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Abstract — By means of the mean reliability (de-
fined as the mean of the absolute values of log-
likelihood ratios), a new design of parallel con-
catenated “turbo” codes is proposed. This crite-
rion allows us to describe the behavior of the con-
stituent decoders and, furthermore, to predict the
behavior of the iterative decoder for large block
lengths. The mean reliability can also be used as
a stopping criterion.

I. Introduction

Parallel or serially concatenated codes are usually de-
coded by means of the well-known iterative “turbo” al-
gorithm, in which soft-in soft-out decoders for the con-
stituent codes exchange extrinsic information [1]. After a
certain stopping criterion is fulfilled or a maximum num-
ber of iterations is reached, the sent bits are estimated by
a hard decision of the final soft outputs.

When the logarithmic a posteriori probability
(LogAPP) algorithm [2] is employed for decoding the con-
stituent codes, the turbo decoder processes log-likelihood

ratios (LLRs). The LLR L(U)
4

=ln[P (U=+1)/P (U=−1)]
of a bit U ∈ {±1} can be separated into the hard deci-
sion û, where û = +1 for L(U) ≥ 0 and û = −1 else, and
the reliability |L(U)| of this decision, which is given by
the absolute value of the LLR, i.e., L(U) = û · |L(U)|.

Since the aim of iterative decoding is an improvement
of the reliabilities of the hard-decided bits, we propose
to characterize the quality of a sequence of LLRs by the
mean absolute value of the LLRs, |L(U)|, referred to as
the mean reliability in the following.

Based on this measure, we present a method for de-
signing the constituent codes optimized with respect to
iterative decoding, and we define a stopping criterion for
convergence detection. A formal reasoning for the “cor-
rectness” of this and related design criteria [3, 4, 5] is
presented. As an application, we consider the optimiza-
tion of partially systematic turbo codes (PSTC), which
are a generalization of conventional turbo codes due to
not only puncturing the parity bits, but also some of the
systematic bits [6].

II. Encoder and Decoder

The encoder for a PSTC is depicted in Fig. 1. The
info word u of length K is encoded by the first recursive
systematic convolutional (RSC) encoder with the gener-
ator [1; g(D)] onto its code word comprising both the

info word u and the parity word p1. The interleaved
info word is encoded by the second RSC encoder with
generator g(D); its code word consists only of the par-
ity word p2. Both RSC codes are terminated by means
of post-interleaver flushing1 [7]. The resulting (mother)
code word c = (u,p1,p2) of rate K/(3K + 3M) ≈ 1/3,
where M denotes the RSC memory length, is punctured
to obtain the code word c

′ = (u′,p′

1,p
′

2) of overall rate
R > 1/3.
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Figure 1: Encoder for a partially systematic turbo code.

The puncturing pattern is chosen such that (i) the over-
all code rate is R, (ii) the two parity words p1 and p2 are
equally often punctured, and (iii) the ratio of the number
of systematic bits after puncturing to the number before
puncturing is ρu ∈ [0; 1]. Since the codes may not contain
all of the systematic bits, they are called partially system-

atic turbo codes. ρu = 1 corresponds to the classical (sys-
tematic) turbo code [1] containing all of the systematic
bits, whereas ρu = 0 corresponds to a non-systematic
turbo code containing only parity bits. Smaller values
of ρu improve the distance properties of the PSTC and
therefore the high-SNR performance [6].

For decoding, the iterative decoding algorithm accord-
ing to Fig. 2 is applied2. Each of the constituent de-
coders computes extrinsic LLRs for the info bits based
on the channel LLRs (L−(U ′), L−(P ′

1), L−(P ′

2)) of its
respective code bits and on the extrinsic LLRs provided
by the other constituent decoder as a priori LLRs: de-
coder 1 uses [Le

2(Uk)][1..K] to compute [Le
1(Uk)][1..K], and

vice versa. After the last iteration, the sums of the ex-

trinsic LLRs L+(Uk)
4

= Le
1(Uk)+Le

2(Uk), k = 1, 2, . . . ,K,
are hard decided.

For the examples in this paper, the parameters g(D) =
(1+D2)/(1+D +D2), info word length K = 16384, and
overall code rate R = 1/2 were used. The code bits are

1After encoding of the K info bits the constituent encoders are
driven back to the zero-state independently.

2The superscripts ‘−’/‘+’ denote prior/after decoding.



transmitted over a binary-input additive white Gaussian
noise channel. The signal-to-noise ratio (SNR) per info
bit is denoted as Eb/N0. A maximum number of 60 iter-
ations was allowed and the stopping criterion which will
be introduced later was applied.
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Figure 2: Decoder for a partially systematic turbo code.

III. Mean Reliability

A single LogAPP decoder can be interpreted as a fil-
ter for LLRs [8]. In the same way, iterative decoding can
be interpreted as successive filtering of extrinsic LLRs.
To characterize the “filtering behavior” of a single con-
stituent decoder, the (extrinsic) inputs are modeled as
Gaussian distributed LLRs and the corresponding dis-
tribution of the extrinsic output LLRs is computed by
simulation. Then, both the input and the output dis-
tribution are each represented by one variable (such as
the mean value, variance, mutual information, or mean
absolute value). The mapping of input values onto their
corresponding output values is called the decoding func-

tion in the following.
In this paper, the “quality” of the inputs and outputs

of a single constituent (LogAPP) decoder is measured by
means of their mean reliabilities. We define the mean re-

liability Λe

i
of the extrinsic LLRs Le

i
(Uk), k = 1, 2, . . . ,K,

computed by constituent decoder i as

Λe

i
=

1

K

K∑

k=1

|Le

i
(Uk)| ,

where i = 1, 2. With this definition, the statistical input-
output behavior of each constituent decoder i can be de-
scribed by its decoding function di(.), i.e.,

Λe

1 = d1(Λ
e

2) , Λe

2 = d2(Λ
e

1) .

Fig. 3 shows simulation results for the PSTC defined
above with ρu = 3/4 (i.e., a quarter of the systematic bits
is punctured) at two different SNR. The decoding func-
tions d1 and d2 of the respective constituent decoders are
crossing in a point, which can be identified as the point
of convergence. For illustration, the figures show also
actual decoding trajectories. The parts with remaining
bit errors are plotted with thick lines, whereas the error-
free parts are plotted with thin lines. In our experience,
a trajectory follows the way predicted by the decoding
functions as long as there are remaining bit errors. A few
iterations before the word becomes error-free, the trajec-
tory starts to cross the decoding functions and converges
“behind” their intersection (see Fig. 3(b)).

In related publications, the SNR [3, 4] and the mu-
tual information [5], respectively, are used to measure
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Figure 3: Decoding functions and trajectories (tr.) of a wrong-
ly decoded word (a) (Eb/N0 = 0.4 dB) and of a correctly
decoded word (b) (Eb/N0 = 0.6 dB), both for ρu = 3/4.

the quality of the extrinsic values exchanged by the con-
stituent decoders. In our opinion, the mean reliability

measure is a suitable alternative due to the following rea-
soning:

1. The absolute values of the a posteriori LLRs (which
are the outputs of a LogAPP decoder) are sufficient
to estimate the bit error probability [9]. This moti-
vates to apply a measure based on the absolute values
of the LLRs.

2. The mean value µ and the variance σ2 of Gaussian
distributed LLRs fulfill the property 2µ = σ2 [9].

Therefore, the input LLR distribution of the con-
stituent decoders, which is modeled as Gaussian dis-
tributed, is completely determined by µ or σ2. More-
over, it is completely determined by every reversible
function of µ and/or σ2. Thus, it is sufficient to de-
scribe the distribution with any arbitrary reversible
function of µ and/or σ2, preferably one which is easy
to compute (like the mean reliability).

One the other hand, since the output LLR distri-
bution is not Gaussian, it cannot be described by
just one variable. Therefore, from this point of view
the SNR [3, 4], the mutual information [5], and the
mean reliability are equally meaningful. However,
given these measures, the mean reliability requires
the lowest computational effort.

3. The mean reliability does not depend on the info
bits actually sent, and it can be computed in a real
decoder. Furthermore, it can be used to define a
stopping criterion.

IV. Code Design

Since the intersection of the decoding functions corre-
sponds to the point of convergence, these curves allows us
to predict the asymptotic decoding behavior of the itera-
tive decoder for (infinitely) long code words. The compu-
tational complexity of computing the decoding functions
of the constituent codes is very low compared to that of
simulating the concatenated code, which involves itera-
tive decoding. Therefore, this method can be applied as
an efficient tool to investigate the convergence behavior
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Figure 4: Sum Λe

1 + Λe

2 of the mean extrinsic reliabilities at
the intersections of the decoding functions (a) and ratio of
correctly decoded words (b) vs. the SNR.

for different constituent codes or, like in our examples, for
puncturing patterns according to different values of ρu.
The main interest is on the lowest SNR at which iterative
decoding of a very long code will succeed.

In Fig. 4(a), the sum Λe
1 + Λe

2 of the mean reliabil-
ities associated with the intersection is plotted against
the SNR for several values of ρu. At a certain SNR the
mean reliability increases very quickly from small to large
values. This point can be identified with the SNR neces-
sary for convergence or, equivalently, with the “waterfall
region”.

The actual amounts of correctly decoded words are de-
picted in Fig. 4(b). When this figure is compared to
Fig. 4(a), the critical SNR values turn out to be quite
similar. The remaining differences are due to two rea-
sons: (i) the actual distributions of the extrinsic LLRs are
only approximately Gaussian; (ii) the code actually used
is of finite length. Nevertheless, the relations between
different values of ρu hold also for finite word lengths.

For the design of PSTCs, two effects have to be con-
sidered: (a) smaller values of ρu lead to better distance
properties of the code and therefore to lower error rates
in the “flattening region” [6]; (b) the results of the above
investigations show that the iterative decoder needs a cer-
tain amount of systematic bits to provide convergence at
low SNR, i.e., the value of ρu should not be too small.
Due to this trade-off, the value of ρu has to be adapted to
the SNR at which the code is to be used. For best power
efficiency about half of the systematic bits (ρu ≈ 1/2)
should be punctured.

V. Stopping Criterion

Since the mean reliability is independent of the bits
actually sent, it can also be used as a stopping criterion.
In our experience, after a certain number of iterations
the mean reliability of the extrinsic LLRs does not signif-
icantly change if either the constituent codes are termi-
nated by post-interleaver flushing or if none of the con-
stituent codes is terminated (which should be avoided due
to the well-known poor distance properties). For the case
that only one of the codes is terminated and for the case
that both codes are terminated but all of the termination
bits are encoded by both encoders, the mean reliability
will keep growing even for already error-free words.
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Figure 5: Percentage of words correctly decoded after each
iteration vs. iteration number (ρu = 1/2, Eb/N0 = 0.7 dB).

A word is considered as converged, when both mean
reliabilities Λe

1 and Λe
2 do not change in two subsequent

iterations. When this occurs, decoding is terminated.
Simulations indicate that a precision of 10−2 is appro-
priate. As opposed to many other stopping criteria, the
proposed one does not depend on the SNR. In our expe-
rience, PSTCs with small values of ρu (codes with fewer
systematic bits) require more iterations than those with
larger values of ρu.

Although most of the words are error-free after a small
number of iterations, some words need up to 40 itera-
tions or even more. As an example, the percentage of
words correctly decoded within a certain iteration step
is depicted in Fig. 5. Thus, a relatively high maximum
number of iterations is necessary for minimizing the word
error rate. At the same time, the average number of iter-
ations will be much smaller when the proposed stopping
criterion is applied.

Acknowledgments

The authors would like to thank Dr. Ulrich Sorger of
the Darmstadt University of Technology, Germany, for
inspiring discussions.

References

[1] C. Berrou and A. Glavieux, “Near optimum error correcting
coding and decoding: Turbo-codes,” IEEE Trans. Commun.,
vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

[2] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-
optimal maximum a posteriori algorithms suitable for turbo de-
coding,” Europ. Trans. Telecommun., vol. 8, no. 2, pp. 119–125,
Mar.-Apr. 1997.

[3] H. El Gamal and A.R. Hammons, Jr., “Analyzing the turbo de-
coder using the Gaussian approximation,” IEEE Trans. Inform.

Theory, vol. 47, no. 2, pp. 671–686, Feb. 2001.

[4] D. Divsalar, S. Dolinar, and F. Pollara, “Low complexity turbo-
like codes,” Int. Symp. on Turbo Codes and Rel. Topics, pp.
73–80, Sept. 2000.

[5] S. ten Brink, “Convergence of iterative decoding,” IEE Elec-

tronics Letters, vol. 35, no. 13, pp. 806–808, June 1999.

[6] I. Land and P. Hoeher, “Partially systematic rate 1/2 turbo
codes,” Int. Symp. on Turbo Codes and Rel. Topics, pp. 287–
290, Sept. 2000.

[7] D. Divsalar and F. Pollara, “Turbo codes for deep-space com-
munications,” TDA Progress Report 42-120, pp. 29–39, Feb.
1995.

[8] I. Land, P. Hoeher, and U. Sorger, “On the interpretation of the
APP algorithm as an LLR filter,” IEEE Int. Symp. on Inform.

Theory, p. 415, June 2000.

[9] P. Hoeher, I. Land, and U. Sorger, “Log-likelihood values and
Monte Carlo simulation - some fundamental results,” Int. Symp.

on Turbo Codes and Rel. Topics, pp. 43–46, Sept. 2000.


