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1. Abstract 

The approximation of a hnction by a sum of complex expo- 
nentials is a problem that is at least two centuries old. Fundamen- 
tally, all techniques discussed in this article proceed from using the 
same sequence of data samples and vary only, but importantly, in 
how those samples are used in achieving the parameter estimation. 
All of these techniques, in other words, seek the same quantitative 
parameters to represent the sampled data, but use different routes 
to get there. The techniques for estimating the parameters are either 
linear or nonlinear. The linear techniques are emphasized in this 
presentation. In particular, the Matrix Pencil Method is described, 
which is more robust to noise in the sampled data. The Matrix 
Pencil approach has a lower variance of the estimates of the 
parameters of interest than a polynomial-type method (Prony’s 
method belongs to this category), and is also computationally more 
efficient. A bandpass version of the Matrix Pencil can be imple- 
mented in hardware, utilizing an AT&T DSP32C chip operating in 
real time. A copy of the computer program implementing the 
Matrix Pencil technique is given in Appendix. 

2. Introduction 

he response of an object to a burst of electromagnetic energy T is a problem of interest in many electronic systems. The devel- 
opment of the Singularity-Expansion Method (SEM) by Carl Baum 
[ 11 provides a convenient methodology for describing the late-time 
response of antennas (and other scatterers) in terms of their natural 
frequencies [2-41. In essence, this is equivalent to modeling the late- 
time response of an object irradiated by an electromagnetic pulse as 
a sum of complex exponentials. Since the complex oscillation fre- 
quencies of the electromagnetic response are intrinsic to the geome- 
try of the object, the poles extracted from the late-time portion of 
the scattered fields’ response can be utilized to provide an aspect- 
independent means for radar-target discrimination [5-71. 

However, in recent times, the methodology of approximating 
a hnction by a sum of complex exponentials has found applications 
in other areas of electromagnetics. for example, in the efficient 
evaluation of the Sommerfeld integrals, where the Sommerfeld ker- 
nels are first approximated by sums of complex exponentials [8, 91, 
and in antenna-pattern synthesis [9]. Other areas of application are 
in the extraction of the s-parameters of microwave-integrated cir- 
cuits [ 10, 1 I]; in the analysis of propagation of signals over perfo- 
rated ground planes [ 121; in the computation of input impedance of 
electrically wide slot antennas [13]; in the analysis of complex 
modes in lossless closed conducting structures [ 141; in multiple 
transient signal processing [ 151; in inverse synthetic-aperture radar 
[16]; in high-resolution imaging of moving targets [17]; and in 
radio-direction finding [ 18, 521. 

In our discussions of the various approaches, only references 
which are directly relevant are noted No attempt has been made to 
cite the earliest sources. In many cases, additional references may 
be found in the papers mentioned. 

In general, the signal model of the observed late time of elec- 
tromagnetic-energy-scattered response from an object can be for- 
mulated as 

M 
y( t )=x( t )+n( t ) rz :CR,exp(s , t )+n( t ) ;  Ost s T ,  ( I )  

i=l 

where y( t )  = observed time response 
n( t )  = noise in the system 
~ ( t )  = signal 

R, 
si =-a i+  j w ,  
ai = damping factors 
w j  

= residues or complex amplitudes 

= angular frequencies (mi = 2 g , )  

After sampling, the time variable, t ,  is replaced by kT,, where T,  is 
the sampling period. The sequence can be rewritten as 

and 

The objective is to find the best estimates of M, R, s, and z, s from 
the noise-contaminated data, y(  kT,) In general, simultaneous esti- 
mation of M, R,s, and z,s is a nonlinear problem. Three of the 
popular methods of solving the nonlinear problem are described in 
[19-211. However, solving the linear problem is interesting and, in 
many cases, is equivalent to solving the nonlinear problem [22, 231. 
In addition, the solution to the linear problem can be used as an ini- 
tial guess to the non-linear-optimization problems of [ 19-21]. 

Two of the popular linear methods are the “polynomial” 
method and the “matrix pencil” method The basic difference 
between the two is that the “polynomial” method is a two-step 
process in finding the poles, z, We will show later that for a poly- 
nomial method, one needs to solve a matrix equation for the coef- 
ficients of a polynomial, whose roots provide z ,  On the other hand, 
the “matrix pencil” approach is a one-step process The poles z ,  are 
found as the solution of a generalized eigenvalue problem Hence, 
there is no practical limitation on the number of poles, M, that can 
be obtained by this method In contrast, for a polynomial method it 
is difficult to find roots of a polynomial for, say, M greater than 50 
The Matrix Pencil approach is not only more computationally effi- 
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cient, but it also has better statistical properties for the estimates of 
z ,  than the “polynomial” method [24-261. 

From an historical perspective, the polynomial type of method 
is much older at least two centuries old The method of approxi- 
mating a function by a sum of complex exponentials in Equation (2) 
was first developed by Prony in 1795 [27], and further developed in 
[28, 291 This method is quite efficient and accurate for extracting 
poles and residues from given equally spaced transient data But 
Prony’s method is notorious for its extreme sensitivity to noise [5, 
61 To combat the noise introduced in the observed data, Prony’s 
method was modified, and two schemes for systematically 
determining the number of poles by using Householder 
orthogonalization and the dominant eigenvaludeigen-vector 
method are given in [30] This motivated Tufts and Kumaresan to 
propose the application of the principal-eigenvector method based 
on singular-value decomposition of the data matrix before applying 
Prony’s method [3 1, 321 

The Matrix-Pencil technique [24] is relatively new, even 
though its roots go back to the pencil-of-functions approach, which 
has been in use for some time [33-411. The basic difference 
between the pencil-of-functions method [37] and the Matrix-Pencil 
( M P )  approach (often termed GPOF, or generalized pencil-of-func- 
tion) [24] is that even though both of them start with the same phi- 
losophy, the Matrix-Pencil method is computationally more efficient 
than the pencil-of-functions method The original pencil-of-func- 
tions method was a variation of the polynomial method, and hence 
had the same computational bottlenecks as associated with Prony’s 
method The Matrix-Pencil approach is discussed in the next sec- 
tion It is shown to be a one-step process, as opposed to the pencil- 
of-functions method, which provides the solution in two distinct 
steps, just like Prony’s method 

3. Matrix-Pencil (MP) Method 

The term “pencil” originated with Gantmacher [42], in 1960. 
Similar to Gantmacher’s definition for matrix pencil, another usehl 
mathematical entity arises when combining two functions defined 
on a common interval, with a scalar parameter, jl: 

f ( t , 1 )  is called a pencil of functions g( t )  and h( t ) ,  parameterized 
by R To avoid obvious triviality, g ( t )  is not permitted to be a sca- 
lar multiple of h(t)  The pencil-of-functions contains very important 
features about extracting information about z , ,  given y ( t ) ,  when 
g ( t ) .  A ( [ ) ,  and 1 are approximately selected For an historical per- 
spective of the topic, please see [43] 

In order to motivate the M P  method, we first deal with the 
noiseless case, and then noise is considered in the latter part of the 
section 

For noiseless data, we can define two ( N  - L )  x L matrices, 
Yl and Y2, defined by 

Lx(N - L - 1) x ( N  - L) ... x ( N  - 2)j(N-L)xL 

where L is referred to as the pencil parameter [44-461. The pencil 
parameter, L,  is very useful in eliminating some effects of noise in 
the data. The significance of this parameter comes into the picture 
when we deal with noisy data. 

One can write 

where 

1 ... 

‘M 1 > (9) 

... 

... 

... 

(12) [RI= diag[Rl,R2 , . . . , & I ,  
where diag [*] represents a M x M diagonal matrix 

Now consider the matrix pencil 

P 2 1 -  4 Y J =  [Z1I[RI~[Zol- “[‘lI[Z21, (13) 

where [I] is the M x M identity matrix. One can demonstrate that, 
in general, the rank of {[Y2]-1[Yl]} will be M, provided that 
M 2 L 2 N - M [24-26, 45, 461. However, if R = z i ,  i = 1,2,.. ., M ,  
the ith row of {[Z,] - 1[I]} is zero, and the rank of this matrix is 
M - 1 .  Hence, the parameters zi may be found as the generalized 
eigenvalues of the matrix pair {[Y2];[Y,]}. Equivalently, the prob- 
lem of solving for z, can be cast as an ordinary eigenvalue problem, 

where [Yl]+ is the Moore-Penrose pseudoinverse of [Yl]. This, in 
turn, is defined as 

where the superscript “H” denotes the conjugate transpose. 
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In the presence of noise, some prefiltering needs to be done. 
To combat noise, the total-least-squares Matrix Pencil has been 
found to be superior [46-481. In this implementation, one forms the 
data matrix [Y] from the noise-contaminated data y ( t )  by combin- 
ing [Ul] and [Y2] as 

Note that [Yl] is obtained from [Y] by deleting the last column, and 
[Y2] is obtained from [Y] by deleting the first column. So, in Equa- 
tions (5)-(6), the x ( k ) s  are replaced by y ( k )  to obtain [Yl] and 
[Y2]. For efficient noise filtering, the parameter 1, is chosen 
between N/3 to N/2 [45-481 For these values of L, the variance in 
the parameters z,,  due to noise, has been found to be minimum [47, 
481. Please note that in Equation (16), all the N data samples are 
utilized, even though L may be considerably less than N. 

Next, a singular-value decomposition (SVD) [49] of the 
matrix [Y] is carried out as 

Here, [U] and [VI are unitary matrices, composed ofthe eigenvec- 

tors of [Y][Y]" and [Y]"[Y], respectively, and [E] is a diagonal 
matrix containing the singular values of [Y], i.e. 

The choice of the parameter M is done at this stage. One looks at 
the ratio of the various singular values to the largest one. Typically, 
the singular values beyond M are set equal to zero. The way M is 
chosen is as follows. Consider the singular value oc such that 

where p is the number of significant decimal digits in the data. For 
example, if the data is accurate up to 3 significant digits, then the 
singular values for which the ratio in Equation (19) is below 
are essentially noise siqgular values, and they should not be used in 
the reconstruction of the data. On the other hand, if all the singular 
values are such that crc/omar does not decrease, then to model the 
given data by a sum of complex exponentials is not the "correct 
thing to do." The magnitude of the singular values thus provides a 
sanity check! 

We next consider the "filtered" matrix, [V'], constructed so 
that it contains only M dominant right-singular vectors of [VI : 

The right-singular vectors from M + 1 to L, corresponding to the 
small singular values, are discarded Therefore, 

where [Vi] is obtained from [V'] with the last row of [V'] deleted; 
[Vi] is obtained by removing the first row of [V']; and [E'] is 
obtained from the M columns of [ C] corresponding to the M domi- 
nant singular values. 

It can be shown [45-481 that, for the noiseless case, the 
eigenvalues of the following matrix 

are equivalent to the eigenvalues of the following matrix 

{[Vi]H - A[V,']"} = {[V,']Hr[[Viy}+ -411. (24) 

This methodology of solving for zis  provides minimum vari- 
ance in the estimate of z i s  in the presence of noise [24-26. 46-48]. 
Typically, up to 20-25 dB of signal-to-noise ratio (SNR) can be 
handled adequately by this technique [24] Also, the poles zi come 
out much more simply than in a Prony-type method, as outlined in 
the next section. 

Once M and the z is  are known, the residues, R,, are solved 
for from the following least-squares problem: 

A real-time implementation of this method is described in Section 6. 
A listing of a computer program, implementing M P ,  is included in 
the Appendix. 

4. Polynomial (or a Prony-Type) method 

Prony's method was one of the earliest methods used in 
approximating a function by a sum of complex exponentials. 
Although the Prony method, the Pisarenko method, and the pencil- 
of-function method (note the difference between the Matrix Pencil 
approach and the pencil-of-function method) [22, 231 can be devel- 
oped from polynomial approaches, we discuss only Prony's 
method. 

It is well known that, given M complex numbers zi ,  
i = 42,. . ., M ,  there exist unique complex numbers U;, 

i = 42 ,..., M ,  such that 

Thus, finding the signal poles z,, i = 1,2, ..., M ,  is equivalent to 
finding the coefficients a,, i = 42, ..., M ,  of the Mth-degree poly- 

nomial CakLk (with a. = I ) ,  which has roots at z, This is the 
M 

k=O 

essence of the original Prony method. This, however, can be gen- 
eralized as follows. 

Finding the signal-poles z i s  is equivalent to finding the coef- 
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L 
ficients a,, I = 1,2,. . ,, L ,  of an Lth-degree polynomial 

(with a, = 1 and L t M ) ,  such that of all the L roots of the poly- 
nomial, there are M signal roots which are one-to-one functions of 
zis,  and which are also separable from the other ( L -  M )  
(extraneous) roots 1491, due to “over modeling,” as L is greater 
than M. 

k=O 

[cl]= 

Let 

0 0 ... 0 -aL 

1 0 ... 0 4 L - I  

0 1 ... 0 -a&r 

0 0 ... 1 -a1 L x L  

=[u*,u3 ,..., u,,Y;y],(34) . .  . .  . .  . .  . .  . .  

L 
p ( 1 )  = > (27) 

k=O 

so that p ( z , )  = 0 for J = 42, ..., M Then, it can be shown that for 
L < m <  N - I ,  

Therefore, in matrix form, [Y][g] = 0, where 

I(29) 
y ( N - L - - I )  ..’ y ( N - 2 )  i y ( N - 1 )  

where y = [ y ( L )  ,..., y ( N  - l)]T, and g =[aL ,..., aOlT. Note, also, 
that 

with 

Since the roots of polynomial are independent of the uniform 
scaling of the coefficients a,, we have let a, be one, without any 
loss of information. Therefore, 

where a =[aL, ..., allT. This equation is also referred to as the 
“forward linear prediction” equation in the digital-signal-processing 
literature. 

Next, we need to find a way to obtain a solution such that the 
associated polynomial has all the desired signal roots that are also 
separable from the other, extraneous roots, due to noise (as 
L z M ) .  This special solution is called the minimum-norm solution 
[3 1, 321, which is given by 

For noisy data, the pseudo inverse [Yl]+ should be replaced by the 
“truncated rank-M pseudo inverse,” which is formed by the first M 
largest singular values and the corresponding singular vectors. The 
way to select Mhas  been outlined in the previous section. 

5, Relationship between the polynomial method and the matrix 
pencil method 

Although the two methods originated from different 
approaches, there is a link between the two, as is shown next. 

It can be shown [SO] that the roots of the polynomial 

x o o ~ - k  (with a. = 1) are the eigenvalues ofthe matrix 
L 

k=O 

where Ui is the ( L  x 1) vector with the ith element equal to 1 and 
all other elements zero. [Y,]+[Y,] can be written as 

with y k  = [yk ,..., y k + h ; - ~ - ~ ] ~ .  where k = 1 ,..., L 

As we can see, the ith column of [C,] is a solution of the fol- 
lowing equation: 

But in [C,], only the last column vector is the minimum-norm solu- 
tion with i = L ,  while in [C,], all column vectors are minimum- 
norm solutions of Equation (36) [C,] and [C,] are identical if 
L = 1. Note that [C,] has M signal eigenvalues at zi, and L - M 
extraneous eigenvalues that are nonzero and located inside the unit 
circle, while [C,] has M signal eigenvalues at z j ,  and L - M extra- 
neous eigenvalues that are zero. Therefore, we see that the poly- 
nomial method and the pencil method are different if L > M ,  and 
identical if L = M .  For the overdetermined case, L > M ,  the results 
are different due to the use of different numerical recipes, even 
though the input data are identical. 

The results of the two methods are different under noise. It 
can be shown that under noise, the statistical variance of the poles 
zi for the MP method is always less than that of the polynomial 
method 145-481, i.e., 

with equality when L = M = 1 From M 2 2, the two methods yield 
different variances. The matrix pencil method does deteriorate 
when the signal-to-noise ratio (SNR) decreases below about 20- 
26 dB, unless one utilizes the bandpass version [50, 51 J of the 
matrix pencil method, abbreviated as (BPMP) 

6. Real-time implementation of the band-pass matrix pencil 
(BPMP) method 

The band-pass matrix pencil (BPMP) method is usefid when 
the signal-spectrum energy is concentrated about a certain region in 
the frequency domain. By using prior information about the 
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approximate location and the bandwidth of the signal, the SNR can 
be enhanced by a prefiltering process. The MP method is then 
applied to the filtered data, to estimate frequencies and damping 
factors of sinusoidal signals. However, due to the special require- 
ments of the filtered data by the MP method, the prefiltering proc- 
ess is not trivial [50, 511. 

Even though the MP method can filter out part of the noise, 
by using a SVD of the data matrix and discarding the non-principal 
singular vectors, some effects of noise still exist in the principal sin- 
gular vectors To hrther combat noise, prefiltering can be used 
prior to the SVD filtering The basic idea underlying the BPMP 
method is first using a digital-filtering technique to enhance the 
SNR, and then finding the estimate of the poles through the M p  
algorithm Thus, intuitively, it can be expected that the BPMP 
method will have better performance than the MP method, when 
the effect of noise is considerable The use of IIR (infinite-impulse 
response) and FIR (finite-impulse response) filtering can be used for 
bandpass filters [50, 5 I ]  When IIR filters are used, the data is fil- 
tered first using a recursive relation [50], whereas for FIR filters 
Equation (13) is premultiplied by a circulant matrix [HI, containing 
the desired filter characteristics IIR filters are much faster compu- 
tationally than FIR filters, due to the utilization of the recursive 
equation However, they have some special requirements [50, 5 11 
When the truncation errors due to the finiteness of the filters are 
made small, FIR filters are preferred 

It has been shown [50, S I ]  that for the BPMP, the variance of 
the estimates can come close to the Cramer-Rao bound [51], when 
the signal-to-noise ratio is greater than 12 dB. Hence, the threshold 
is extended from 26 dB (for M P )  to 12 dB for BPMP [51]. 

The BPMP method has been implemented on an IBM-AT 
with a plug-in PC-32C board. This plug-in board consists of an 
AT&T WE-DSP32C-80 digital-signal processor, 250k bytes of 
RAM on board, and a 16 M bit/sec buffered bi-directional serial 
port. The execution program is downloaded via the utility software 
D3EMiJ [45, 461. 

Consider the real-time implementation of the following prob- 
lem: 

(37) 

The number of samples chosen is k = 0, ..., 29 In this case, A4 = 4,  
o, = 0.27r, o1 = 0 . 3 5 ~ ,  al = 0027r, a2 = 0 0 3 5 ~ ,  4 = 4 = I .  
Noise is added to the data so that the SNR = 3 96 dB. The first step 
is to form the data matrix, [Y], with the number of columns equal 
to 11 (i e ,  L = N / 3  = I O )  The circulant matrix [HI [50, 511 is then 
used to filter the data, and the results are given in Table I A is the 
relative-error estimate for the variable z,, and is defined as 

Ix(SNR = GO) - x(SNR = 3.96 dB)\ 
A =  ~ 1 0 0 % .  (38) 

x ( s N R  = .c) 

Here, (SNR = m) is considered the no-noise case 

The first row of Table I provides the results for the no-noise 
case, utilizing the MP method, in 50 milliseconds. The second row 
corresponds to the results when the SNR = 3.96 dB and the method 
used is BPMP The third row presents the results due to M P .  It is 
seen that BPMP takes 10 milliseconds more time than MP. It is 
seen that a significant reduction of the relative errors occurs for the 

Table 1: Results for the real-time implementation of the 
BPMP method. 

BPMP method, which is attained at a slightly higher computational 
time. 

7. Conclusion 

Out of all linear techniques available to approximate a hnc- 
tion by a sum of complex exponentials, the Matrix Pencil method 
provides smaller variance of the parameters in the presence of noise 
than a polynomial (or a Prony-type) method. A bandpass version of 
it can be implemented to perform real-time processing. 
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Appendix: A Matrix Pencil Method Subroutine 

C Authors: 
C 2. A. Maricevic, T. K. Sarkar, and Y. Hua, Copyright 1992. 
C (This version by K. A.  Michalski, October 1994.) 
C Library: 
C Calls DLSVCR, DEVCHF, and DGVLCG routines from IMSL, v. 2.0. 
C Arguments: 
C N - Number of data samples. (Input) 
C X(1) - Complex*16 array containing sampled waveform. (Input) 
C DT - Real*8 sample interval. (Input) 
C M  
C 
C 
C 
C 
C R  
c s  
C---- 

C NX 

C set 

Integer used to control the-model order. (Input/Output) 
If M>O, the model order (number of poles) is set to M. 
If M 4 ,  then -M is interpreted as the number of significant 
digits in the input data, and is used to automatically 
select the model number. This estimate is returned in M. 
Complex*16 array containing residues (amplitudes). (Output) 
Complex*16 array containing exponents (poles). (Output) 

Implicit None 
Integer NX,NY,MX 

Parameter (NX = 150,NY = NX/2,MX = 10) 
Integer N,M,L,L1,NL,IIJ,K,IPATH,IRANK 
Real*8 DT,TOL,SZ(NY) 
Complex*16 X(NX),Y(NX,NY),V(NY,NY),Yl(MX,MX),Y2(MX,MX) 
Complex*16 Z(NY),R(MX),S(MX),U(NX,NX) 
Intrinsic DCONJG,MINO,CDABS,CDLOG,DLOGlO 
If (N.GT.NX.OR.M.GT.MX) Then 

End If 
the pencil parameter L 

If (L.LE.M) Then 

maximum number of samples; MX - maximum model order 

Stop ‘ PENCIL8 Exceeded maximum N or M!’ 

L = N/2-1 

Stop PENCIL: N too small for requested MI’ 
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End If 

L1 = L+1 
NL = N-L 
Do J = 1,Ll 
Do I = l,NL 

End Do 
End Do 

IPATH = 01 

Call DLSVCR(NL,Ll,Y,NX,IPATH,TOL,IRANK,Z,U,NX,V,N) 

If (M.LT.0) Then 

c fill the Hankel data matrix 

Y(1,J) X(I+J-l) 

C compute singular values and right singular vectors of Y (call IMSL) 

TOL = 1.D-10 

C determine the model order 

Do I = l,L 

End Do 
If (DLOGlO(CDABS(Z(I+l)/Z(l))).LT.M) Exit 

M = MINO(I,L-l,MX) . .  

End If 

Do I = l,M 
C set up the generalized eigensystem for pole computation 

Do J = l,M 
Yl(1,J) = (O.DO,O.DO) 
Y2(I,J) = (O.DO,O.DO) 
Do K = l,L 
Yl(1,J) = Yl(I,J)+DCONJG(V 
Y2(I,J) = YB(I,J)+DCONJG(V 

End Do 
End Do 

End Do 

Call DGVLCG(M,Yl,MX,Y2,MX,S,R) 
CO I = l,M 

C compute eigenvalues of Yl-LAMBDA*Y2 

If (CDABS(R(I)).GT.O.DO) Then 

Else 
S(1) = S(I)/R(I) 

call IMSL) 

-~ ~ 

Stop PENCIL: Infinite eigenvalue???’ 
End If 

End Do 
C find residues using least squares 
C compute Z-H*Z, where Z is the Vandermonde matrix 
C (upper triangular part only) 

Do I = l,M 
Do J = I,M 
Y(1,J) = (O.DO,O.DO) 
Do K = l , N  

End Do 
Y(1,J) = Y(I,J)+(DCONJG(S(I))*S(J))**(K-l) 

End Do 
End Do 

C compute eigenvalues and eigenvectors of Z-H*Z (call IMSL) 
Call DEVCHF(M,Y,NX,S2,V,NY) 
Do I = l,M 
R(1) = (O.DO,O.DO) 
Do K = l,N 

End Do 
End Do 
Do I = l,M 

R(1) = R(I)+DCONJG(S(I))**(K-l)*X(K) 

Z(1) = (O.DO,O.DO) 
Do K = l,M 

End Do 
Z(1) = Z(I)+DCONJG(V(K,I))*R(K) 

Z(1) = Z(I)/S2(1) 
End Do 
Do I = l,M 
R(1) = (O.DO,O.DO) 
Do K = l,M 

End Do 
R(1) = R(I)+V(I,K)*Z(K) 

End Do 
Do I = l,M 

End Do 
S(1) = CDLOG(S(I))/DT 

End 
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