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Abstract Using a Monte Carlo simulation and the Kenward–

Roger (KR) correction for degrees of freedom, in this article

we analyzed the application of the linear mixed model (LMM)

to a mixed repeatedmeasures design. The LMMwas first used

to select the covariance structure with three types of data

distribution: normal, exponential, and log-normal. This

showed that, with homogeneous between-groups covariance

and when the distribution was normal, the covariance struc-

ture with the best fit was the unstructured population matrix.

However, with heterogeneous between-groups covariance and

when the pairing between covariance matrices and group sizes

was null, the best fit was shown by the between-subjects

heterogeneous unstructured population matrix, which was

the case for all of the distributions analyzed. By contrast, with

positive or negative pairings, the within-subjects and between-

subjects heterogeneous first-order autoregressive structure

produced the best fit. In the second stage of the study, the

robustness of the LMM was tested. This showed that the KR

method provided adequate control of Type I error rates for the

time effect with normally distributed data. However, as

skewness increased—as occurs, for example, in the

log-normal distribution—the robustness of KR was null,

especially when the assumption of sphericity was

violated. As regards the influence of kurtosis, the anal-

ysis showed that the degree of robustness increased in

line with the amount of kurtosis.

Keywords Longitudinal data . Linear mixed model .

Kenward–Roger method . Robustness . Nonnormal

distributions

Over the last three decades, the analysis of repeated meas-

ures data has centered on the linear mixed model (LMM).

Laird and Ware (1982) established the basis of the LMM

with the incorporation of the within-subjects error correla-

tion. Their work was subsequently extended by Cnaan,

Laird, and Slasor (1997) and Verbeke and Molenberghs

(2000), who applied the LMM to longitudinal data. In

contrast to analyses that are based on variances (ANOVA

and MANOVA), the LMM models the structure of the

covariance matrix. This enables a more efficient estimation

of the fixed effects and, consequently, yields more robust

statistical tests. However, when the covariance structures are

not properly fitted and the sample sizes are small, the Type I

error rate tends to rise (Wright & Wolfinger, 1996).

With respect to the covariance structure, Keselman,

Algina, Kowalchuk, and Wolfinger (1999) demonstrated

that when the covariance matrix is not spherical, the degrees

of freedom associated with the conventional F test are too

large. One way of controlling this bias is to apply the

procedure developed by Kenward and Roger (1997; hence-

forth, the KR method) to correct the degrees of freedom.

Studies by Kowalchuk, Keselman, Algina, and Wolfinger

(2004) and Vallejo and Ato (2006) showed that with an

adequate covariance structure, the KR method is able, in
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many cases, to control Type I error rates with small sample

sizes and when the assumption of sphericity is violated.

Thus, by applying the KR correction, one can obtain more

efficient estimates of the fixed effects associated with repeated

measures (Arnau, Bono, & Vallejo, 2009; Kowalchuk et al.,

2004; Schaalje, McBride, & Fellingham, 2001).

Generally speaking, studies based on the LMM assume

that the data are normal. However, in applied contexts, data

distributions tend to depart from normality. For example, in

a study of 440 distributions corresponding to a range of

achievement and psychometric data, Micceri (1989) found

that only 28.4% of the distributions were relatively symmet-

rical, while 40.7% were moderately asymmetrical, 19.5%

were extremely asymmetrical, and 11.4% showed exponen-

tial asymmetry. As regards kurtosis, only 15.2% of the

distributions approached normality, whereas 49.1% of the

distributions could be considered to show extreme kurtosis.

According to Micceri, the most common distributions with-

in the psychometric, educational, and psychological con-

texts are moderately asymmetrical and show kurtosis that

deviates considerably from normal. These results are sup-

ported by research showing that in the social and health

sciences, many variables follow a log-normal distribution

(Limpert, Stahel, & Abbt, 2001). Examples in the field of

medicine include the latency period of infectious diseases

(Kondo, 1977), survival times for certain types of cancer

(Claret et al., 2009; Qazi, DuMez, & Uckun, 2007), and the

age of onset of Alzheimer’s disease (Horner, 1987). In the

social sciences, an example would be the age at which

people first get married (Preston, 1981), while in psycholo-

gy the log-normal distribution provides a good fit to data on

reaction times or response latencies (Shang-wen &Ming-hua,

2010; Ulrich & Miller, 1993; Van der Linden, 2006), as well

as to data on attentional skills (Brown, Weatherholt, & Burns,

2010). With survival data, a good fit is provided not only by

the log-normal distribution, but also by the exponential distri-

bution and its extensions (Weibull, gamma, and Gompertz), as

well as by the generalized gamma and log-logistic distribu-

tions (Lee & Wang, 2003).

Given that the log-normal distribution is common with

applied data, particularly in the behavioral sciences (Micceri,

1989; Wilcox, 1994), some authors have based their

simulation studies on this distribution (Keselman et al.,

1999; Keselman, Algina, Wilcox, & Kowalchuk, 2000).

In this context, Sawilowsky and Blair (1992) obtained

nonrobust results from the t test when the distributions

showed extreme skewness (e.g., γ1 0 1.64). Algina and

Oshima (1995) found that tests for the equivalence of

means are affected when the distribution is log-normal

and the assumption of homogeneity is not fulfilled. As

regards the effect of kurtosis, research has shown that

the Type I error rate tends to decrease as kurtosis

increases (Wilcox, 1993). In light of these findings,

the present study considers the log-normal distribution,

as well as distributions involving slight skewness com-

bined with different levels of kurtosis.

The aim of this research was to analyze longitudinal data

by means of the LMM, comparing normal and nonnormal

distributions. Specifically, here we seek to examine the

robustness of the LMM when applied to data whose distri-

bution is closer to that found in real life—that is, the log-

normal distribution and other nonnormal distributions with

slight skewness and extreme kurtosis, according to the val-

ues described by Lei and Lomax (2005). According to these

authors, when the absolute values of skewness and kurtosis

are less than 1.0, the distribution deviates slightly from

normality; values between 1.0 and 2.3 correspond to mod-

erate deviation; and values above 2.3 indicate extreme de-

viation from normality.

The LMM and longitudinal data

Application of the LMM to longitudinal data involves

adapting the hierarchical structure to a repeated measures

design. Thus, the observations or repeated measures are

located on the first level, and the subjects on the second

level (Cnaan et al., 1997; Van der Leeden, 1998; Van der

Leeden, Vrijburg, & De Leeuw, 1996; Wu, Clopper, &

Wooldridge, 1999). Both levels are clearly represented by

the LMM. This kind of model, in which repeated measures

are nested within individuals, constitutes an extension of the

multilevel methodology that is widely used to analyze lon-

gitudinal data. An illustration of the LMM as applied to

longitudinal data can be found in Arnau, Balluerka, Bono,

and Gorostiaga (2010).

This section examines, first, the regression model on two

levels and, second, the integration of the two levels within

the LMM.

First level: Within-subjects model

With longitudinal data, and in accordance with the model

proposed, the direct observations or repeated measurements

that make up the first level are nested within subjects, or the

second level. Since growth curves are processes over time,

they can be modeled as polynomial functions. On a first

level (within-subjects model), the equation can be fitted to a

polynomial function of order p, expressed by

yti ¼ b0i þ b1iTti
þ b2iT

2
ti þ � � � þ bpiT

p
ti þ eti; eti

ffi N 0;σe
2

� �

; ð1Þ

where yti is the measurement of the dependent variable for

subject i on occasion t, the βpis are the coefficients of the

polynomial function of degree p, which represent the growth
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trajectory of the subject, and eti is the random error. It is

assumed that eti has a normal and independent distribution

with mean zero and constant variance. The Ttis are the

explanatory variables of subject i on occasion t. Note that

the parameters βpi and the residual variance σe
2 are specific

to subject i. Thus, with the Level-1 model, the repeated

measurements of a growth process are described as a poly-

nomial function. In this model, both the number of obser-

vations and the interval between observations may vary

between subjects.

Applying compact matrix notation, the Level-1 model for

longitudinal data can be represented by

yi ¼ Tibi þ ei; ei ffi N 0;Rð Þ; ð2Þ

where yi is the t×1 repeated measure vector of the

subject i, bi is a p×1 individual parameter vector that

specifies the shape of the growth curve for subject i, and

Ti is the t×p matrix of known variables and their poly-

nomial transformations. Let us suppose that the response

of the subject follows a quadratic function. Ti is then a

t×3 matrix, in which the first column is formed by 1’s,

the second corresponds to the observation occasions, and

the third to the occasions squared. The vector ei is a t×1

random error vector, and it is assumed that the errors are

independent with normal multivariate distribution N(0,

R). Thus, R 0 var(ei) is a positively defined covariance

matrix. However, when the observations have a given

order or a specific structure, it should be assumed that

the between-error correlation is distinct from zero and

that it varies systematically.

Second level: Between-subjects model

In the longitudinal context, the between-subjects model

takes the individual growth parameters (βpis) to be random

dependent variables that, in the simplest case, are expressed

by the following equations:

b0i ¼ g00 þ u0i; ð3Þ

b1i ¼ g10 þ u1i; ð4Þ

b2i ¼ g20 þ u2i; ð5Þ

…

bpi ¼ gp0 þ upi: ð6Þ

In Eqs. 3, 4, 5, and 6, the between-subjects variation

in the parameters that express the individual growth

trajectories is modeled as a function of population aver-

ages and of the deviations from these averages that the

subjects show.

If there is a predictive variable Z, the Level-2 model with

p+1 parameters is expressed by

bpi ¼ gp0 þ
X

Q
p

q¼1

bpqZqi þ upi; upi ffi N 0;Gð Þ; ð7Þ

where γp0 is the average intercept of the subjects, Zqi repre-

sents a given Level-2 predictive variable, βpq expresses the

effect of Zqi on the growth variable p, and upi represents the

random error term. The random effects p+1 associated with

subject i are assumed to follow a normal multivariate

distribution.

In matrix notation, the Level-2 model for longitudinal

data would be

bi ¼ Zig þ ui; ui ffi N 0;Gð Þ; ð8Þ

where Zi is the p × q between-subjects design matrix

with known and fixed items. When only the random

variation in individual growth parameters is modeled, Zi

takes the form of an identity matrix. More elaborate

models can be formulated if Zi contains dummy variables that

codify subgroups of subjects or Level-2 explanatory variables

that enable the reasons for variability between growth param-

eters bi to be examined. The covariables can be fixed or may

vary over time. In Eq. 8, g is a q × 1 fixed coefficient vector,

and ui is a p × 1 random error vector with zero mean and

variance G.

Integrating the two levels in the LMM

The LMM corresponds to the integration of the two

levels described above. It can be used to analyze a

wide variety of data structures that are commonly

found in psychological, social, and health research

and whose analysis with the classic linear model is

problematic.

The complete LMM is obtained by inserting Eq. 8 into

Eq. 2, as follows:

Yi ¼ TZig þ Tui þ ei: ð9Þ

It is assumed that the elements of ei are distributed

independently and normally with constant variance, ei ≅

N(0, R), where R 0 σe
2I; that the Level-2 random terms

are distributed normally—that is, ui ≅ N(0, G); and that

the Level-1 error terms (ei) are distributed independently

of the Level-2 terms (ui). In the complete model, the

term TZig is the fixed part, and the term Tui + ei is the
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random part. The fixed effects define the expected val-

ues of the observations, while the random effects are

variances and covariances. The covariance between the

elements of Yi (the complete longitudinal data) consists

of two parts—that is, the between-subjects part and the

within-subjects part—such that

Var Yið Þ ¼ Var Tui þ eið Þ ¼ TGT0 þ σe
2I: ð10Þ

Note that in Eq. 10, the assumptions relating to errors,

and especially to the term ei, lead to very simple covariance

structures at the individual level of the model (constant and

noncorrelated errors across points in time). However, when

there are many time points per subject, the residual compo-

nents often show a pattern of autocorrelation (Ware, 1985).

With multilevel models, a covariance matrix that reflects

dependence between observations can be chosen. Thus,

modeling the within-subjects covariance structure is partic-

ularly relevant, since the accuracy of the regression param-

eter estimates depends on the right choice (Littell,

Pendergast, & Natarajan, 2000; Park & Lee, 2002).

One of the key advantages of the LMM is that it enables a

choice to be made among the various covariance structures

that could be used to model the data. This is of considerable

importance, because the better the fit of the covariance

structure, the greater the accuracy of the regression

estimates.

KR method for correcting the degrees of freedom

In this study, the degrees of freedom are corrected using the

KR method, which yields more precise and efficient esti-

mates of the fixed effects with small samples (Arnau et al.,

2009; Kowalchuk et al., 2004; Schaalje et al., 2001).

If C is a contrast matrix with range q, the Wald F for the

hypothesis H0: Cb 0 0 is F 0 W/q, where

W ¼ ðC b
^
Þ0ðCðX0V

^
�1XÞ�1

C0Þ�1ðC b
^
Þ: ð11Þ

If we calculate a scale factor δ and an approximate value

for the degrees of freedom ν, the F statistic for the KR

method is given by

F� ¼ dFKR

¼
d

q
C b

^
� �

0 C X0V
^

�1X

� ��1

C0

 !�1

C b
^

� �

: ð12Þ

The moments of F* are generated and matched to the

moments of the distribution F so as to solve δ and ν. Under

the null hypothesis, it is assumed that F* is approximately

distributed in the same way as F, with q degrees of freedom

in the numerator and ν degrees of freedom in the denomi-

nator. Therefore, it is necessary to calculate two values from

the data: the degrees of freedom in the denominator ν, and a

scale factor δ. Hence,

v ¼ 4þ
qþ 2

qy� 1
; ð13Þ

where

y ¼
V FKR½ �

2E FKR½ �2
; ð14Þ

and

d ¼
v

E FKR½ � v� 2ð Þ
: ð15Þ

The inferences derived from simulation studies that use

the KR method are usually more accurate, even with com-

plex covariance structures (Arnau et al., 2009; Keselman,

Algina, Kowalchuk, & Wolfinger, 1998; Schaalje, McBride,

& Fellingham, 2002). It has been shown that under a normal

distribution with heterogeneous within-group covariance

structures, the KR procedure satisfies the criterion of robust-

ness (Livacic-Rojas, Vallejo, & Fernández, 2006). Further-

more, Arnau et al. (2009) concluded that, as compared with

the Satterthwaite (1941) procedure, the KR correction of-

fered better control of Type I error rates under most of the

normal distribution conditions they studied, and particularly

with unstructured and nonspherical covariance structures. A

recent simulation study also showed that the KR method is

better than the Satterthwaite approach when applying the

multilevel model to data from multiple-baseline designs

(Ferron, Farmer, & Owens, 2010).

The present study focuses on analyzing the performance

of the KR method with nonnormal as opposed to normal

distributions. To this end, the KR procedure was used to

estimate the fixed effects associated with time and with the

Time×Group interaction in small samples corresponding to

normal, exponential, and log-normal distributions. In addi-

tion, the Akaike information criterion (AIC; Akaike, 1974)

was used to select the covariance structure that showed the

best fit among 11 possible structures. These structures were

(a) compound symmetry (CS); (b) unstructured (UN); (c)

first-order autoregressive (AR); (d) Huynh–Feldt spherical

(HF); (e) within-subjects heterogeneous compound symme-
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try (CSH); (f) within-subjects heterogeneous first-order

autoregressive (ARH); (g) random coefficients (RC); (h)

between-subjects heterogeneous unstructured (UNj); (i)

between-subjects heterogeneous Huynh–Feldt spherical

(HFj); (j) within-subjects and between-subjects heteroge-

neous first-order autoregressive (ARHj); and (k) between-

subjects heterogeneous random coefficients (RCj). The sub-

scripts j indicate that the covariance matrices are not equal

between the groups.

A Monte Carlo study

The data for the simulations were generated using a series of

macros created ad hoc in SAS 9.2 (SAS Institute, 2008). The

first step involved generating the covariance matrices from

variances and correlations with sphericity values of ε 0 .57

and .75. The RANNOR generator was then used to obtain

normally distributed pseudorandom observations by apply-

ing the Cholesky factor of the covariance matrix R. The

nonnormal data distributions were generated via the same

procedure but were transformed by the Fleishman coeffi-

cients (Fleishman, 1978) corresponding to each of the dis-

tributions studied. The Fleishman method is used to

calculate the coefficients a, b, c, and d by means of a

polynomial transformation based on different values of

skewness (γ1) and kurtosis (γ2). The restriction imposed

on these four coefficients was mean zero and variance 1,

such that

g1 ¼ 2c b2 þ 24bd þ 105d2 þ 2
� �

ð16Þ

and

g2 ¼ 24 bd þ c2 1þ b2 þ 28bd
� �

þ d2 12þ 48bd þ 141c2 þ 225d2
� �� �

;

ð17Þ

where the constant a is equal to –c.

Appendix A shows how the nonnormal data matrices were

generated by means of Fleishman coefficients, yielding both

exponential distributions, with fixed skewness (γ1 0 0.8) and

two values of kurtosis (γ2 0 2.4 and 5.4), and log-normal

distributions (γ1 0 1.75 and γ2 0 5.9). These values are well

within the range of skew and kurtosis that represent the real-

world situation (Lei & Lomax, 2005).

Study variables

The robustness of the KR approximation with normal and

nonnormal distributions was examined by conducting a

simulation study with split-plot designs. This study used

three groups for the between-subjects factor (J 0 3) and

three levels for the within-subjects factor (K 0 4, 6, and 8).

The decision to investigate these levels was based on a

review of 61 simulation studies of repeated measures

designs that were published between 1967 and 2010. Of

these 61 studies, 62.3% used J 0 3, 72.1% used K 0 4, and

26.2% used K 0 8. In the present study, we decided to

include an intermediate value (K 0 6) as well (Arnau et al.,

2009; Padilla & Algina, 2007). It should also be noted that

the levels of J and K used in the present simulation study are

the ones most commonly found in educational and psycho-

logical research. For each value of K, combinations of four

variables were selected: (a) homogeneous and heteroge-

neous between-groups covariance structures; (b) total sam-

ple size; (c) equal and unequal group sizes; and (d) pairings

of the covariance matrices and group sizes. The indices of

sphericity used were ε 0 .57 and .75. The latter value (.75)

was taken to be a good approximation to sphericity, while

the former (.57) represented nonsphericity.

The data were generated using the unstructured (UN) co-

variance structure, as this is the most typical with longitudinal

data. The UN covariance matrix requires no assumptions with

regard to the error terms and allows any pattern of correlation

between the observations. With this matrix, the variances and

correlations are assumed to be nonstationary; that is, all the

variances and covariances are different. Appendix B shows

the values of the covariance matrices for the corresponding

sphericity indices and levels of repeated measures.

From the set of UN covariance structures obtained, both

the equal and unequal between-groups covariance matrices

were analyzed. With heterogeneous matrices, the inequality

of groups was adjusted to the ratio 1:3:5. For the analysis we

considered small total sample sizes of N 0 30, 36, and 42, as

well as equal and unequal group sizes. With unbalanced

groups, the variance coefficient of the group size, Δnj,

was 0.41, while for balanced groups Δnj 0 0. With Δnj 0

0.41, the group sizes were 5, 10, 15 (hence, N 0 30); 6, 12,

18 (N 0 36); and 7, 14, 21 (N 0 42). WithΔnj 0 0, the group

sizes were 10, 10, 10 (N 0 30); 12, 12, 12 (N 0 36); and 14,

14, 14 (N 0 42). Finally, the type of pairing between group

sizes and covariance matrices was defined as one of the

following: null, positive, or negative. In positive pairings,

the largest group is associated with the covariance matrix

whose values are largest. Conversely, a negative pairing

associates the largest group with the covariance matrix con-

taining the smallest element values. Pairing is null in the

case of balanced groups.

Table 1 shows the different combinations of variables

examined in this study. For each combination, 1,000 repli-

cations were performed at a significance level of .05, for
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both normal and nonnormal distributions.

Results

As indicated above, the first stage of this study consisted of

generating the UN population covariance matrices for ε 0

.57 and .75. In a second stage, these matrices were used to

obtain normal and nonnormal data distributions. In a third

stage, the 11 covariance structures were fitted to each data

set by means of the Proc Mixed from SAS and according to

the AIC. Finally, Proc Mixed was again used to calculate the

Type I error rates for the effects of time and the Time×

Group interaction. The next two sections report the fit

percentages of the covariance matrices selected by means

of the AIC, as well as the Type I error rates, specifying the

covariance structure selected by the AIC.

Selecting the covariance structure Given the presence of

both within-subjects and between-subjects heterogeneity, 11

covariance structures were fitted according to the AIC gen-

erated by Proc Mixed. The present study used the AIC as it

is a more effective indicator of goodness of fit than the

Bayesian information criterion (BIC; Schwarz, 1978).

Keselman et al. (1998) demonstrated that the AIC selects

the true population covariance structure on 47% of occa-

sions, whereas the BIC does so only 35% of the time. A

similar study by Ferron, Dailey, and Yi (2002) reported

correct selection rates of 79% for the AIC and 66% for the

BIC. Subsequently, Vallejo and Livacic-Rojas (2005)

showed that the test based on the AIC outperformed that

based on the BIC when it came to controlling the Type I

error rate, especially when used in conjunction with the KR

method. These authors found that with the BIC, Proc Mixed

offered poor control of the estimated probabilities of Type I

error. However, in another study of the KR procedure,

Gomez, Schaalje, and Fellingham (2005) concluded that

the AIC only performs better with complex covariance

structures, such as the UN covariance matrix. This is con-

sistent with the findings of Keselman et al. (1998). Recently

Vallejo, Ato, and Valdés (2008) demonstrated that with

different group sizes, the AIC provides a better estimate of

standard errors. In light of these findings, the present simu-

lation study made use of the AIC. Note, however, that the

AIC does not always select the true structure, as other

structures may provide more adequate approximations. In

this regard, Vaida and Blanchard (2005) proposed the con-

ditional AIC (CAIC) as an effective and useful alternative

for selecting mixed-effects models, arguing that it provided

a good approximation that was adequate to the amount of

data and the amount of information that they contained.

More recently, Vallejo, Fernández, Livacic-Rojas, and

Tuero-Herrero (2011) found that the shape of the distribu-

tion did not affect the correct decision rates of the AIC and

the BIC with UN covariance patterns, and also showed that

the AIC performed better with both normal and nonnormal

distributions.

The results of the present study are presented in Tables 2

and 3, which show the percentages of fit for the most

common covariance matrices in relation to the UN popula-

tion matrix and for homogeneous and heterogeneous

between-groups covariances, respectively.

It can be seen in Table 2 that with a normal distribution,

the structure with the best fit (66.7%) is the UN population

matrix. With ε 0 .57, it shows a good fit in all cases (for K 0

4, 6, and 8). However, when ε 0 .75, it only shows the best

fit for K 0 4, and as the number of repeated measures

increases (K 0 6 and 8), the CSH matrix offers the best fit

(33.3%). When the distribution is exponential with γ1 0 0.8

and γ2 0 2.4, the best fit (33.4%) is provided by the UN

population matrix when K 0 4. As the value of K increases,

the best fit is shown by other structures: CSH with ε 0 .75,

and ARH and UNj with ε 0 .57. When kurtosis increases to

γ2 0 5.4, the UNj matrix provides the best fit (66.6%) when

K 0 4 and 6. However, when the number of repeated

measures increases to K 0 8, the best fit is offered by the

UN population matrix with ε 0 .57, and by the CSH matrix

with ε 0 .75. In the case of the log-normal distribution, the

Table 1 Group sizes for balanced and unbalanced designs with J 0 3;

K 0 4, 6, and 8; the UN population covariance matrix; and ε 0 .57 and

.75

N n1 n2 n3 Δnj Between-Groups Covariance Pairing

30 10 10 10 0 0 Null

36 12 12 12 0 0 Null

42 14 14 14 0 0 Null

30 10 10 10 0 ≠ Null

36 12 12 12 0 ≠ Null

42 14 14 14 0 ≠ Null

30 5 10 15 0.41 ≠ +

36 6 12 18 0.41 ≠ +

42 7 14 21 0.41 ≠ +

30 15 10 5 0.41 ≠ –

36 18 12 6 0.41 ≠ –

42 21 14 7 0.41 ≠ –

J, groups; K, number of repeated measures; ε, sphericity; N, total

sample size; n1, n2, and n3, group sizes; Δnj, variance coefficient of

the group size; 0/≠, homogeneity/heterogeneity of between-groups

covariance matrices; +/–, positive/negative pairing of group sizes with

covariance matrices.
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population matrix never provides the best fit, and the UNj

matrix has a fit percentage of 100.

Table 3 shows the percentages of fit for heterogeneous

between-groups covariance matrices. As regards the type of

pairing, with normal distributions the best fit (22.2%) is

shown by the UNj population matrix only in the case of

null pairing. This is also the case for exponential distribu-

tions (16.7% when γ2 0 2.4, and 22.2% when γ2 0 5.4).

With the log-normal distribution, the UNj population matrix

provides the best fit (33.4%) for all values of K. When the

distribution is exponential with γ1 0 0.8 and γ2 0 2.4, the

ARHj structure also shows a correct fit (16.7%), as it does,

to a slightly lesser extent (11.2%), when the distribution is

normal or exponential with γ1 0 0.8 and γ2 0 5.4. With

positive and negative pairings, the UNj population matrix

only provides the best fit when K 0 4, this being the case for

both normal and nonnormal distributions. As the number of

repeated measures increases, the ARHj matrix shows the

best fit for all of the distributions, especially when ε 0 .75.

Note, however, that when ε 0 .57 and K 0 6, the UN matrix

offers a good fit for all distributions except the exponential

distribution with γ1 0 0.8 and γ2 0 2.4. The reason why the

ARHj matrix provides the best fit with positive and negative

pairing is probably that the dependency structure of the data

becomes more apparent as the number of repeated measures

increases.

Type I error rates The simulated data were then analyzed

with Proc Mixed, specifying the covariance structure with

the best fit according to the AIC (Tables 2 and 3). The

analysis involved estimating the p values associated with

the fixed effects, via the KR approximation, and the empir-

ical Type I error rates for each combination of the different

study variables (Table 1).

Robustness was determined according to Bradley’s crite-

rion, whereby the effect estimate is robust when the empir-

ical Type I error rate is between .025 and .075 for α 0 .05. A

test is considered to be liberal when the empirical Type I

error rate is above the upper limit, and conservative when it

is below the lower limit.

Table 4 shows the empirical Type I error rates for the time

effect, as well as the percentages of robustness. With K 0 4

and ε 0 .57, the KR method shows 66.7% robustness when

Table 2 Percentages of fit of the most common covariance structures (UN, CSH, ARH, and UNj) in relation to the UN population covariance

matrix

The percentages correspond to homogeneous between-groups covariances.
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the distribution is normal and when it is exponential with γ1
0 0.8 and γ2 0 2.4. The percentage of robustness falls

slightly, to 58.3%, when kurtosis increases to γ2 0 5.4, and

the test is never robust when the distribution is log-normal

Table 3 Percentages of fit of the most common covariance structures (UN, UNj, and ARHj) in relation to the UNj population matrix

The percentages correspond to heterogeneous between-groups covariances.
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(γ1 0 1.75 and γ2 0 5.9). With K 0 4 and ε 0 .75, the

difference between normal and log-normal distributions is

not so marked: When the distribution is normal, the robust-

ness percentage is the same as for ε 0 .57, while with the

Table 4 Empirical rates of Type I error for the time effect (nominal value .05)

In bold 0 liberal; in italics 0 conservative.
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log-normal distribution, the test achieves 41.7% robust-

ness. In this case, and in contrast to what occurs with

the normal distribution, the test is liberal with homoge-

neous between-groups covariances. The highest robust-

Table 5 Empirical rates of Type I error for the interaction effect (nominal value .05).

N

In bold 0 liberal; in italics 0 conservative.
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ness percentage for ε 0 .75 is 75%, corresponding to

exponential distributions with γ1 0 0.8 and γ2 0 5.4,

where the test is robust for both null and positive

pairings.

With K 0 6 and ε 0 .57, robustness is 41.7% with the

normal distribution, but only 8.3% with the log-normal

distribution. With ε 0 .75, robustness is 75% with the

normal distribution and 25% with the log-normal distribu-

tion, where the test is liberal with null pairings. Note,

however, that with positive pairings and ε 0 .57, the test is

conservative for both normal and log-normal distributions.

As regards the exponential distributions, robustness ranges

between 50% and 83.3%, being greater with ε 0 .75. When

the distribution is exponential with γ1 0 0.8 and γ2 0 5.4, the

test is robust even with negative pairings.

With K 0 8 and ε 0 .57, robustness is 50% with the

normal distribution but 0% for the log-normal distribution.

An even greater difference can be seen with ε 0 .75,

where robustness is again 0% with the log-normal dis-

tribution but 75% in the case of the normal distribution.

As regards exponential distributions, the performance is

similar when K 0 6, although the test is slightly less

robust.

Table 5 shows the empirical Type I error rates and

percentages of robustness for the effect of the Time×

Group interaction. With K 0 4, there are hardly any

differences between normal and nonnormal (exponential

and log-normal) distributions. When ε 0 .57, robustness

is 58.3% with the normal distribution, 41.7% for the

exponential distribution with γ1 0 0.8 and γ2 0 2.4,

58.3% for the exponential distribution with γ1 0 0.8

and γ2 0 5.4, and 50% with the log-normal distribution.

These percentages are more or less maintained when

ε 0 .75, where robustness is 41.7% for the normal distribu-

tion, for the exponential with γ1 0 0.8 and γ2 0 2.4, and for the

log-normal distribution, and 66.7% for the exponential distri-

bution with γ1 0 0.8 and γ2 0 5.4.

Similarly, with K 0 6 and ε 0 .75, there are no differences

between the normal distribution, the exponential with γ1 0

0.8 and γ2 0 2.4, and the log-normal distribution. In these

cases, robustness ranges between 41.7% and 50%, although

it rises to 75% for the exponential distribution with γ1 0 0.8

and γ2 0 5.4, the test being robust with negative pairings.

With ε 0 .57, the test is again more robust (41.7%)

when the distribution is exponential with γ1 0 0.8 and

γ2 0 5.4. When the distribution is log-normal and ε 0

.57, robustness reaches 33.3%, compared to 25% for the

normal distribution. It can be seen that the normal

distribution and the exponential with γ1 0 0.8 and

γ2 0 2.4 have the same percentages of robustness for

both sphericity indices.

With K 0 8, the test is more robust when the distribution

is exponential with γ1 0 0.8 and γ2 0 5.4, followed by the

log-normal, and finally the normal distribution. The greatest

difference between the normal and log-normal distributions

is observed with positive pairings, for which the test is

robust with the log-normal distribution but not with normal-

ly distributed data.

Overall, Tables 4 and 5 show that the Proc Mixed in

combination with the KR method is unable to control the

Type I error rate when pairing is negative. This finding is

corroborated by previous analyses of the UN and UNj

population matrices. Vallejo and Ato (2006) concluded that

Proc Mixed in conjunction with the KR procedure based on

the AIC tends to inflate Type I error rates for the interaction

effect when pairing is negative, with both normal and non-

normal distributions. Moreover, this tendency of the test to

be liberal increases as the sample size gets smaller. The

present results also illustrate this. As regards the main time

effect, Vallejo and Livacic-Rojas (2005) found that when the

condition of sphericity was fulfilled, the test was robust

even with distributions that deviated slightly from normality

and with small sample sizes and positive pairing. The pres-

ent study reached the same conclusion with respect to ex-

ponential distributions.

Discussion

Moderate nonnormality has a minimal effect on the standard

errors of estimation methods. However, standard error bias

tends to increase in line with the degree of nonnormality

(Lei & Lomax, 2005). Hence, the focus of the present

analysis of longitudinal data was to examine the extent to

which nonnormality influenced the estimation of fixed

effects. Specifically, the aim of the study was to determine

the robustness of the LMM in mixed longitudinal designs

when the data are not normally distributed. A previous study

with normally distributed data showed that the LMM in

combination with the KR method is more robust than the

between–within and Satterthwaite approximations, particu-

larly when the population covariance matrices are unstruc-

tured or heterogeneous first-order autoregressive (Arnau et

al., 2009). The main contribution of this study by Arnau et

al. (2009) was to demonstrate that the KR procedure cor-

rects the liberal Type I error rates obtained through the

between–within and Satterthwaite methods, especially when

there are positive pairings between group sizes and covari-

ance matrices. Vallejo and Ato (2006) concluded that in

split-plot designs, the KR correction may be a viable alter-

native for estimating the interaction effect. In their analysis

of the estimation of time and interaction effects, Vallejo and
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Livacic-Rojas (2005) found that the KR correction based on

the AIC was able to control the Type I error rates in most of

the distributions studied. Hence, in the present study we

examined the Type I error rates for time and interaction

effects in order to determine the influence of skewness and

kurtosis on the estimation of fixed effects when distributions

are nonnormal.

An interesting result of this study, in relation to selecting

the covariance structure with heterogeneous between-

groups covariance matrices, is that the ARHj matrix showed

the best fit, regardless of the type of distribution and with

both positive and negative pairings. This ARHj structure of

dependency in repeated measures data was previously

reported by Keselman et al. (1998). In their simulation

study, they found that with normal distributions and ε 0

.75, the ARHj matrix showed the best fit to the UNj popu-

lation matrix, this being the case for both positive and

negative pairings. By contrast, with log-normal distributions

and ε 0 .75, there were no differences between the ARHj

and UNj matrices, both matrices showing a correct fit to the

UNj population matrix.

With respect to Type I error rates, the present results

show that for the time effect, the test is more robust with

normal than with log-normal distributions. However, the

difference was not so marked between normal and exponen-

tial distributions. With a log-normal distribution and ε 0 .57,

the test is not robust: The percentages are null or close to

zero. With a normal distribution and ε 0 .75, the test is

robust for all values of K. However, with a log-normal

distribution and ε 0 .75, the test becomes less robust as

the number of repeated measures increases, and it ceases to

be robust when K 0 8. It should be noted, therefore, that the

test is more robust with a normal than with a log-normal

distribution, whereas, overall, there are no significant differ-

ences in performance between normal and exponential dis-

tributions. In addition, when the covariance matrix is

spherical, the test tends to become more robust with normal

and exponential distributions, especially when the number

of observations increases; this is contrary to what occurs

with the log-normal distribution. Finally, a comparison of

the two exponential distributions shows that the test

becomes more robust as kurtosis increases, regardless of

whether or not the assumption of sphericity is fulfilled.

As compared to the estimation of the time effect alone,

the interaction between time and group leads to a consider-

able increase in the test’s robustness when the distribution is

log-normal. Indeed, with a log-normal distribution and ε 0

.57, the test has zero robustness in relation to the time effect,

but is much better when estimating the interaction effect.

Conversely, robustness decreases when the distribution is

normal, particularly as the number of repeated measures

increases. In this regard, Padilla and Algina (2007) showed

that the Type I error rate tends to be higher as the value of K

rises. When ε 0 .75, no differences are observed between the

normal distribution, the exponential with γ1 0 0.8 and γ2 0

2.4, and the log-normal with K 0 4 and 6. By contrast, with

K 0 8 the test is more robust with the log-normal distribu-

tion. As occurs when estimating the time effect, the highest

percentage of robustness in relation to the interaction effect

corresponds to the sphericity condition ε 0 .75 and the

exponential distribution with γ2 0 5.4.

To summarize, the KR approximation is least robust

when the distribution is log-normal, in which case robust-

ness is null when estimating the time effect and with non-

spherical covariance matrices (ε 0 .57). In our view, this is

largely due to the increase in skewness (γ1 0 1.75), as this

lack of robustness is not observed for exponential distribu-

tions with γ1 0 0.8. Robustness is high when the exponential

distribution has a degree of kurtosis that is very similar to

the log-normal distribution—that is, γ2 0 5.4. Therefore, we

conclude that the KR procedure is compromised with log-

normal distributions that show moderate skewness, especial-

ly as regards the estimation of the time effect. By contrast,

when distributions are normal or have slight skewness (γ1 0

0.8), the test is robust even with extreme kurtosis (γ2 0 2.4

and γ2 0 5.4). In fact, the percentage of robustness is high

for the exponential distribution with γ1 0 0.8 and γ2 0 5.4, as

well as when estimating both the time and interaction

effects.

In conclusion, two effects are revealed by the present

results, one due to skewness and the other to kurtosis. The

effect of skewness is detected when comparing exponential

with log-normal distributions, for which robustness

decreases as skewness increases. On the other hand, the

effect of kurtosis is revealed when comparing two exponen-

tial distributions, in which case robustness increases in line

with the degree of kurtosis.

Two final reflections can be made. First, while ac-

knowledging that the results are limited to the condi-

tions examined in this study, we believe that they could

in fact be generalized to a wide variety of conditions.

However, the results obtained here are difficult to com-

pare with other simulation studies, since the sample

sizes and values of skewness and kurtosis differ from

one study to another. Secondly, it would be interesting

in future research to study the functioning of general-

ized linear mixed models. These techniques do not

require the error terms to be normally distributed, and

they are well-suited to most of the distributions found

with real-life data.
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Appendix A. Generation of nonnormal data matrices

by means of Fleishman coefficients

/*...*/ 

/*Distribution with skewness 0.8 and kurtosis 2.4*/

 b=0.848445836; 

 c=0.104049451; 

 d=0.044849610; 

 a=-c; 

 z1=j(n1,q,.); 

 do i=1 to n1; 

  do j=1 to q; 

 z1[i,j]=rannor(0); 

 z1[i,j]=a + b*z1[i,j]+ c*z1[i,j]**2 + d*z1[i,j]**3; 

 end; 

  end; 

/*...*/ 

/*...*/ 

/*Distribution with skewness 0.8 and kurtosis 5.4*/

 b=0.702207971; 

 c=0.082964688; 

 d=0.088904623; 

 a=-c; 

 z1=j(n1,q,.); 

 do i=1 to n1; 

  do j=1 to q; 

 z1[i,j]=rannor(0); 

 z1[i,j]=a + b*z1[i,j]+ c*z1[i,j]**2 + d*z1[i,j]**3; 

 end; 

  end; 

 /*...*/ 

 /*...*/ 

/*Distribution with skewness 1.75 and kurtosis 5.9*/ 

 b=0.774926306; 

 c=0.222093456; 

 d=0.054958336; 

 a=-c; 

 z1=j(n1,q,.); 

 do i=1 to n1; 

  do j=1 to q; 

 z1[i,j]=rannor(0); 

 z1[i,j]=a+b*z1[i,j]+c*z1[i,j]**2+d*z1[i,j]**3; 

 end; 

  end; 

/*...*/ 
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