allows 

for valid risk-adjusted estimates of the performance of different health care providers [1].

Several methods have been derived for summarizing the comorbidity burden of a patient 

population using administrative data. Charlson et al. derived and validated a weighted index 

of comorbidities for predicting mortality in hospitalized general medical patients, which was 

subsequently adapted by Deyo et al. for use with the International Classification of Diseases 

(ICD-9-CM) diagnosis and procedure codes that are frequently used in electronic health care 

administrative data [2,3]. The use of the Deyo-Charlson comorbidity index for risk-

adjustment is ubiquitous in health services research. Similarly, Elixhauser et al. developed a 

method to classify comorbidities in hospitalized patients using diagnoses coded using the 

ICD-9-CM diagnosis codes in administrative data [4]. Both of these schemes have been 

updated for use with the ICD-10 diagnosis classification scheme [5,6]. Schneeweiss et al. 

proposed that the number of unique drugs prescribed be used for risk-adjustment purposes 

[7]. Another method used for risk-adjustment is the Chronic Disease Score, which uses 

outpatient pharmacy records [8]. A limitation of the former two approaches is their reliance 

on hospitalization records, which limits their utility in ambulatory populations of patients. A 

limitation of the latter two methods is their use of prescription records. In many 

jurisdictions, data on drug prescribing are not available for the entire population.

The Johns Hopkins Adjusted Clinical Groups (ACGs)® are a person-focused, diagnosis-

based method of categorizing subjects’ illnesses. The ACG system assigns each 

International Classification of Disease (ICD) codes (-9 version, -9-CM version, or -10 

version) to one of 32 diagnosis clusters known as Aggregated Diagnosis Groups (ADG). 

Individual diseases or conditions are placed into a single ADG based on five clinical 

dimensions: duration of the condition; severity of the condition; diagnostic certainty; 

etiology of the condition; and specialty care involvement [9–12]. ICD codes within the same 

ADG are similar in both clinical criteria and expected need for healthcare resource. Each 

individual may have diagnoses belonging to between zero and 32 ADGs. The 32 ADGs can 
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be collapsed into 12 Collapsed ADGs (CADG). As with the ADGs, a given diagnosis 

belongs in only one CADG; however, subjects can have multiple diagnoses, each of which 

can be within different CADGs. Finally, subjects are assigned to exactly one of 106 ACGs. 

Subjects within the same ACG are expected to have similar healthcare resource utilization. 

The reader is referred elsewhere for a greater discussion of the ADG and ACG methodology 

[9–12]. Importantly, the ADG/ACG definitions do not rely solely on the use inpatient health 

administrative data, but also use data contained in ambulatory health care data. Thus, ICD 

diagnosis codes obtained from physician billing claims can be used in addition to ICD 

diagnosis codes contained in electronic hospital discharge abstracts.

The Johns Hopkins ADGs and ACGs were developed for predicting health care resource 

utilization. Several studies have examined the ability of these classifications to predict health 

care use. However, there is a paucity of research into the ability of these comorbidity 

classification schemes to predict mortality. A few studies have examined the ability of the 

Johns Hopkins ACGs to predict mortality [13–17]. Depending on the patient population and 

the duration of follow-up for determining mortality, c-statistics for models that included the 

ACGs in addition to age and/or sex ranged from 0.701 to 0.768. To the best of our 

knowledge, no studies have examined the ability of the ADG comorbidity classification 

scheme to predict mortality. There are fewer ADGs than there are categories in the ACG 

classification. There are two potential advantages to the use of ADGs to predict mortality 

compared to using ACGs. First, there is the potential for more parsimonious regression 

models. Second, since patient risk may be related to multiple conditions and there are 232 

possible combinations of ADGs, use of the ADGs may permit more accurate mortality 

prediction compared to the use of the ACGs.

There is increasing interest in using administrative health care data to compare the effects of 

treatments, interventions, or exposures in non-hospitalized or ambulatory populations. 

Mortality is an outcome that is frequently used in health services and comparative 

effectiveness research. The objective of the current study was to determine whether ADGs 

can be used to accurately predict mortality in a general adult population cohort.

2. Methods

2.1 Data sources

In the Canadian province of Ontario, all medically necessary services are provided within a 

single-payor public health care system, with no parallel private system. The Ontario Health 

Insurance Plan (OHIP) is a government-funded universal health insurance program that 

funds physician services, while hospital, long term care, and home care services are funded 

by the Ministry of Health and Long-Term Care. These services are provided to all residents 

of Ontario, without deductibles or co-payments. Furthermore, prescription drug coverage is 

provided to all residents over the age of 65 years as well as to those on social assistance.

We used four different population-based administrative health care databases that were 

linked by encrypted health number. The Registered Persons Database (RPDB) contains basic 

demographic information on all Ontarians who were ever eligible for Ontario’s universal 

health care insurance program. The RPDB contains information on each resident’s date of 
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birth, sex, and date of death (if applicable). The Canadian Institute for Health Information 

(CIHI) Discharge Abstract Database (DAD) contains information on all inpatient 

hospitalizations in the province of Ontario. For each hospitalization record, there are 25 

fields for recording diagnoses made on the patient during the course of the hospitalization. 

Since 2002, diagnoses have been coded using the International Classification of Disease, 

10th Revision (ICD-10) coding scheme. The Ontario Health Insurance Plan (OHIP) 

physician billing database contains billing claims submitted by Ontario physicians to the 

provincial universal health insurance program. Each claim contains a fee code describing the 

type of service provided, and a diagnosis code denoting a reason for the service. The 

diagnosis field is coded using a truncated version of the ICD-9 coding scheme [18]. The 

Ontario Mental Health Reporting System (OMHRS) collects data on patients in adult-

designated inpatient mental health beds. This includes beds in general, provincial 

psychiatric, and specialty psychiatric facilities. The OMHRS contains data on reasons for 

admission and for discharge and on psychiatric and non-psychiatric diagnoses.

2.2 Study subjects

The study sample consisted of all subjects in the RPDB who were alive and eligible on their 

birthday in 2007. Each subject’s birthday in 2007 served as the subject-specific index date. 

We excluded subjects who were aged less than 20 years or older than 100 years on the index 

date.

For each subject we determined whether they died within the 365 days following their index 

date. For each subject, we identified all diagnoses associated with all hospital admissions 

from the CIHI DAD and all physician billing claims in the OHIP database for physician 

services provided in the two years prior to the index date. For each subject, we used the 

Johns Hopkins ACG® software program to collapse these diagnoses to the 32 ADGs. Thus, 

for each subject, we determined whether an ICD diagnosis code within each of the 32 ADGs 

had occurred in the two years prior to the index date.

2.3 Statistical Methods

For each of the 32 ADGs, we compared the probability of death within 365 days of the index 

date for those with and without diagnoses in the given ADG using the Chi-squared test.

In order to evaluate the performance of ADG-based methods for predicting mortality in a 

sample that was independent of the sample in which regression models were derived, we 

used a random number generator to divide the overall sample into approximately equally 

sized derivation and validation samples. Using the subjects in the derivation sample, we used 

logistic regression to regress the occurrence of death within 365 days of the index date on 

age (assuming a linear relationship between age and the log-odds of death), sex, and 32 

indicator variables representing the presence or absence of the 32 ADGs. This model will be 

called the ‘full logistic regression model’. Backwards variable elimination with a 

significance level of 0.05 for variable retention was used to develop a parsimonious logistic 

regression model for predicting mortality. The resultant model will be called the “final 

logistic regression model”.
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Model discrimination in the derivation sample was assessed using the c-statistic [19]. We 

used the final logistic regression model to obtain the predicted probability of mortality for 

each subject in the validation sample. The predictive accuracy of the model developed in the 

derivation sample was assessed in the validation sample using the c-statistic.

Model calibration was assessed in several manners. First, using the final logistic regression 

model, predicted probabilities of mortality were obtained for each subject in the validation 

sample. The validation sample was divided into 100 approximately equally sized groups 

using the centiles of predicted probability of mortality (each centile in the validation sample 

consisted of approximately 52,500 subjects). Within each of the 100 groups in the validation 

sample, we determined both the mean predicted probability of mortality based on the final 

logistic regression model and the observed probability of mortality amongst subjects in that 

group. The relationship between observed and predicted mortality was then examined 

graphically. Second, calibration-in-the-large was determined [20]. Calibration-in-the-large 

compares the mean predicted probability of death in the validation sample with the observed 

probability of mortality in the validation sample. Third, we determined the calibration slope 

(deviation of the calibration slope from unity denotes miscalibration) [20]. To do so, we used 

logistic regression to regress the occurrence of death within one year of the index date in the 

validation sample on the linear predictor of mortality obtained using the regression 

coefficients from the final logistic regression model (estimated in the derivation sample) 

applied to the subjects in the validation sample. In order to determine whether the 

performance of the full logistic regression was solely due to age and sex, we repeated the 

above process with a regression model that included only age and sex. We also repeated the 

above process with a regression model that only contained indicator variables for the 32 

ADGs and that excluded age and sex.

Analyses in health services research and pharmacoepidemiology are often restricted to those 

over the age of 65 years, since these subjects are eligible for Medicare in the United States 

and for provincial drug insurance coverage in Ontario. In order to determine whether the 

final logistic regression model performed differently in different age strata, we stratified 

each of the derivation and validation samples into two strata. The first consisted of subjects 

aged less than 65 years, while the second consisted of subjects aged 65 years and over. 

Within each of the two strata in the derivation sample we re-estimated the coefficients for 

the final logistic regression model. We then obtained predictions of the probability of death 

within 365 days for each subject in each of the two strata in the validation sample. The 

predictive accuracy of the final regression model was assessed in each stratum in the 

validation sample using the c-statistic.

Health services use is heavy during the final year of life [21–22]. We conducted a sensitivity 

analysis to address the concern that increased health services use during the last year of life 

would give rise to the opportunity for greater documentation of comorbidity. We excluded 

subjects who died within 365 days of their index date. In the sample of all subjects who 

survived for at least one year from their index date, we examined the ability of our final 

logistic regression model to predict the occurrence of death between 366 and 730 days 

following the index date. Methods similar to those described above were used for this 

sensitivity analysis.
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Finally, for comparative purposes, we examined the ability of two alternative comorbidity 

coding schemes to predict 1-year mortality in our overall population cohort. First, we 

calculated the Charlson comorbidity index [3,5] and the Elixhauser comorbidities [4,5] using 

data from hospitalization occurring in the two years prior to the index date (alternatively, 

researchers may include out-patient records in addition to in-patient records when 

determining whether a given comorbidity was present [23]). Diagnoses for coding the 

Charlson comorbidity index were obtained from the CIHI DAD. For the Elixhauser 

comorbidities, diagnoses were obtained from the CIHI DAD. For mental and addiction 

Elixhauser comorbidities, the OMHRS database was also used to identify occurrences of the 

given diagnoses. Subjects who had not been hospitalized in the previous two years had their 

Charlson score set to zero. Similarly, these subjects had their values of each of the 30 

Elixhauser comorbidities set to absent. For the Charlson comorbidity score, a logistic 

regression model to predict the probability of one-year mortality using the Charlson 

comorbidity index and age and sex was developed in the derivation sample. For the 

Elixhauser comorbidities, the coefficients for a logistic regression model with age, sex, and 

indicator variables for the 30 Elixhauser comorbidities were estimated in the derivation 

sample. The accuracy of each of these two models was assessed in the validation sample 

using the c-statistic.

3. Results

The study sample consisted of 10,498,413 subjects between the ages of 20 and 100 years. 

The median age was 46 (25th and 75th percentiles: 34 and 59, respectively). Women 

comprised 51% of the study sample. The prevalence of each of the 32 ADGs in the study 

sample is described in Table 1. The prevalence of the individual ADGs ranged from a low of 

0.5% (ADG: See and Reassure) to a high of 43.8% (ADG: Signs/Symptoms: Uncertain). 

Note that since the ADGs are not mutually exclusive, subjects with a diagnosis in a given 

ADG can also have diagnoses within other ADGs. While 43.8% of subjects had at least one 

diagnosis within the latter ADG (ADG: Signs/Symptoms: Uncertain), only 0.8% of subjects 

had diagnoses that lay solely within this ADG. The number of distinct ADGs in which 

subjects had diagnoses ranged from 0 (15.4% of subjects) to 25 (< 6 subjects). The median 

number of distinct ADG categories was 4 (the 25th and 75th percentiles were 2 and 7, 

respectively), while 95% of subjects had diagnoses in 11 or fewer ADGs.

Overall, 85,007 (0.81%) subjects died within 365 days of their index date. The 1-year 

mortality rate for those with and without each ADG is described in Table 1. For all 32 of 

ADGs, there was a statistically significantly difference in the probability of mortality 

between those with and without the ADG (P < 0.001). The statistical significance of many of 

these associations may be driven primarily by the very large size of our population sample.

The predictive accuracy of the different regression models are summarized in Table 2. The c-

statistic of the full logistic regression model (age, sex, and indicator variables for the 32 

ADGs) was 0.917 in both the derivation and validation samples. The c-statistic of regression 

model with only age and sex as predictor variables was 0.883 in both the derivation and 

validation samples. The c-statistics of the logistic regression that contained only indicator 

variables for the 32 ADGs was 0.866 and 0.864 in the derivation and validation samples, 
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respectively. The final logistic regression model contained 30 covariates: age, sex, and 

indicator variables for 28 ADGs. The c-statistic of the final logistic regression model was 

0.917 in both the derivation and validation samples. For comparative purposes, the c-statistic 

of the logistic regression that used the Charlson comorbidity index and age and sex was 

0.906 in both the derivation and validation samples. The c-statistic of the logistic regression 

model that used age, sex, and the 30 Elixhauser comorbidities was 0.909 in both the 

derivation and validation samples.

To assess the sensitivity of this finding to the particular split of the sample, we repeatedly 

split the original sample into derivation and validation samples 100 times. In each derivation 

sample we estimated the coefficients of the final regression model and applied these 

coefficients to the corresponding validation sample. The c-statistics ranged from 0.915 to 

0.919, with a median of 0.917.

The adjusted odds ratios for the association between age, sex, and the 28 ADGs and 1-year 

mortality in the derivation sample are reported in Table 3. The adjusted odds ratios for the 28 

ADGs ranged from a low of 0.656 (ADG: Chronic specialty: Unstable-Ear, Nose, Throat) to 

a high of 2.880 (ADG: Psychosocial: Recurrent or Persistent, Unstable).

The final logistic regression model predicted probabilities of 1-year mortality for each 

subject in the derivation sample. These predicted probabilities ranged from a low of 

0.000023 to a high of 0.8975. The relationship between the observed probability of death 

and the mean predicted probability of death across the 100 strata determined by the centiles 

of predicted probability of death in the validation sample is described in the left panel of 

Figure 1. A dotted diagonal line has been superimposed on the figure. Points on this 

diagonal line denote perfect concordance between observed and predicted mortality. In the 

94 subgroups with the lowest mean predicted probability of death, there was almost perfect 

concordance between the mean predicted probability of death and the proportion of subjects 

that died within one year of the index date. In all but the top three strata, the absolute 

difference between the observed probability of death and the mean predicted probability of 

death was less than 0.01. In the highest three strata, the difference between the observed 

probability of death and the mean predicted probability of death were 0.0141, 0.0175, and 

−0.0344, respectively. Across the 100 strata, the median difference between the observed 

probability of death the mean predicted probability of death was −0.00025 (25th and 75th 

percentiles: −0.00044 and 0.00004, respectively). We repeated the process of dividing the 

sample into derivation and validation components four additional times and determined the 

calibration of the model in the validation sample after estimating the regression coefficients 

in the derivation sample. The four resultant calibration plots were indistinguishable from that 

presented in the left panel of Figure 1. The center and right panels of Figure 1 depict the 

concordance between predicted and observed mortality for the Charlson and Elixhauser 

methods, respectively. Both of these methods had calibration that was comparable to that of 

the ADG model.

The final logistic regression model demonstrated excellent calibration-in-the-large, with an 

intercept of 0.0066 (95% CI: −0.0035 to 0.0166). The difference in log-odds between 

predictions and observed outcomes was not statistically significantly different from zero (P 
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= 0.2014). The calibration slope was equal to 0.9961 (95% CI: 0.9903 to 1.0019). Thus, the 

final logistic regression model displayed no lack of calibration in the validation sample. The 

Charlson and Elixhauser models displayed acceptable calibration-in-the-large and 

calibration slopes that were not different from 1.

We examined the performance of the final logistic regression model in subjects under the 

age of 65 years. The c-statistic of the final logistic regression model was 0.824 and 0.819 in 

the derivation and validation samples, respectively. In subjects over the age of 65 years, the 

c-statistic of the final logistic regression model was 0.816 and 0.814 in the derivation and 

validation samples, respectively. We speculate that the decreased discrimination when the 

sample was stratified by age was due to fewer individual differences in demographic and 

diagnostic profiles in the more homogeneous subsamples.

After excluding subjects who died within 365 days of their index date, the c-statistic of the 

final logistic regression model when used for predicting the probability of mortality between 

366 and 730 days of the index date was 0.905 in both the derivation and validation samples.

4. Discussion

We examined the ability of logistic regression models using age, sex, and the Johns Hopkins 

Aggregated Diagnosis Groups (ADGs) to predict the probability of death within one year in 

a general population cohort. We used a large, population-based sample consisting of all 

Ontarians between the ages of 20 and 100 years who were alive on their birthday in 2007. 

We found that logistic regression models based on age, sex, and the ADGs accurately 

predicted mortality in this population sample. A logistic regression model consisting of age, 

sex, and 28 ADGs had excellent discrimination and calibration.

In a review of comorbidity scores to control for confounding in administrative database 

research, Schneeweiss and Maclure found that the c-statistics for four versions of the 

Charlson score and two versions of the Chronic Disease Score ranged, depending on the 

population and exposure, from 0.64 to 0.77 for in-hospital or 30-day mortality [24]. While 

our study population consisted of ambulatory patients, the performance of ADGs for 

predicting mortality performed very favorably compared to that of previous comorbidity 

scores for predicting mortality.

One advantage of using the Johns Hopkins ADGs is its application to non-hospitalized 

cohorts. Adaptations of the Charlson comorbidity index for use with ICD-9-CM or ICD-10 

diagnostic codes are frequently used for comorbidity adjustment when estimating effects of 

exposures and treatments using administrative health care data, or for comparing outcomes 

across different health care providers. However, the original Charlson comorbidity score was 

derived in hospitalized general medical patients, and was initially validated in female 

oncology patients [3]. Furthermore, coding of the Deyo-Charlson index is designed for 

settings in which all subjects have been hospitalized, limiting its utility in ambulatory 

subjects. In contrast, ADGs can be determined for all subjects who have accessed the health 

care system, whether in an ambulatory setting or in a hospital setting. This permits 

comorbidity adjustment to be conducted in ambulatory populations, as well as in 
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hospitalized populations. For comparative purposes, we examined the predictive ability of 

logistic regression models that incorporated the Charlson comorbidity index or the 

Elixhauser comorbidities using data obtained from hospitalizations in the two years prior to 

the index date. We found that the use of these two models resulted in a minor decrease in 

discrimination compared to the model that incorporated the ADGs. However, calibration was 

approximately comparable across the three methods. Furthermore, it should be noted that 

use of a logistic regression model consisting of only age and sex resulted in only a modest 

decrease in discrimination compared to the other three regression models.

When choosing between risk-adjustment based on ADGs and risk-adjustment based on 

either the Charlson or Elixhauser comorbidities, one must consider several competing issues. 

Arguments in favor of an approach based on the ADGs include the minor increase in 

discrimination compared to the latter two approaches. Furthermore, the use of ADGs may 

have greater face validity since the ACG/ADG system was not designed primarily for use in 

hospitalized patients. Arguments in favor of the of the latter two approaches include the fact 

that the use of the ADGs requires a user license which typically requires a fee, whereas the 

Charlson and Elixhauser coding algorithms are non-proprietary and can be used without 

payment. It should be noted that the fee for using the ACG software may be nominal when 

used for research or academic purposes. A further relative disadvantage to the use of ADGs 

is that the assignment of ICD-9/10 diagnosis codes to ADGs is via a proprietary algorithm. 

Thus, the ADGs may be less transparent than the Charlson and Elixhauser comorbidity 

adjustment methods, for which the assignment of ICD-9/10 codes to different categories is 

explicitly described. As a consequence, it may difficult for researchers using the ADGs to 

fully explore their data so as to understand their results. Despite this lack of transparency, 

ACGs have been successfully used to predict mortality in several patient populations [13–

16].

We have shown that the ADGs can be used to accurately predict 1-year mortality in a 

general population cohort. However, their utility for predicting mortality in specific disease 

populations or for predicting other outcomes needs to be examined in future studies. When 

regression models using age, sex, and the ADGs are used for predicting mortality in other 

general population cohorts, we recommend that researchers recalibrate the model by 

estimating the regression coefficients in their specific populations, rather than using 

regression coefficients estimated in our sample.

In conclusion, a logistic regression model that used age, sex, and the Johns Hopkins 

Aggregated Diagnosis Groups accurately predicted mortality in a general population cohort. 

This method may be useful for risk-adjustment or comorbidity adjustment in health services 

research when comparing mortality between health care providers or when using 

observational studies to estimate the effects of exposures, treatments, and interventions on 

mortality.
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Figure 1. 
Calibration: Observed vs. predicted probability of death across the centiles of risk
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Figure 2. 
Calibration of Charlson and Elixhauser models
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Table 2

C-statistic (area under the ROC curve) for different models for predicting 1-year mortality in a population 

cohort.

Regression model Sample Predictive 
accuracy – 
derivation 
sample

Predictive 
accuracy – 
validation 
sample

Full logistic regression model (age, sex, 
and 32 ADGs)

Full population sample (ages 20 years to 100 years) 0.917 0.917

Age and sex Full population sample (ages 20 years to 100 years) 0.883 0.883

32 ADGs Full population sample (ages 20 years to 100 years) 0.866 0.864

Final logistic regression model Full population sample (ages 20 years to 100 years) 0.917 0.917

Charlson comorbidity index (in addition to 
age and sex)

Full population sample (ages 20 years to 100 years) 0.906 0.906

Elixhauser comorbidities (in addition to 
age and sex)

Full population sample (ages 20 years to 100 years) 0.909 0.909

Final logistic regression model Age < 65 years 0.824 0.819

Final logistic regression model Age ≥ 65 years 0.816 0.814

Final logistic regression model Subjects alive 365 days after index date (excluded 
subjects who died within 365 days of index date)

0.905 0.905
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Table 3

Adjusted association between age, sex, ADGs and 1-year mortality in the final regression model in the 

derivation sample.

Predictor variable Odds Ratio 95% Confidence Interval

Age (per year increase in age) 1.084 (1.083, 1.084)

Male subject 1.316 (1.289, 1.344)

Time Limited: Minor 0.946 (0.924, 0.968)

Time Limited: Minor-Primary Infections 1.114 (1.090, 1.139)

Time Limited: Major 1.652 (1.608, 1.697)

Time Limited: Major-Primary Infections 1.666 (1.622, 1.712)

Allergies 0.676 (0.641, 0.712)

Asthma 1.128 (1.085, 1.174)

Likely to Recur: Progressive 1.606 (1.561, 1.651)

Chronic Medical: Stable 0.827 (0.806, 0.849)

Chronic Medical: Unstable 1.849 (1.804, 1.894)

Chronic Specialty: Stable-Orthopedic 0.795 (0.745, 0.848)

Chronic Specialty: Stable-Ear, Nose, Throat 0.763 (0.727, 0.802)

Chronic Specialty: Stable-Eye 0.800 (0.778, 0.822)

Chronic Specialty: Unstable-Orthopedic 0.845 (0.799, 0.894)

Chronic Specialty: Unstable-Ear, Nose, Throat 0.656 (0.582, 0.739)

Chronic Specialty: Unstable-Eye 0.841 (0.814, 0.868)

Dermatologic 0.674 (0.653, 0.694)

Injuries/Adverse Effects: Major 1.159 (1.131, 1.187)

Psychosocial: Time Limited, Minor 1.166 (1.115, 1.219)

Psychosocial:Recurrent or Persistent, Stable 1.046 (1.022, 1.070)

Psychosocial:Recurrent or Persistent, Unstable 2.880 (2.809, 2.953)

Signs/Symptoms: Minor 1.248 (1.220, 1.277)

Signs/Symptoms: Uncertain 1.123 (1.095, 1.152)

Signs/Symptoms: Major 1.248 (1.219, 1.277)

Discretionary 0.835 (0.814, 0.857)

Prevention/Administrative 0.872 (0.853, 0.891)

Malignancy 2.397 (2.341, 2.454)

Pregnancy 0.732 (0.622, 0.862)

Dental 1.198 (1.113, 1.291)

Note: The effect of each variable listed in Table 3 is adjusted for all other variables in Table 3.
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