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Informáticos and Computer Science e Inteligencia Artificial

Univ. de Granada, Northwestern Univ., Univ. de Granada,

18071 Granada, Spain Evanston, Illinois 60208-3118 18071 Granada, Spain

Email: svillena@ugr.es, Email: sdb@northwestern.edu, Email: rms@decsai.ugr.es

mvega@ugr.es aggk@eecs.northwestern.edu

Abstract—This paper is devoted to the combination of image priors
in Super Resolution (SR) image reconstruction. Taking into account that
each combination of a given observation model and a prior model pro-
duces a different posterior distribution of the underlying High Resolution
(HR) image, the use of variational posterior distribution approximation
on each posterior will produce as many posterior approximations as
priors we want to combine. A unique approximation is obtained here
by finding the distribution on the HR image given the observations
that minimizes a linear convex combination of the Kullback-Leibler
divergences associated with each posterior distribution. We find this
distribution in closed form and also relate the proposed approach to
other prior combination methods in the literature. The estimated HR
images are compared with images provided by other SR reconstruction
methods.

Index Terms—Super resolution, combination of priors, variational
methods, parameter estimation, Bayesian methods.

I. INTRODUCTION

Image SR refers to the process of obtaining an HR image from

a set of degraded Low Resolution (LR) images. The basic principle

in SR is that changes in the LR images caused by the blur and the

(camera or scene) motion provide additional information that can be

utilized to reconstruct the HR image from the set of LR observations.

SR image reconstruction is still an open and widely investigated

area (see, for instance, [1]–[3]) where, as in many recovery problems,

the selection of priors is crucial to obtain a good reconstruction.

While in image restoration there have been several recent attempts

to combine image priors (see [4] and references therein), no such

attempts have been made in the SR literature.

In this paper, we develop a novel variational Bayesian methodology

to combine prior models in SR image reconstruction. While the

methodology can be developed more generally we present it here

for simplicity for the combination of a sparse and a non-sparse

image prior. We also show that this methodology applied to image

restoration produces, as a special case, the model developed in [4].

The rest of this paper is organized as follows. Section II provides

the mathematical model for the LR image acquisition process. We

provide the description of the hierarchical Bayesian framework

modeling the unknowns in Section III. The inference procedure

which develops the proposed method is presented in Section IV.

We demonstrate the effectiveness of the proposed approach with

experimental results in Section V. Finally, section VI concludes the

paper.

This work was supported in part by the Comisión Nacional de Ciencia
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gramme Consolider Ingenio 2010: MIPRCV (CSD2007-00018).

II. PROBLEM FORMULATION

The imaging process is assumed to have generated L LR images

yk, k = 1, . . . , L, from the HR image x. The LR images yk and the

HR image x consist of N and PN pixels, respectively, where the

integer P > 1 is the factor of increase in resolution. In this paper

we adopt the matrix-vector notation such that images yk and x are

arranged as N × 1 and PN × 1 vectors, respectively. The imaging

process introduces warping, blurring and downsampling, which is

modeled as

yk = AHkDkx + nk = Bkx + nk, (1)

where A is the N×PN downsampling matrix, Hk is the PN×PN
blurring matrix, Dk is the PN ×PN warping matrix and nk is the

N × 1 acquisition noise. In this work, we assume that the blurring

Hk matrices as well as the warping matrices Dk are known. The

effects of downsampling, blurring, and warping can be combined into

a single N ×PN system matrix Bk. Given (1), the super resolution

problem is to find an estimate of the HR image x from the set of LR

images {yk} using prior knowledge about {nk} and x.

III. HIERARCHICAL BAYESIAN MODELS

In the following subsections we provide the description of individ-

ual distributions used to model the unknowns.

Using the model in (1) and assuming that nk is zero-mean white

Gaussian noise with inverse variance (precision) βk, the conditional

distribution of the LR image yk is given by

p(yk|x, βk) ∝ β
N
2

k exp

[
−βk

2
‖ yk − Bkx ‖2

]
. (2)

Assuming statistical independence of the noise among the LR image

acquisitions, the conditional probability of the set of LR images y
given x and β = (β1, . . . , βL) can be expressed as

p(y|x, β) =

L∏
k=1

p(yk|x, βk) . (3)

As we have already explained in the introduction, in this paper for

simplicity we assume that we want to combine only a sparse prior, the

TV model [5], and a non-spare one, the simultaneous autoregression

(SAR) model [6]. Note that the idea of combining sparse and non-

sparse models has also been proposed in other contexts, see for

instance [7]. The TV prior, which is very effective in preserving

edges while imposing smoothness is defined by

p1(x|α1) ∝ c α
PN/2
1 exp

[
−1

2
α1TV(x)

]
, (4)
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where c is a constant and

TV(x) =

PN∑
i=1

√
(Δh

i (x))2 + (Δv
i (x))2. (5)

The operators Δh
i (x) and Δv

i (x) correspond, respectively, to the

horizontal and vertical first order differences at pixel i.

We also consider the SAR prior, defined as

p2(x|α2) ∝ α
P N
2

2 exp
{
−α2

2
‖Cx‖2

}
, (6)

where C is the Laplacian operator. This prior is expected to preserve

image textures better than the TV prior.

Notice that in principle we could have considered a prior model

of the form

p(x|α1, α2) =
1

Z(α1, α2)
exp

{
−α1TV(x) − α2

2
‖Cx‖2

}
, (7)

but since there is no known approximation to the partition function

Z(α1, α2), the estimation of these parameters would be impossible if

we use the prior model p(x|α1, α2) (see however [8] in the context

of model learning).

The hyperparameters {αi} and {βk} are crucial in determining

the performance of the SR algorithm. For their modeling, we employ

Gamma distributions, that is,

p(ω) = Γ(ω|ao
ω, bo

ω) =
(bo

ω)ao
ω

Γ(ao
ω)

ωao
ω−1 exp [−bo

ωω] , (8)

where ω > 0 denotes a hyperparameter, and ao
ω > 0 and bo

ω > 0 are

the shape and scale parameters, respectively.

Finally, combining (3) and (8), with the two different prior models

we obtain the joint probability distributions

pi(y, Ω, αi) = p(y|x, β)

L∏
k=1

p(βk)pi(x|αi) p(αi) , (9)

for i = 1, 2, where Ω = {x, β}.

IV. VARIATIONAL BAYESIAN INFERENCE

Let us denote the set of all unknowns by Θ = {Ω, α}, where α =
(α1, α2). Bayesian inference is based on the posterior distribution

p(Θ | y). We propose here to approximate this distribution by the

distribution minimizing the following linear convex combination of

Kullback-Leibler (KL) divergence measures

q̂(Θ) = argmin
q(Θ)

2∑
i=1

λiCKL(q(Ω)q(αi) ‖ pi(Ω, αi|y)) (10)

where λi ≥ 0, λ1 + λ2 = 1,

q(Ω) = q(x)
L∏

k=1

q(βk) , q(Θ) = q(Ω)

2∏
i=1

q(αi) , (11)

and the Kullback-Leibler (KL) divergences are given by

CKL(q(Ω)q(αi) ‖ pi(Ω, αi|y)) =∫
q(Ω)q(αi) log

(
q(Ω)q(αi)

pi(y, Ω, αi)

)
dΩdαi + const . (12)

The estimation of λ1 and λ2 will not be addressed in this paper,

but we will show experimentally that a non-degenerate combination

of divergences, λ1, λ2 > 0, provides a better reconstruction than a

degenerate one.

Taking into account that∫
q(Ω)q(αi) log

(
q(Ω)q(αi)

pi(y, Ω, αi)

)
dΩdαi =∫

q(Θ) log

(
q(Ω)q(αi)

pi(y, Ω, αi)

)
dΘ , (13)

expression (10) can be rewritten in the more compact form as

q̂(Θ) = argmin
q(Θ)

∫
q(Θ)

log

(
q(Ω)

p(y|x,{βk})
∏L

k=1 p(βk)

2∏
i=1

[
q(αi)

pi(x|αi)p(αi)

]λi
)

dΘ . (14)

Unfortunately, we can not directly tackle the minimization of (14)

because of the TV image prior p1(x|α1) of Eq. (4). This difficulty is

overcome in this paper by resorting to the majorization-minimization

(MM) approach (see [9]).

The main principle of the MM approach is to find a bound of

the joint distribution in (9) which makes the minimization of (14)

tractable. Let us first consider the following functional M(α1,x,w),

where w ∈ (R+)PN with components wi, i = 1, . . . , PN ,

M(α1,x,w) ∝ α
PN/2
1 exp

[
−α1

2

∑
i

(Δh
i (x))2 + (Δv

i (x))2 + wi√
wi

]
.

(15)

It can be shown (details can be found in [9]) that the functional

M(α1,x,w) is a lower bound of the image prior p1(x|α1), that is,

p1(x|α1) ≥ M(α1,x,w). (16)

This lower bound can be used to find a lower bound for the joint

distribution, for i = 1, in (9)

p1(y, Ω, α1) ≥ p(y|x, β)

L∏
k=1

p(βk)M(α1,x,w) p(α1)

= F(Ω, α1,w,y) , (17)

which results in an upper bound of the KL distance as

CKL(q(Ω, α1) ‖ p1(y, Ω, α1)) ≤ CKL(q(Ω, α1) ‖ F(Ω, α1,w,y)).
(18)

The minimization of CKL(q(Ω, α1) ‖ p1(y, Ω, α1)) can then be re-

placed by the minimization of its upper bound (18), since minimizing

this bound with respect to the unknowns and the auxiliary variable

w in an alternating fashion results in closer bounds at each iteration.

The bound in (18) is quadratic and therefore it can be evaluated

analytically.

Before we proceed to calculate the posterior approximation, we

first observe that to calculate q(αi), i = 1, 2 we only have to look

at the only divergence where that distribution is present. So we can

write

q(α1) = const × exp
(〈log F (Ω, α1,w,y)〉Ω

)
, (19)

q(α2) = const × exp
(〈log p2(y, Ω, α2)〉Ω

)
, (20)

where Eq(Ω) [·] =< · >Ω.

Furthermore to calculate the rest of the unknown distributions q(ξ),

ξ ∈ Ω we have to take into account both divergences. We obtain

q(ξ) = const × exp

(〈
log

[
p(y|x, β)

L∏
k=1

p(βk)

× [M(α1,x,w) p(α1)]
λ1 [p2(x|α2)p(α2)]

1−λ1
]〉

Θξ

)
, (21)
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where Θξ denotes the set Θ with ξ removed. In the following, the

subscript of the expected value will be removed when it is clear from

the context.

Let us now calculate the approximation. From Eq. (21), q(x) is

the multivariate Gaussian

q(x) ∝ exp

(
−1

2
<α1>λ1

∑
i

(Δh
i (x))2 + (Δv

i (x))2 + wi√
wi

− (1 − λ1)

2
<α2> ‖Cx‖2 −1

2

∑
k

<βk> ‖ yk − AHkDkx ‖2

)
.

(22)

Furthermore, the elements of w in Eq. (15) are equal to

wi = Ex[(Δh
i (x))2 + (Δv

i (x))2] . (23)

In the last step of the algorithm, the distributions q(α1), q(α2)
and q(βk) are the Gamma distributions, given by

q(α1) ∝ α
PN/2−1+ao

α1
1 exp

[
−α1(b

o
α1 +

∑
i

√
wi)

]
, (24)

q(α2) ∝ α
PN/2−1+ao

α2
2 exp

[
−α2

(
bo
α2 +

Ex

[‖Cx‖2]
2

)]
, (25)

q(βk) ∝ β
N/2−1+ao

β

k exp

[
−βk(bo

β +
Ex

[‖ yk−Bkx ‖2
]

2
)

]
(26)

The proposed algorithm is summarized below in Algorithm 1.

Algorithm 1 Variational Bayesian Super Resolution

Calculate initial estimates of the HR image and hyperparameters

while convergence criterion is not met do
1. Estimate the HR image distribution using Eq. (22).

2. Compute spatial adaptivity vector w using Eq. (23).

3. Estimate the distributions of the hyperparameters α1, α2 and

{βk} using Eqs. (24), (25) and (26).

It is interesting to note that when we combine M prior models the

inference procedure proposed in [4] is a particular case of the one

developed here assuming that λi = 1/M , ∀i.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

algorithm. The quality of the restored HR image is measured quan-

titatively by the peak signal-to-noise ratio (PSNR), which is defined

as PSNR = 10 log10
NP

‖x̂−x‖2 , where x̂ and x are the estimated and

original HR images, respectively, and pixel values in both images are

normalized to lie in the interval [0, 1]. We also provide examples of

the estimated HR images to assess their visual quality.

In all experiments reported below, the initial values of Algorithm

1 are chosen as follows: The HR image estimate is initialized using

the average image [10], which is an oversmooth estimate of the HR

image obtained using the LR images as xa = S−1 ∑L
k=1 BT

k yk,

where S is a diagonal matrix with the column sums of Bk as its

elements. Note that this initial estimate is calculated very efficiently,

and it generally increases the robustness of the algorithm to noise.

The covariance matrices in Algorithm 1 are initially set equal

to zero. The rest of the algorithm parameters are automatically

calculated from the initial HR image estimate using the algorithmic

steps provided in Algorithm 1. As convergence criterion we used

‖xn−xn−1‖2/‖xn−1‖2 < 10−5, where xn and xn−1 are the image

estimates at the n-th and (n − 1)-st iterations, respectively.

TABLE I
MEAN PSNRS WITH STANDARD DEVIATIONS PROVIDED BY THE SR

ALGORITHMS AT DIFFERENT SNR LEVELS FOR THE DISK IMAGE

SNR 5 dB 15 dB 25 dB
Bicubic 17.60 ± 0.000 17.61 ± 0.000 17.61 ± 0.000
ZMT 20.84 ± 5.77 19.25 ± 0.0003 19.24 ± 0.000
RSR 29.19 ± 0.004 34.14 ± 0.02 34.01 ± 0.002
SAR 27.64 ± 0.0002 35.99 ± 0.0002 45.71 ± 0.001
VSR 30.86 ± 0.002 41.06 ± 0.001 51.52 ± 0.001
ALG1(λ1) 30.95 ± 0.002 41.64 ± 0.007 51.67 ± 0.001
λ1 0.95 0.9 0.9

TABLE II
MEAN PSNRS WITH STANDARD DEVIATIONS PROVIDED BY THE SR

ALGORITHMS AT DIFFERENT SNR LEVELS FOR THE LENA IMAGE

SNR 5 dB 15 dB 25 dB
Bicubic 24.143 ± 0.001 24.27 ± 0.000 24.27 ± 0.000
ZMT 27.56 ± 1.561 30.47 ± 0.238 30.63 ± 0.000
RSR 29.75 ± 0.001 33.51 ± 0.008 33.63 ± 0.004
SAR 30.28 ± 0.002 35.72 ± 0.004 44.15 ± 0.031
VSR 30.956 ± 0.004 36.56 ± 0.002 45.44 ± 0.012
ALG1(λ1) 31.09 ± 0.004 37.81 ± 0.004 45.82 ± 0.012
λ1 0.9 0.85 0.85

When we set λ1 = 0 in Eq. (22), our prior model becomes a

SAR. On the other hand, when we set λ1 = 1 in Eq. (22), our

models coincides with the Variational Super-Resolution method in

[5] (denoted by VSR). The optimal value of λ1, for our Algorithm 1,

is found here experimentally, and the obtained reconstrution will be

denoted by ALG1(λ1). In this section, we evaluate the performance of

the proposed algorithm ALG1(λ1) in comparison with the following

methods: 1) Bicubic interpolation, 2) the robust SR method in [11]

(denoted by ZMT), which is based on backprojection with median

filtering, 3) the robust SR method in [12] (denoted by RSR), which

is based on bilateral TV priors, 4) SAR and 5) VSR.

We generated sets of 5 synthetic LR images from 80×80 fragments

of an HR disk image and also of the Lena image, through warping,

blurring and downsampling by a factor of 2. The warping consisted

of translations of (0, 0)t, (0, 0.5)t, (0.5, 0)t, (1, 0)t and (0, 1)t pixels

respectively, and rotations of angles (0◦, 3◦,−3◦, 5◦,−5◦). As blur

we used a 3 × 3 uniform PSF. The LR images obtained after the

warping, blurring and downsampling operations are further degraded

by additive white Gaussian noise at SNR levels of 5 dB, 15 dB, and

25 dB.

We conducted simulations with 10 different noise realizations at

each SNR level, and the average PSNR and standard deviations of

these experiments are shown in Tables I and II. As expected, all

SR algorithms result in better reconstructions than bicubic interpo-

lation. It is also clear that the proposed method provides the best

performance among all methods across all noise levels.

Examples of HR restorations are shown in Fig. (1) for the SNR

= 15 dB degradation of the disk image. It is clear that VSR and

the proposed method provide the most visually enhanced restorations

with significantly reduced ringing artifacts and much sharper edges

compared to the other methods.

Finally, Fig. (2) shows the variation of the PSNR of the restoration

obtained with ALG1(λ1) when λ1 changes from λ1 = 0 (SAR) to

λ1 = 1 (VSR), reaching its maximum value at λ1 = 0.9, for the disk

image with SNR=15 dB, and Fig. (3) shows this same variation for the

SNR=15 dB Lena image, with its maximum value at λ1 = 0.85. Both

cases are examples of non-degenerate combinations of divergences

providing better reconstructions than degenerate ones.

VI. CONCLUSIONS

We have proposed a new methodology to combine image priors

in SR image reconstruction. The new methodology is based on
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Example estimated HR disk images from different SR methods for
the case when SNR=15 dB. Results of (a) Bicubic interpolation (PSNR =
17.61 dB), (b) ZMT (PSNR = 19.23 dB), (c) RSR (PSNR = 34.32 dB),
the proposed methods: using (d) SAR (PSNR = 36.15 dB), (e) VSR
(PSNR = 40.95 dB) and (f) ALG1(0.9) (PSNR = 41.61 dB).

Fig. 2. PSNR values obtained with ALG1(λ1), as a function of λ1, for the
SNR=15 dB disk image.

Fig. 3. PSNR values obtained with ALG1(λ1), as a function of λ1, for the
SNR=15 dB Lena image.

finding the distribution on the HR image given the observations that

minimizes a linear convex combination of the Kullback-Leibler di-

vergences associated with each pair of observation and prior models.

We have found this distribution in closed form. We have also related

the proposed methodology to other prior combination methods in the

literature. The estimated HR images compare favorably with images

provided by other SR reconstruction methods. Their superiority over

the HR images obtained when each prior is used independently

has also been established experimentally. Future work will address

the estimation of the weights assigned to each Kullback-Leibler

divergence in the convex combination.
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