
Using the left Gram matrix to cluster high-dimensional data

Shahina Rahmana,1, Valen E. Johnsona,1,∗, Suhasini Subba Raoa,1

aDepartment of Statistics, Texas A & M University
b3143 TAMU, College Station, TX 77843-3143

Abstract

For high dimensional data, where P features for N objects (P � N) are represented in an N × P

matrix X, we describe a clustering algorithm based on the normalized left Gram matrix, G =

XXT /P . Under certain regularity conditions, the rows in G that correspond to objects in the same

cluster converge to the same mean vector. By clustering on the row means, the algorithm does not

require preprocessing by dimension reduction or feature selection techniques, and does not require

specification of tuning or hyperparameter values. Because it is based on the N × N matrix G, it

has lower computational cost than many methods based on clustering the feature matrix X. When

compared to 14 other clustering algorithms applied to 32 benchmarked microarray datasets, the

proposed algorithm provided the most accurate estimate of the underlying cluster configuration

more than twice as often as its closest competitors.
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1. Introduction

Despite their ubiquity in real applications, clustering of objects based on high dimensional fea-

tures remains a challenging unsupervised learning task, made harder by the fact that the number

of clusters is seldom known a priori. To detect clusters in high dimensional data, many clustering

methods rely on preprocessing steps like feature selection or dimension reduction. Feature selec-5

tion techniques are useful in finding clusters in sparse settings, where underlying clusters differ

only by the values of a small number of features. However, the success of these techniques often

depends on the astute selection of tuning parameters, which can be problematic in unsupervised
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settings. Dimension reduction techniques, like PCA, SVD and matrix factorization, perform well

when underlying assumptions apply, but can fail to preserve cluster structure when they don’t. [1].10

Our goal in this article is to describe an algorithm to cluster N objects based on P features

when P � N . When P features for N objects are represented in an N × P matrix X, we base the

algorithm on the N × N left Gram matrix, XXT . Under certain regularity conditions, we show

that this lower dimensional matrix preserves the cluster structure of the data. Standard clustering

algorithms can then be applied to accurately identify the clusters at a reduced computational cost.15

The proposed algorithm does not require specification of tuning parameters or hyperparameters.

2. Notation and framework

We denote matrices by upper case bold letters (e.g., X) and column vectors by lower case bold

letters (e.g., u). We use 1P to denote the P-dimensional vector of ones and IA to denote the

indicator function which equals 1 if A is true and 0 otherwise. We let || · ||2 denote the Euclidean20

distance of a vector or Frobenius norm of a matrix, and ‖ ·‖1 denote the absolute sum of the entries

of a vector or matrix. We use |S| to denote the cardinality of the set S. We write i ' j if objects i

and j are in the same cluster, and i 6' j otherwise.

Let K0 be the (possibly unknown) number of true clusters. Let fi = (xi,1, . . . , xi,P ) denote the

P -dimensional feature vector measured on the ith object and stack the feature vectors of N objects25

into an N × P feature matrix X. For a given K0, define δi to be an integer in {1, · · · ,K0} that

denotes the cluster membership of the ith object. We denote δ = (δ1, . . . , δN ) as the vector of cluster

identifiers, where Pr(δi = a) = wa with
∑K0

a=1 wa = 1. We assume that {fi}Ni=1 are conditionally

independent P dimensional random vectors with E(fi|δi = a) = µa, where µT
a = (µa,1, . . . , µa,P )

and finite covariance matrix Var(fi|δi = a) = Σa. We denote the vector of diagonal entries of Σa30

as dTa = (σa1 , . . . , σ
a
P ), and we define θa,b = µT

aµb/P for a 6= b and θa = µT
aµa/P +dTa 1P /P , where

1 ≤ a, b ≤ K0.

3. The clustering algorithm

The goal of our clustering algorithm is to partitionN objects intoK0 clusters using a transformed

left Gram matrix, rather than directly from the X matrix. We assume that K0 is unknown. The35

Gram matrix or similarity matrix in general is a central quantity for many clustering algorithms.

However, as far as we are aware the following transformation has not been previously exploited.
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3.1. The left Gram matrix and it’s properties

In the first step of the algorithm, we standardize each column of X to have mean 0 and standard

deviation 1. Using the standardized X, we construct the matrix G according to

G = XXT/P. (1)

We denote the (i, j)th entry of the G matrix by gi,j .

If δi = a and δj = b, a, b ∈ 1, . . . ,K0, then the expectation of the entries of the G matrix is40

E(gi,j |δi = a, δj = b) = θa,b and E(gi,i|δi = a) = θa. (2)

where, θa,b =
∑P
p=1 µa,pµb,p/P and θa =

∑P
p=1(µ2

a,p+σap)/P . This pivotal property of the G matrix

motivates us to detect the underlying clusters efficiently using the following two transformations.

3.2. The transformation on the left Gram matrix

Next, we modify the elements of G to form a matrix M by first appending the diagonal entries

of G as an additional column to M. In their place, we substitute the column-wise average from G.45

The resulting M = {mi,j} matrix is an N × (N + 1) matrix with entries

mi,j =


gi,j , for j 6= i = 1, . . . , N

gi,i, for j = N + 1

1
N−1

∑N
j=1
j 6=i

gi,j , for j = i.

We denote the (N + 1) dimensional ith row of M by mi.

To illustrate the above transformations, we consider an example with N = 4 objects where

objects 1 and 2 belong to cluster 1, and objects 3 and 4 belong to cluster 2. The transformation

from G to M is

G =


g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

g3,1 g3,2 g3,3 g3,4

g4,1 g4,2 g4,3 g4,4

⇒M =



g2,1+g3,1+g4,1
3 g1,2 g1,3 g1,4 g1,1

g2,1
g1,2+g3,2+g4,2

3 g2,3 g2,4 g2,2

g3,1 g3,2
g1,3+g2,3+g4,3

3 g3,4 g3,3

g4,1 g4,2 g4,3
g1,4+g2,4+g3,4

3 g4,4


The transformation from G to M matrix and equation 2 implies that the expected values of

rows of M are equal for objects in the same cluster, with the exception of the diagonal elements.

Hence M is useful in initializing our clustering algorithm when there is no prior information on the50

cluster identifiers, δ.

3



3.3. Updated modification of the Gram matrix

At the model selection stage, we propose further modification of M matrix to Mδ̂ based on the

knowledge of δ̂ obtained from clustering the rows of M matrix. With this modification, expectation

of all the elements of the ith and the jth row of Mδ̂ become equal for all the columns whenever

the corresponding ith and jth objects belong to the same cluster. For a given estimate of cluster

identifiers δ̂ from M matrix, we construct a matrix Mδ̂ in which the diagonal elements of Mδ̂ are

updated with the column means restricted only to the rows of the remaining objects having the

same cluster identifier , i.e.,

mδ̂
i,i =

N∑
j=1
j 6=i

gj,i.I{δ̂j=δ̂i}/

N∑
j=1
j 6=i

I{δ̂j=δ̂i}.

For the above example in 3.2 the transformation from G matrix to Mδ is

G =


g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

g3,1 g3,2 g3,3 g3,4

g4,1 g4,2 g4,3 g4,4

⇒Mδ =


g2,1 g1,2 g1,3 g1,4 g1,1

g2,1 g1,2 g2,3 g2,4 g2,2

g3,1 g3,2 g4,3 g3,4 g3,3

g4,1 g4,2 g4,3 g3,4 g4,4

 .

When δ̂ = δ, the expected values of the rows of Mδ are described in the following lemma.

Lemma 3.1. If δi = a (i.e., object i belongs to cluster a), then the expectation of the ith row of

Mδ is the following (N + 1) dimensional vector

E
(
mδ
i |δi = a

)
= θa ≡

(
{θa,δj}Nj=1 , θa

)
(3)

Let ΘN×N+1 = E
[
Mδ|δ

]
, where Θ = (θδ1 , · · · ,θδN )

T
. Here Θ represents the cluster means in the55

transformed space. The above transformation of M matrix makes the expected value of mδ
i and

mδ
j equal whenever the ith and jth object belong to the same cluster. This facilitates various model

selection criterion, including , the Bayesian information criterion (BIC) [2], to select the number of

clusters by minimizing the discrepancy between Mδ and the assumed model.

Next, we assume the following condition holds on the distinct cluster means on the transformed60

space.

Assumption 3.1. For a 6= b ∈ {1, . . . ,K0}, there exists η > 0 such that for all P > 0

||θa − θb||2 > η. (4)
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Such a condition is required to ensure that distinct clusters can be identified. It requires that the

proportion of informative feature vectors measured on objects does not converge to 0 as P grows.

3.4. Clustering strategy based on the rows of M

To estimate the underlying number of clusters K0 and the cluster indicator vector δ we maximize

a quasi mixture likelihood for each possible value of K = 1, . . . ,Kmax. Here, Kmax is an user-defined

upper bound on K0, which may equal N if a prior bound is not known. Because the elements of

M and Mδ represent an average of P pairwise products, under certain regularity conditions the

rows of M and Mδ converge to a multivariate normal distribution. We therefore maximize a quasi

mixture likelihood function of the form LK(M) = log
∏N
i=1

∑K
k=1

wkφ
(
mi;θk,Γk

)
, where

φ
(
mi;θk,Γk

)
=

1

(2π)N/2det(Γk)1/2
× exp

{
−1

2

(
mi − θk

)T
Γk
−1
(
mi − θk

)}
.

Here the mixing weights wk satisfy wk ≥ 0 and
∑K
k=1 wk = 1. Let L̂K(M) = LK(M; ŵK , θ̂K , Γ̂K)65

denote the maximized quasi log-likelihood for an assumed value of K. The EM algorithm [3] is used

to obtain maximum likelihood estimates for the parameters of the mixture model and the latent

cluster identifiers δ̂ given K.

We estimate the number of clusters by maximizing the Bayesian Information Criterion (BIC)

[2], which can be expressed as70

BICK = 2L̂K(Mδ̂)− νK logN,

where νK is the number of estimated parameters in the likelihood function LK(·).

3.5. Implementation details

The EM algorithm is only guaranteed to arrive at a local optimum of the mixture likelihood

criterion [4]. As a consequence, the choice of starting values for δ is important. Our experience and

previous studies on multivariate mixture models by [5], [6], [7] suggests that initial estimates of δ75

obtained from agglomerative hierarchical cluster analysis on the rows of M for a given K generally

provide effective initialization. Pseudo code for implementing the clustering algorithm based on the

modified Gram matrix, M and Mδ is described in Algorithm 1.
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Algorithm 1: GMCluster

Input: X ∈ RN×P and Kmax.

Output: K̂; Cluster identifier, δ̂ = (δ̂1, . . . , δ̂N ).

1. G-step: Construct the N ×N similarity matrix, G = XXT/P.

2. M-step: Rearrange the diagonal elements of G to construct the N × (N + 1) matrix M.

3. for K = 1 to Kmax:

a. Initialize: Use agglomerative hierarchical clustering on M to initialize the cluster

identifier δ̂ having K clusters.

b. Repeat

i. Mstep : for k = 1 to K :

nk =
∑N
i=1 I{δ̂i=k}; ŵk = nk/N ; θ̂k =

∑N
i=1 mi · I{δ̂i=k}/nk;

Γ̂k =
∑N
i=1

(
mi − θ̂k

)(
mi − θ̂k

)T
· I{δ̂i=k}/nk.

ii. Estep : for i = 1 to N : Set δ̂i = k for arg maxKk=1 ŵkφ
(
mi; θ̂k, Γ̂k

)
= k.

until until δ̂ doesn’t change.

c. Given δ̂, calculate BICK based on Mδ̂.

4. Return K and δ̂ that maximize BICK

4. Convergence of the Mδ matrix

In the following lemma we obtain a rate of convergence for the mean squared error difference80

between Mδ̂ and Θ. We require the following assumptions on the features. Recall that Σa =

Var(xi|δi = a), and let τP = sup1≤k≤K0
‖Σk‖1/21 . For each feature p = 1, . . . , P , let yi,p =

xi,p−µδi,p and define the P -dimensional vector zTi =
(
y2i,1, . . . , y

2
i,P

)
. Let Υa = Var(zi|δi = a) and

κP = sup1≤k≤K0
‖Υk‖1/21 .

Assumption 4.1. As P →∞, we assume that κP /P → 0 and τP /P → 0.85

We call the features weakly dependent if κP and τP are O(P 1/2). This condition holds if the feature

vectors are independent and have bounded variance.

Lemma 4.1. Suppose Assumption 2 holds. Let µsup = supa,p |µa,p| and σsup = supa,p
√
σap and let

µsup, σsup <∞. Then

E
∥∥Mδ −Θ

∥∥2
2
≤ ∆2

P
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where ∆P = 1
P

[
N{(N − 1)τ2P (2µsup + σsup)2 + (κP + 2τPµsup)2}

]1/2
.

The proof is in the supplementary material.

This lemma suggests that for a correctly specified cluster configuration in which δ̂ = δ, Mδ
90

converges to Θ, the transformed cluster mean, in the order of O(P−1/2), if the features are weakly

dependent. For K ≤ K0, the identifiability condition (4)) guarantees that this sum-of-squares is

bounded away from 0. For K > K0, the BIC penalty is sufficiently large to prevent sub-clusters

from a given cluster from forming since the decrease in the sum-of-squares accumulated from such a

split cannot offset a fixed penalty that is greater than log(N). Thus, standard clustering algorithms95

are likely to be able to identify the correct cluster identifiers, provided that the conditions stated

above are satisfied and P is sufficiently large.

5. Application of the proposed method to bench-marked gene data sets

Shah and Koltun [8] provided a recent comparison of several popular clustering methods for 32

gene expression data sets based on adjusted mutual information (AMI) [9]. The cluster configura-100

tions of these data sets are well studied, validated and are available in DataLink [10].

To evaluate our method, GMcluster (GMC), we compared its performance to the clustering

methods considered in [8], adding 7 additional state-of-the-art algorithms to the comparison. Over-

all, we compared GMC with 12 clustering algorithms that require pre-specification of the number

of clusters and 6 clustering algorithms that do not. As in [8], for the methods that required pre-105

specification of the number of clusters we used those given in [11]. Details of the methods considered

and their parameter settings are provided in the supplementary section.

Figure 1 summarizes the results of these comparisons. (For brevity, we have displayed the AMI

results of only the 15 algorithms that yielded the best AMI value for at least 1 out of 32 data sets

in Table B.2 of the appendix.) The barplot depicts the number of times each method yielded the110

highest accuracy based on AMI. As the figure shows, GMC achieved the highest AMI for 11 data

sets, while the next best algorithm, RCC, provided the highest AMI in 5 data sets. AMI values

acheived by each clustering algorithm for each data set are provided in the Appendix.

We also compared the computational performance of GMC to the six algorithms that, like GMC,

also estimated the number of clusters. Because the runtime complexity of the GMC algorithm is115

linear in P , it was generally faster than the other algorithms (Figure 1b). Indeed, except for the
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Figure 1: (a) Barplot depicts the frequency of obtaining the highest accuracy (AMI) by each of the 14 clustering

algorithms across 32 gene expression data sets. (b) Boxplots display the distribution of computation times for the

algorithms that do not require any predefined number of clusters (K0).

AP algorithm (which only achieved the best AMI in one test data set), then GMC was faster by a

factor of at least 7 than all other algorithms that we tested. All comparisons were performed on a

workstation with an Intel(R) Core(TM) i7-3770 CPU clocked at 3.40GHz with 8.00 GB RAM. The

data sets and algorithms that produced these results are available at Github Link.120

6. Discussion

Our clustering algorithm offers a simple and efficient method for clustering objects based on

high-dimensional feature vectors. A software implementation of our proposed algorithm GMcluster

is available in the R package, RJcluster [12] 1. The overall complexity of the current algorithm is

O(N2P ). Application to several genomic data sets suggest that the proposed algorithm provides125

a useful method for clustering objects when N � P . In ongoing work, we are developing scalable

techniques that will facilitate the use of our proposed algorithm in large N and large P settings. In

future work, we will explore the utility of the proposed transformation on other similarity measures

for meaningful clustering of unstructured data, like images or text documents.

1Our proposed algorithm has been implemented as RJcluster in CRAN as a R package
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Appendix A. Proof of Lemma 4.1

The proof of Lemma 4.1 follows from the proof of the following lemmas.195

Lemma Appendix A.1. Lemma A.1 Recall that gi,j =
∑P
p=1 xi,pxj,p/P with E(xi,p|δi) = µδi,p

and E(fi|δi) = µδi and Var(fi|δi) = Σδi . Also recall that for clusters a, b ∈ {1, . . . ,K0}, in equation

2 we defined θa,b = µT
aµb/P and θa = µT

aµa/P + dTa 1P /P , where dTa = (σa1 , . . . , σ
a
P ) are the

diagonal entries of Σa. Then for a, b ∈ {1, . . . ,K0}, E[gi,j |δi = a, δj = b] = θa,b and E[gi,i|δi] = θa.

Proof:200

Suppose Assumption 4.1 holds. We define a P -dimensional vector yi = (yi,1, . . . , yi,P ) with

components yi,p = xi,p − µδi,p. It follows that E[yi,p|δi = a] = 0 and E[y2i,p|δi = a] = σap . For

a 6= b ∈ {1, . . . ,K0}, If i 6= j, δi = a, and δj = b, then

gi,j − θa,b =
1

P

P∑
p=1

yi,pyj,p +
1

P

P∑
p=1

µa,pyj,p +
1

P

P∑
p=1

µb,pyi,p,

and for i = j

gi,i − θa =
1

P

P∑
p=1

(y2i,p − σap) +
2

P

P∑
p=1

µa,pyi,p.

11

https://CRAN.R-project.org/package=Spectrum
https://CRAN.R-project.org/package=Spectrum
https://CRAN.R-project.org/package=Spectrum
https://CRAN.R-project.org/package=Spectrum


Using the above and evaluating the conditional expectations E[gi,j |δi, δj ] and E[gi,i|δi] proves205

E(gi,j |δi = a, δj = b) = θa,b and E(gi,i|δi = a) = θa. (A.1)

Lemma Appendix A.2. Lemma A.2 Suppose Assumption 2 holds. Recall in section 4 for the

P -dimensional vector yT
i , we defined Υk = Var(yi|δi = k) and κP = sup1≤k≤K0

‖Υk‖1/21 and

τP = sup1≤k≤K0
‖Σk‖1/21 . Let µsup = supk,p |µk,p| and σsup = supk,p

√
σkp . Then for i 6= j

(
E|gi,j − θδi,δj |2

)1/2 ≤ τP
P

(2µsup + σsup) (A.2)

and

(
E|gi,i − θδi |2

)1/2 ≤ 1

P
(κP + 2τPµsup). (A.3)

Furthermore,210

E
∥∥mδ

i − θδi
∥∥2
2
≤ 1

P 2

[
(N − 1)τ2P (2µsup + σsup)2 + (κP + 2τPµsup)2

]
, (A.4)

and

E
∥∥Mδ −Θ

∥∥2
2
≤ N

P 2

[
(N − 1)τ2P (2µsup + σsup)2 + (κP + 2τPµsup)2

]
. (A.5)

Proof:

We first prove (A.2), for the case i 6= j. We use (A.1) to give the bound

(E|gi,j − θδi,δj |2)1/2 ≤

E( 1

P

P∑
p=1

yi,pyj,p

)2
1/2

+

E( 1

P

P∑
p=1

µδi,pyj,p

)2
1/2

+

E( 1

P

P∑
p=1

µδj ,pyi,p

)2
1/2

.

Recall that E(A2) = E[E(A2|δ)] and if E[A|δ] = 0, then E(A2) = E[var(A|δ)]. This implies

(E|gi,j − θδiδj |2)1/2 ≤ A1,P +A2,P +A3,P , (A.6)
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where215

A1,P =

(
E

[
var

(
1

P

P∑
p=1

yi,pyj,p|δi, δj

)])1/2

A2,P =

(
E

[
var

(
1

P

P∑
p=1

µδj ,pyi,p|δi, δj

)])1/2

and A3,P =

(
E

[
var

(
1

P

P∑
p=1

µδi,pyj,p|δi, δj

)])1/2

.

We now bound each of the terms A1,P , A2,P and A3,P . To bound A1,P we use the following

decomposition:

var

(
1

P

P∑
p=1

yi,pyj,p|δi = a, δj = b

)

=
1

P 2

P∑
p1,p2=1

cov (yi,p1yj,p1 , yi,p2yj,p2 |δi = a, δj = b)

=
1

P 2

P∑
p1,p2=1

cov[yi,p1 , yi,p2 |δi = a]cov (yj,p1 , yj,p2 |δj = b)

≤ sup
a,p

σa,p
1

P 2
sup
a

P∑
p1,p2=1

|cov (yi,p1 , yi,p2 |δi = a) | ≤ τ2P
P 2

σ2
sup.

It follows that

A1,P ≤

(
E

[
var

(
1

P

P∑
p=1

yi,pyj,p|δi, δj

)])1/2

≤ τP
P
σsup.

Using a similar argument to bound the conditional variance inside A2,P , we have

var

(
1

P

P∑
p=1

µi,pyj,p|δi = a, δj = b

)
≤ µ2

sup

1

P 2

P∑
p1,p2=1

|cov(yi,p1 , yi,p2)| ≤ 1

P 2
µ2
supτ

2
P .

This leads to220

A2,P ≤
τP
P
µsup,

and by a similar argument to A3,P ≤ τP
P µsup. Substituting these bounds into (A.6) we obtain

(E|gi,j − θδi,δj |2)1/2 ≤ τP
P

(2µsup + σsup),

13



thus proving (A.2). We next bound (E|gi,i − θδi |2)1/2. We use (A.1) to give

(E|gi,i − θδi |2)1/2 ≤ B1,P +B2,P +B3,P , (A.7)

where

B1,P =

(
E

[
var

(
1

P

P∑
p=1

y2i,p|δi

)])1/2

B2,P =

(
E

[
var

(
1

P

P∑
p=1

µδi,pyi,p|δi

)])1/2

and B3,P =

(
E

[
var

(
1

P

P∑
p=1

µδi,pyi,p|δi

)])1/2

.

Using the same methods used to bound A2,P and A3,P , it is straightforward to show that

B2,P , B3,P ≤ τPµsup/P . To bound B1,P we note that225

var

(
1

P

P∑
p=1

y2i,p|δi = a

)
=

1

P 2

P∑
p1,p2=1

cov[y2i,p1 , y
2
i,p2 |δi = a] ≤ P−2κ2P ,

which follows from Assumption 4.1. Thus B1,P ≤ P−1κP . Substituting into (A.7) gives(
E|gi,i − θδi)2|

)1/2 ≤ 1

P
(κP + 2τPµsup),

thus proving (A.3).

To prove (A.4), we apply (A.2) and (A.3), leading to

E
∥∥mδ

i − θδi
∥∥2
2

=

N∑
i,j=1,i6=j

E(gi,j − θδi,δj )2 +

N∑
i=1

E(gi,i − θδi)2

≤ (N − 1)
1

P 2
τ2P (2µsup + σsup)2 +

1

P 2
(κP + 2τPµsup)2

≤ 1

P 2

[
(N − 1)τ2P (2µsup + σsup)2 + (κP + 2τPµsup)2

]
,

proving (A.4). Finally, to prove (A.5) we note that

E
∥∥Mδ −Θ

∥∥2
2

=

N∑
i=1

E
∥∥mδ

i − θδi
∥∥2
2
.

By substituting (A.4) above we have230

E
∥∥Mδ −Θ

∥∥2
2
≤ N

P 2

[
(N − 1)τ2P (2µsup + σsup)2 + (κP + 2τPµsup)2

]
,

which proves (A.5) and hence Lemma 4.1. �
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Appendix B. Description of other clustering algorithms

We divided the competing methods into two categories. We consider 12 algorithms that require

the pre-specification of the number of clusters K0 : k-means++ (km++) [13], Gaussian mixture

models (GMM), fuzzy clustering (fuzzy), mean-shift clustering (MS) [14], agglomerative hierar-235

chical clustering with ward linkage (AC-W), normalized cuts (N-Cuts) [15], Zeta l-links (Zell)

[16], spectral embedded clustering (SEC) [17], clustering using local discriminant models and global

integration (LDMGI) [18], path integral clustering (PIC) [19], sparse k-means (sp-km) [20] and

sparse subspace clustering (SSC) [21]. We consider 6 other clustering methods that do not require

the pre-specification of K0 : affinity propagation (AP) [22], a robust graph continuous clustering240

(RCC) [8], GAP statistics with partitioning around medoids (GAP) ([23], [24]), a model based

clustering with variable selection (Cvarsl) [7], a high dimensional data clustering (HDDC) [25]

and a graph clustering based on tensors (SPEC) [26]. The hyperparameter settings used for these

methods are provided in Table B.1.

Figure 1 provides a summary of the number of times each algorithm achieved the highest AMI.245

This figure does not display results for GMM, MS, fuzzy, and SSC algorithms because none of

these algorithms provided the highest AMI for any data set.

Computation times

We compared the execution time of our proposed method, GMcluster algorithm to other algo-

rithms which do not require the prespecification of the number of clusters. The overall distribution250

of the computation times taken by these algorithms across 32 datasets is displayed in Figure 1b.

Execution times are displayed in log seconds. The AP, HDDC, RCC and SPEC algorithms are

much more computationally efficient than GAP and Cvarsl methods. Excluding the AP algo-

rithm, which provided the best AMI in only one case, the GMcluster algorithm was atleast 7 times

faster than all of the remaining algorithms.255

Hyperparameter settings of other clustering methods

We used the same hyperparameters settings recommended in [8] for the following clustering

algorithms: KM++, AC-W, N-CUT, ZELL, SEC, LDMGI, PIC and RCC that. Table

B.1 provides the hyperparameter settings and software used to obtain the results from the other

methods.260
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Table B.1: Hyperparameters and software used for other methods in the comparative study.

Methods hyper-parameters Values Software

AP iter.max 100 apcluster

s negDistMat(r=2) (R package)

CVAR search headlong clustvarsel

direction forward (R package)

parallel T

iter.max 100

GAP maximum number of clusters 20 cluster

(with partitioning around mediod) d.power 2 (R package)

bootstrap samples max(100,n)

metric Euclidean cluster

iter.max 100

HDDC max number of clusters 20 HDclassif

model “ALL” (R package)

threshold 0.2(default)

criterion bic(default)

dmax 100(default)

S-KM iter.max 100 sparcl

wbounds grid [1, 10](default) (R package)

nperm 100

SPEC method 2(default: multimodal eigen gap) Spectrum

kernel-type density(default) (R package)

maxk 20

Nearest-Neighbor 7(default)

iter.max 100

GMC Cmax 20 RJcluster

iter.max 100
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Data transformations

We took the logarithmic transformation of all data that contained only positive values. Several

data sets were already preprocessed and centered and were therefore not log-transformed further.

These data sets included Alizadeh-v1,v2,v3, Bittner, Garber, Lapointe-v1, Liang, Risinger, Singh-

v1, Tomlins-v1 and West. For the remaining data sets, after logarithm transformation we standard-265

ized by centering on the median and scaling by the standard deviation. Further details regarding

the transformations applied to each data set can be found in the “scaling.R” folder in the RJclust

folder provided in the github repository https://github.com/srahman-24/GMclust.

Data Availability and Software

The datasets used for the comparisons are available at DataLink. We executed all algorithms on270

a workstation with an Intel(R) Core(TM) i7-3770 CPU clocked at 3.40GHz with 8.00 GB RAM. The

datasets and algorithms that produced the results are available at https://github.com/srahman-24.

AMI calculations
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Table B.2: Adjusted Mutual Information for 15 clustering algorithms over 32 gene expression datasets. For each

dataset, the maximum achieved AMI is highlighted in bold.

K0 is known K0 is unknown

Datasets N P km++ sp-km AC-W N-Cuts Zell SEC LDGMI PIC AP GAP HDDC SPEC RCC Cvarsl GMC

Alizadeh-v1 42 1097 0.340 -0.015 0.101 0.096 0.250 0.238 0.123 0.033 0.211 0.000 0.133 0.157 0.426 -0.006 0.515

Alizadeh-v2 62 2095 0.568 0.872 0.922 0.922 0.922 0.922 0.738 0.922 0.563 1.000 0.571 0.753 1.000 0.533 1.000

Alizadeh-v3 62 2095 0.586 0.689 0.616 0.601 0.702 0.574 0.582 0.625 0.540 0.678 0.548 0.609 0.792 0.295 0.792

Armstrong-v1 72 1083 0.372 0.370 0.308 0.372 0.308 0.323 0.355 0.308 0.381 0.475 0.461 0.617 0.546 0.302 0.637

Armstrong-v2 72 2196 0.891 0.375 0.746 0.83 0.802 0.891 0.509 0.802 0.586 0.525 0.000 0.693 0.838 0.513 0.661

Bhattacharjee 203 1545 0.444 0.296 0.601 0.563 0.496 0.570 0.378 0.378 0.377 0.518 0.000 0.505 0.600 0.173 0.453

Bittner 38 2203 -0.012 0.195 0.002 0.042 0.115 -0.002 0.014 0.115 0.243 0.000 0.288 0.013 0.156 -0.020 0.341

Bredel 28 1072 0.297 0.000 0.384 0.203 0.278 0.259 0.295 0.278 0.139 0.035 0.227 0.356 0.466 -0.002 0.265

Chowdary 104 184 0.764 0.595 0.859 0.859 0.859 0.859 0.859 0.859 0.443 0.000 0.625 0.575 0.393 0.000 0.585

Dyrskjot 40 1205 0.507 0.755 0.474 0.303 0.269 0.389 0.385 0.177 0.558 0.348 0.607 0.629 0.383 0.292 0.742

Garber 66 4555 0.242 0.026 0.210 0.204 0.246 0.200 0.191 0.246 0.274 0.096 0.164 0.137 0.173 0.175 0.130

Golub-v1 72 1870 0.688 0.701 0.831 0.650 0.615 0.615 0.615 0.615 0.430 0.044 0.478 0.137 0.490 0.628 0.420

Golub-v2 72 1870 0.680 0.617 0.737 0.693 0.689 0.703 0.600 0.689 0.516 0.000 0.478 0.352 0.597 0.139 0.538

Gordon 181 1628 0.651 0.937 0.483 0.681 -0.005 0.791 0.669 0.664 0.304 0.435 0.000 0.937 0.343 0.140 0.499

Laiho 37 2204 0.007 0.062 -0.007 0.030 0.073 -0.007 0.093 0.044 0.061 0.000 0.220 0.036 0.000 0.091 0.185

Lapointe-v1 69 1627 0.088 0.012 0.151 0.179 0.151 0.088 0.149 0.151 0.162 0.034 0.165 0.012 0.156 0.180 0.181

Lapointe-v2 110 2498 0.008 0.097 0.033 0.153 0.147 0.028 0.118 0.171 0.210 0.199 0.000 -0.006 0.239 0.133 0.172

Liang 37 1413 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.481 0.243 0.523 0.301 0.419 0.296 0.481

Nutt-v1 50 1379 0.171 0.311 0.159 0.156 0.109 0.086 0.078 0.113 0.116 0.000 0.443 0.215 0.129 0.112 0.459

Nutt-v2 28 1072 -0.025 0.000 -0.024 -0.025 -0.031 -0.025 -0.027 -0.030 -0.027 0.035 0.152 0.250 -0.029 -0.002 0.250

Nutt-v3 22 1154 0.063 0.000 0.004 0.080 0.059 0.080 0.174 0.059 -0.002 0.000 0.589 0.511 0.000 0.225 0.752

Pomeroy-v1 34 859 0.012 -0.032 -0.020 -0.006 -0.020 0.008 -0.026 -0.020 0.061 -0.007 0.589 -0.014 0.140 0.056 0.067

Pomeroy-v2 42 1381 0.502 0.576 0.591 0.617 0.568 0.577 0.602 0.568 0.586 0.376 0.513 0.544 0.582 0.564 0.492

Ramaswamy 190 1365 0.618 0.401 0.623 0.651 0.618 0.620 0.663 0.639 0.592 0.336 0.000 0.547 0.676 0.182 0.450

Risinger 42 1773 0.210 0.162 0.297 0.223 0.201 0.258 0.153 0.201 0.309 0.000 0.399 0.308 0.248 0.087 0.428

Shipp-v1 77 800 0.264 0.035 0.208 0.132 -0.002 0.168 0.203 -0.002 0.113 0.079 0.101 0.069 0.124 0.013 0.065

Singh 102 341 0.048 0.037 0.019 0.033 -0.003 0.069 -0.003 0.066 0.079 0.066 0.000 0.029 0.034 0.083 0.159

Su 174 1573 0.666 0.672 0.662 0.738 0.687 0.650 0.667 0.660 0.657 0.589 0.000 0.824 0.702 0.288 0.738

Tomlins-v1 104 2317 0.396 0.382 0.454 0.409 0.647 0.469 0.419 0.590 0.374 0.423 0.000 0.485 0.513 0.165 0.413

Tomlins-v2 92 1290 0.368 0.222 0.215 0.292 0.226 0.383 0.354 0.311 0.340 0.000 0.000 0.468 0.373 0.470 0.288

West 49 1200 0.489 0.403 0.489 0.442 0.515 0.489 0.442 0.515 0.258 0.00 0.459 0.412 0.391 0.016 0.322

Yeohv2 248 2528 0.385 0.002 0.383 0.479 0.530 0.550 0.337 0.442 0.405 0.000 0.057 0.172 0.465 -0.001 0.135
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