
Using the miraEST Assembler for Reliable
and Automated mRNA Transcript Assembly
and SNP Detection in Sequenced ESTs
Bastien Chevreux,1,7 Thomas Pfisterer,2 Bernd Drescher,3 Albert J. Driesel,4

Werner E.G. Müller,5 Thomas Wetter,6 and Sándor Suhai1
1Department of Molecular Biophysics, German Cancer Research Centre Heidelberg, 69120 Heidelberg, Germany; 2MWG Biotech
AG, 85560 Ebersberg, Germany; 3RZPD German Resource Center for Genome Research, 14059 Berlin, Germany; 4VitiGen AG,
76833 Siebeldingen, Germany; 5Abteilung Angewandte Molekularbiologie, Institut für Physiologische Chemie, Universität Mainz,
55099 Mainz, Germany; 6Institute for Medical Biometry and Informatics, University of Heidelberg, 69120 Heidelberg, Germany

We present an EST sequence assembler that specializes in reconstruction of pristine mRNA transcripts, while at the
same time detecting and classifying single nucleotide polymorphisms (SNPs) occuring in different variations thereof.
The assembler uses iterative multipass strategies centered on high-confidence regions within sequences and has a
fallback strategy for using low-confidence regions when needed. It features special functions to assemble high
numbers of highly similar sequences without prior masking, an automatic editor that edits and analyzes alignments
by inspecting the underlying traces, and detection and classification of sequence properties like SNPs with a high
specificity and a sensitivity down to one mutation per sequence. In addition, it includes possibilities to use
incorrectly preprocessed sequences, routines to make use of additional sequencing information such as base-error
probabilities, template insert sizes, strain information, etc., and functions to detect and resolve possible misassemblies.
The assembler is routinely used for such various tasks as mutation detection in different cell types, similarity analysis
of transcripts between organisms, and pristine assembly of sequences from various sources for oligo design in clinical
microarray experiments.

On the way to understand the function of all genes of an organ-
ism, it is now clear that the genome sequence alone may be not
enough, especially if the organism shows a high degree of com-
plexity. Analysis of the genome must be supported by efforts on
understanding its transcription—the transcriptome—occurring
in cells. Citing Camargo et al. (2001), the “most definitive ap-
proach to the elucidation of transcripts remains their direct se-
quencing.” This corresponds with earlier findings of Bonfield et
al. (1998), who concluded that “direct sequencing is required to
define the precise location and nature of any [mutation]
change”, as this method ensures the highest reliability and qual-
ity regarding the definition of single nucleotide polymorphisms
(SNPs).

Several approaches have been proposed to assemble ESTs
and detect SNPs in the resulting alignments, among these are
TRACE-DIFF by Bonfield et al. (1998), polyphred by Nickerson et
al. (2000), pta and AGENT by Paracel, Inc. (Paracel 2002b), the
TGICL system developed by Pertea et al. (2003), and autoSNP by
Barker et al. (2003). The most significant shortcoming common
to all of these methods is the fact that they determine potential
SNP positions from assemblies that align all available sequences
together, regardless of whether they contain differing SNP posi-
tions or originate from different sources such as, for example,
organisms, strains, cell types, etc. Unfortunately, the intrinsic
properties of alignment algorithms can, and do lead to misas-
semblies, especially when the sequences involved are highly
similar. This, in turn, leads to wrongly assembled transcripts, and
these can cause false or nonexistent proteins to be predicted as is

shown in Figure 1. As a side effect, nonexistent SNP positions are
also generated.

To address these problems, the method we have devised and
implemented, the miraEST assembler, consists of an iterative
multiple-pass system that focuses on observed data. The key pro-
cessing steps first assemble the sequences gained by EST clone
analysis into pristine transcripts by performing SNP detection
during the assembly and then classifying the SNPs into types.
Therefore, information about potential SNP sites detected de
novo within the ongoing assembly process is used, as well as
possibly supplied additional information for each sequence-like
known SNPs, known motifs, or strain (or cell or organism) types.
The importance of detecting SNPs in an assembly process can be
seen by comparing Figure 1 with Figure 2, in which we show how
ignored SNP positions can lead to wrongly assembled transcripts
in one example and how honored SNP information leads to a
correct transcript assembly in the second example.

A key element of miraEST is an integrated automatic assem-
bly editor that uses trace files (if provided) to correct alignment
mismatches produced by base-calling errors in the sequences.
This feature greatly improves the quality of assemblies and facili-
tates automatic differentiation of SNPs from base-calling prob-
lems. In contrast to the TGICL system and autoSNP, which both
use only redundancy information, and pta that uses only quality
and template information, the miraEST assembly and SNP detec-
tion algorithms use a combination of base-calling error probabili-
ties, trace file analysis, template information, and redundancy
analysis. The result is a number of—sometimes partial—real
mRNA transcripts, which were present in the clone libraries and
consecutively sequenced.

It is important to note that miraEST is an assembler and not
a clustering tool, that is, it is used routinely to reconstruct the
pristine mRNA transcript sequences gathered in EST sequencing

7Corresponding author.
E-MAIL bastien@chevreux.org; FAX +49 6227 422333.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1917404. Article published online before print in May 2004.

Methods

14:1147–1159 ©2004 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/04; www.genome.org Genome Research 1147
www.genome.org



projects, which can be a reliable basis for subsequent analysis
steps like clustering or exon analysis. This means that even genes
that contain only one transcripted SNP on different alleles are
first treated as different transcripts. However, the optional last
step of the assembly process can be configured as a simple clus-
terer that can assemble transcripts containing the same exon
sequence, but only differ in SNP positions, into one consensus
sequence. Such SNPs can then be analyzed, classified, and reli-
ably assigned to their corresponding mRNA transcriptome se-
quence.

RESULTS
In three very different projects we present our approach to
achieving an accurate assembly and subsequent SNP scanning of
transcript sequences with the miraEST assembler. The non-
normalized libraries contain ESTs sequenced from the plant Vitis
vinifera Linnaeus (Plantae: Spermatophyta: Rosopsida/
Dicotyledoneae), and two animal taxa, the sponge Suberites
domuncula Olivi (Metazoa: Porifera: Demospongiae), and the ver-
tebrate Canis lupus familiaris Linnaeus (Metazoa: Chordata: Ver-
tebrata).

Although these three multicellular organisms are eukary-
otes, they are only distantly related. In general, plants split off
first from the common ancestor, ∼1000 million years ago (Mya).
Later, the Metazoa evolved, (700 Mya) with Porifera as the oldest
still extant phylum, and finally the Chordata appeared (500 Mya;
for review, see Kumar and Rzhetsky 1996; Müller 2001). Until
recently, the Porifera were an enigmatic taxon (see Müller 2001).
Only the analyses of the molecular sequences from sponges, both
cDNA and genomic ones, gave strong evidence that all metazoan
phyla originated from one ancestor. Therefore, ESTs from this

taxon were included in this study in order to obtain a first esti-
mation about the abundance of particular genes in such a col-
lection.

The assembled ESTs from the S. domuncula (sponge) should
allow a further elucidation of the evolutionary novelties that
emerged during the transition from the fungi to the Metazoa.
Likewise, the data gathered here from the V. vinifera (grapevine)
and the mammal C. lupus familiaris (dog) should provide an un-
derstanding of the change of gene pool in organisms under do-
mestication. Whereas the dog and sponge project had only ESTs
sequenced from one strain (respectively, cell type), the grapevine
project had ESTs that were collected from a multitude of cell
types, ranging from root cells to berry cells. Table 1 shows an
overview of these projects together with some of the more inter-
esting statistics of the assembly.

Depending on the projects, sequences we used were ob-
tained by capillary electrophoresis on ABI 3100 or ABI 3700 ma-
chines, with each project having specific sequencing vectors. For
this study, all project sequences were preprocessed and cleaned
using standard computational methods; we used TraceTuner
2.0.1 (Paracel, Inc.) for extracting the bases. Data sets were
cleaned by using PFP as described in Paracel (2002a), masking of
known sequencing vectors, filtering against contaminant vectors
present in the UniVec core database, filtering of possible Esch-
erichia coli, and other bacterial contamination and masking of
poly(A)/poly(T) tails in sequences. Repeats and known standard
motifs were not masked, as these are integral parts of the data and
contain valuable information. Sequences that were shorter than
80 bases were removed from the projects. The remaining se-
quences used in the three projects total 53,386 sequences with
54,303,071 bases.

Figure 2 The same example as in Figure 1, but in this example, the assembly algorithm honors SNP positions that were detected during earlier
iterations of the assembly process. The alignment between s1 and s2 will, therefore, not be made, as there is a mismatch at the SNP position, even with
the long overlap between both sequences. Instead, the assembler will align s1 and s1*, as they do not contain mismatches at SNP positions. The result
is a correct representation of the transcriptome.

Figure 1 Example of a misassembled transcript when SNPs are disregarded. Assembly of three input sequences are shown at left; the resulting
transcripts of this assembly are shown at right. The three sequences s1, s1*, and s2 contain different homologous parts, represented by the different shades
of gray, and exactly one SNP position. A normal assembly algorithm will assemble first s1, then s2 (because of the long overlapping alignment in the
white part), and then might try to align s1*, but fail because of the large mismatch. The SNP position with G in sequence s1 and A in s2 is treated as typical
noise in the alignment algorithms and ignored. The resulting transcript sequences are therefore wrong, as they do not represent the sequences found
in vivo: t1 is a mix of two transcripts and does not code a true protein.

Chevreux et al.

1148 Genome Research
www.genome.org



For each project, the miraEST assembler’s integrated stan-
dard parameter set was used. This set is configured as a three-pass
assembly:

1. Classification of the sequences by SNP type using all se-
quences from all strains/cell types, etc. The motivation for
performing a first pass that separates only by SNP and not also
directly by strain/cell type is the simple observation in which
the assembler still can find useful SNP on rarely expressed
genes when looking at the entirety of the available data within
alignments. Interesting sequence features found in this first
pass are valuable for the two subsequent passes in which the
algorithms will benefit from them.

2. Additional step if strain information is available, separation of
the sequences by strain (resp. cell type) and SNP. This results
in clean mRNA transcript sequences that represent the actual
state of the transcriptome of a strain/cell type as it is present in
the clone library. Although the results of this step are inter-
esting on their own, their major importance is the fact that
they are used as pristine input for the following third pass.

3. Production of a combined SNP-strain assembly. If strain infor-
mation was available, this step uses results from step 2, or else
from step 1. The result of this assembly has the exact SNP
positions and types tagged in the mRNA transcript sequences
that form an alignment of the resulting consensus.

Each pass had a standard set of options activated to enhance the
preprocessed reads by trimming for quality, unifying areas of
masked bases at read-ends, clipping sequencing vector relicts,
and tagging remaining poly(A)/poly(T) stretches in sequences
(see Data preprocessing in the Methods section for more detail).
Trace data was used in the assembly to edit base-calling errors in
sequences and assess bases and possible SNP sites when available.

Table 2 shows computer requirements in conjunction with
project complexity aspects.

Comparing the projects led to some interesting insights
both on the behavior of miraEST and on the data itself. Although

Table 1. Summary of Results From EST Assembly of Sponge, Dog, and Grapevine Sequences

Sponge Dog Grapevine

Input sequences 9747 10,863 32,776
Strains/cell types 1 1 10

Step 1: transcript SNP separation assembly
Total transcripts 4401 5921 12,380

thereof singlets 3151 4204 7904
thereof contigs 1250 1717 4476

Max cov/occurred 145/1 106/1 812/1
Min cov/occurred 2/637 2/885 2/2143

Total transcript len. 3,342,596 3,941,124 7,082,719

Step 3: transcript SNP classification assembly
Total unified transcr. 4077 5901 8547

thereof singlets 3780 5811 6131
thereof contigs 297 90 2416
thereof with SNPs 285 81 2103

Total transcript len. 3,120,847 3,897,635 4,872,333

Transcript SNP types
Intra strain/cell 2158 461 959
Inter strain/cell — — 1505
Intra and Inter s./c. — — 7221

Total SNP sites 4653 927 9685

Step 1: result sequences are transcripts separated by SNPs, but not by strain. The number of contigs, the classification
numbers on maximum and minimum coverage (and the times they occurred) within the contigs as well as the number of
singlets, give a rough idea about the asymmetrical distributions of EST reads in the different contigs.
Step 3: ‘assembly of pristine mRNA transcripts’ to analyze SNP sites and types. The transcripts’ sequences gained there can
be seen as a consensus of the (hopefully) pristine transcripts gained in the previous steps of the assembly. Classification of
SNPs (see also the subsection of the same name in the Methods section) is also performed in this step: Intra means that
SNPs occur only with a strain or cell type, SNPs of type Inter occur only when comparing different strains or cell types, and
the Intra and Inter SNP type is a combination of the first two types. Intermediary results from step 2 are not shown, as
sponge and dog do not use this step, and the grapevine results are too extensive.

Table 2. Runtime and Memory Consumption of the Study
Projects Using an Intel 2.4 GHz Xeon P4/HT PC With 512 K L2
Cache and 2 G RDRAM

Sponge Dog Grapevine

Peak memory usage 250 M 280 M 1.7 G

Runtime in minutes
Step 1 27 14 735
Step 2 20 10 101
Step 3 3 4 35
Total 137 69 871

Number of contig reassemblies
Step 1 577 250 3827
Step 2 51 18 1927
Step 3 0 0 0
Total reassemblies 628 268 5754

Comparison of the sponge and dog project, which have roughly the
same number of sequences showing a clear relationship between the
runtime and the number of detected contig reassemblies (which were
triggered by newly detected SNP sites).
The reduced runtime from step 1 to step 2 is due to potentially
problematic regions with SNP sites that were detected in the first
step. These SNPs give additional information to the second step,
which then prevents misassemblies that involve those sites. Hence,
the lower number of reassemblies reduced runtime.
In general, step 3 has less transcript sequences to assemble than step
1 and step 2, also leading to reduced runtimes.

miraEST for Assembly and SNP Detection

Genome Research 1149
www.genome.org



the sponge and the dog projects have about the same numbers of
sequences used as input (9747 vs. 10,863), the assembly run-
times of the sponge project took about twice as long to complete
than the dog project. When analyzing log files and intermediary
results from both projects, we found that there are two main
causes for this behavior:

1. The more assembled transcript contigs contain SNPs, the more
the assembler will have to break those up and reassemble
them in steps 1 and 2, leading to higher assembly times.

2. The more similar sequences from one or several gene families
are present, the higher is the probability for an increased num-
ber of iterations needed to get the transcripts assembled
cleanly.

Both of these factors can be seen as predominant indicators for
the complexity of a project. The sequences of the sponge project
contain 285 mRNA transcript contigs (7.0% of the transcripts)
with SNPs. These total 2158 SNP sites, which is ∼7.5 SNPs per
mRNA transcript that contains SNPs. The sequences of the dog
project, however, lead to only 81 mRNA transcript contigs (1.4%
of the transcripts) with SNPs. These total only 461 SNP sites,
which is ∼5.7 SNPs per mRNA transcript that contains SNPs. The
sequenced sponge EST sequences, therefore, not only contain
more transcripts with polymorphisms than the dog sequences,
they generally also contain more SNPs per transcript.

Comparing the grapevine project with the two other
projects also yielded some interesting discoveries. First, the con-
tig with the maximum coverage that occurred in step 1 con-
tained 812 reads compared with 145 for the sponge and 106 for
the dog. The grapevine data also contained several additional
high-coverage contigs, which meant that this project contained a
number of genes or gene families that were, in absolute numbers,
more expressed, and thus sequenced, than in the dog and sponge
project. The second interesting discovery was the decrease in to-
tal transcripts from step 1 to step 3; the sponge project had a
7.4% reduction (from 4401 clean transcripts to 4077 unified tran-
script consensi), and the dog only 0.3% (from 5921 to 5901), but
the grapevine project had a 31% reduction (from 12,380 down to
8547) in the number of transcripts. This meant that many gene
transcripts of the grapevine project differed only in a few SNP
bases and were assembled together in step 3, forming transcript
consensi that allowed the classification of SNPs whether they
occur within a cell type, between different cell types, or both. On
the other hand, the 9685 SNPs found were dispersed over 2103
transcripts, which is ∼4.6 SNPs per transcript containing SNPs
and, therefore, less than the sponge or even the dog project.

The exact reason for these high transcript redundancy num-
bers in this project is currently under investigation, but prelimi-
nary results indicated that a significant number of almost iden-
tical common basic housekeeping genes are expressed and were
sequenced in different cell types, and that several of them con-
tain SNPs. For example, we found a transcript family in 9 of 10
cell types formed by 147 Metallothionein transcripts with no less
than 98 positively identified SNP sites over a length of 650 bases.
The SNPs are in the coding region and the 3� UTR, with many of
the SNPs leading to a mutation in the amino acid sequence of the
protein.

DISCUSSION
We have developed miraEST concurrently to the mira assembler
for genome sequences presented in Chevreux et al. (1999, 2000),
which enables us to use basic algorithms for both branches of the
assembly system. This has also allowed us to concentrate on de-
veloping and improving those algorithms that are specifically

needed to tackle the slightly different assembly problems of ge-
nome and EST sequences once the basic facilities were in place.

We discovered very early in the development process that
using high-quality sequence data first in the assembly process
was a very viable way to proceed, as it substantially reduced com-
puting time. This permitted us to reinvest this saved time into
other algorithms that increased the actual quality of the final
results – resolving detected misassembly conflicts, analysis and
detection of previously unknown relevant sequence features
(e.g., SNPs), and detection and elimination of conflicts caused by
misassemblies. The ever-increasing computing power permitted
the design of exact iterative algorithms instead of relying on
makeshift algorithms when assembly problems occurred. That is,
we clearly chose not to trade off quality for speed when the loss
in quality was deemed to be substantial. Furthermore, we think
that integrating an automated trace editor into the assembly pro-
cess was the correct choice, as results showed that spurious base-
calling errors are reliably detected and removed in an alignment,
and the assembler can also use the trace analysis routines to
perform in-depth and multilevel analysis on problematic regions
in alignments.

To our knowledge no other assembly system, be it for ge-
nomic or transcript data, contains a comparable mix of algo-
rithms that enables the assembler to dependably detect by itself
and use the information about special base positions that differ-
entiate between repetitive stretches within sequences, as is the
case for SNP bases in EST assemblies or repetitive elements in
genome assemblies. We would like to reiterate our stance regard-
ing the importance of discovering such base positions during the
assembly; they allow our assembler to perform a reliable separa-
tion of almost identical sequences, which may ultimately differ
only in one single position within two single sequences, into
their true original transcriptome. This is significantly more sen-
sitive and specific than other methods such as the one presented
by Tammi et al. (2002), which needs at least two differences in
reads to distinguish them from sequencing errors.

Additionally, corrections performed by the integrated auto-
matic editor resolve errors in alignments produced by base-
calling problems. This makes SNP detection much less vulnerable
to sequence-specific electrophoresis glitches and base-calling er-
rors, as is the case for, for example, the AG-problem known with
the ABI 373 and 377 machines, where a G preceeded by an A is
often unincisive or only weakly pronounced.

In contrast to other transcript assemblers or SNP detection
programs, like pta, the TGICL system, polyphred, or autoSNP, the
approach we devised uses strict separation of sequences by SNP
bases according to their respective mRNA transcript. Ultimately,
this is the only way to ensure that the transcripts’ sequences
produced as a result correspond to the real transcriptome se-
quence. Our method permits us to use these results directly for
the design of further investigative studies with high-quality and
precision requirements such as, for example, the design of oligo
probes for specific SNP detection in clinical microarray hybrid-
ization screening experiments.

The possibility to export the assembled projects together
with the analysis of SNP sites to a variety of standard formats, for
example, gap4-directed assembly or phrap.ace, opens the door to
visual inspection of the results, as well as integrating the tool into
more complex and semiautomated-to-automated laboratory
workflows.

Our goal was to show that the combination of those meth-
ods and algorithms leads to a system that accomplishes the given
task of reconstructing a transcriptome from sequenced ESTs in
such a way that the detection, analysis, and classification of SNPs
prevents grave misassemblies that occur in other systems. How-
ever, use of miraEST assembler on a daily basis in production

Chevreux et al.

1150 Genome Research
www.genome.org



environments shows that some algorithms still need a form of
fine tuning.

In the future, our primary focus will shift to enable parallel
execution in portions of the algorithms, in order to take advan-
tage of multiple processor architectures. Until now, the program
uses only one processor on a given machine, and this clearly
represents a bottleneck when several hundreds of thousands or
even millions of ESTs are to be assembled. Fortunately, most of
the methods presented can be parallelized using a divide-and-
conquer strategy, so that distributing the work load across differ-
ent threads, processes, and even machines is one of the targets we
are currently pursuing. Another point we are looking into is that
usage of the C++ standard template library (STL) currently leads
to unexpected high memory consumption in some parts of the
algorithms. We traced this back to memory-pooling strategies of
the STL. First experiments with a combination of adapted algo-
rithms together with better behavior prediction (data not shown)
lead to a significant reduction of these side-effects.

METHODS

Assembly Strategies
The extensively studied reconstruction of the unknown, correct
contiguous nucleic acid sequence by inferring it through the help
of a number of fragments is called the assembly problem. The
devil is in the details; however, errors in base sequences gained by
electrophoresis, combined with the sometimes exacerbating fact
that mRNA tends to contain highly repetitive stretches with only
very few bases differing across different locations, impedes the
assembly process in an awesome way and leads to the necessity of
using fault-tolerant and alternatives-seeking algorithms that can
cope with the sometimes extreme high coverage data that results
from using non-normalized EST clone libraries.

Referring to Dear et al. (1998), a “sequence assembly is es-
sentially a set of contigs, each contig being a multiple alignment
of reads.” In the case of EST assembly, each of these contigs8 is a
mRNA transcript of a few hundred to thousands base-pairs long.
Each contig can, depending of the clone library type and the
frequency with which this transcript was sequenced, consists of
two to a few hundreds or even thousands of fragments.

A number of different strategies have been proposed to
tackle the assembly problem, ranging from simple greedy pair-
wise alignments, sometimes using additional information (Pel-
tola et al. 1984), using a whole set of refinements (Huang 1996;
Paracel 2002b), performing coverage analysis (Kececioglu and
Myers 1992)—to weak AI methods like genetic algorithms (Par-
sons et al. 1993; Notredame and Higgins 1996; Zhang and Wong
1997). Most of these deal with genomic sequence assembly, but
the underlying problem is similar enough to be applied to EST
sequence assembly.

A common characteristic of all existing assemblers is that
they rely on the quality values with which the bases have been
attributed by a base caller. Within this process, an error probabil-
ity is computed by the base caller to express the confidence with
which the called base is thought to be the true base. Although
methods for storing alternative base calls and other data have
been suggested (Allex et al. 1996; Walther et al. 2001), this ap-
proach produces results that are simple to handle and apparently
“good enough,” so that it has imposed itself as standard over the
years. The positive aspect is the possibility for assemblers to de-
cide in favor of the best, most probable bases when a discrepancy
occurs. The negative aspects of currently used base callers is their
inability to write confidence values for optional, uncalled bases
at the same place.

The miraEST assembler is a purpose-built modification for
EST assembly and SNP detection that is concurrently developed
with our mira genome assembler that we presented in Chevreux

et al. (1999, 2000). The modification combines and substantially
extends the strengths of approaches mentioned above and copies
assembly analysis and SNP detection strategies done by human
experts.

We used four criteria when designing the assembler:

1. Insuring the quality aspect of the final result. By making
cautious use of the available data, the assembler will start with
high-confidence regions (HCR) in the nucleic acid sequence to
ensure a firm base and good basic building blocks. Low con-
fidence regions (LCR) of the sequences can be automatically
used later on if needed.

2. Using additional information like quality values, known
SNP sites, repeat stretches, template insert sizes, etc., as check-
ing mechanisms to confirm the basic alignments.

3. Implementing discovery and usage within the assembly
process of previously unknown facts such as, for example, new
SNP sites, by analyzing the available information within the
whole assembly context and not only on a sequence-by-
sequence basis.

4. Resolving misassembly conflicts, which can always hap-
pen, by using the information about the misassemblies and
the sequences that caused it, to prevent the same errors in
future iterations.

Another important approach is that we combined the assembler
with capabilities of an automatic editor. Both the assembler and
the automatic editor are separate programs and can run sepa-
rately, but we view the task of assembly, assembly validation, and
finishing to be closely related enough for both parts to include
routines from each other (see also Chevreux et al. 1999; Pfisterer
and Wetter 1999). In this symbiosis, the signal-analysis-aided
assembler acquires two substantial advantages, compared with a
sequential-base-caller-and-assembler strategy:

1. The assembler gains the ability to perform signal analysis
on partially assembled data. Analyzing trace data at precise
points with a given hypothesis in mind9 helps to discern
possible base-caller errors from errors due to misassemblies or
errors due to SNPs, where simple base-error probabilities alone
could not help.

2. During the assembly process, reads in temporarily finished
contigs can be automatically edited to increase their quality if
the traces of the alignment support the hypotheses of an error
that occurred in the base-calling step at that position. The
edited reads, in turn, can be used to increase assembly quality
in the ongoing assembly process.

Alignment Optimality
Different authors have proposed different sets of acceptance cri-
teria for the optimality of an alignment (see Chan et al. 1992).
Traditionally, “the objective of this (assembly) problem has been
to produce the shortest string that contains all of the fragments
as substrings, but in case of repetitive target sequences, this ob-
jective produces answers that are overcompressed” (Myers 1995).
In the case of EST clone library assembly, however, and especially
for non-normalized libraries, certain genes get expressed more
often than others (e.g., cytochromes), resulting in more mRNA
clones, and thus, sequence fragments of these sequences. This
means that the overcompression criterion cannot be used to
track misassembled transcripts.

As a result of this, we conceived the strategy of the least
number of unexplainable errors not supported by signal values
present in an alignment resp. assembly to be optimal. That is, EST
sequences get assembled together as long as the bases and their
signals support the assembly without clashes. We worked out a
multiphased concept to have our assembler perform the task of
sequence alignments (see Fig. 3). In the following sections, we
describe each phase of the assembly process and its interaction

8Contig as a short form of contiguous sequence, a term first coined for assem-
bly of genomic data.

9For example, could the base A at position 235 in read 1 be replaced by a G?
(because the overall consensus at this position of the other reads suggests this
possibility).

miraEST for Assembly and SNP Detection

Genome Research 1151
www.genome.org



with other phases, giving a short overview on the algorithms and
their expected results, without going into algorithmic details, as
this would go beyond the scope of this article

Data Preprocessing
Strictly speaking, data preprocessing does not belong to the ac-
tual assembler, as almost every laboratory has its own means of
defining good quality within reads and already uses existing pro-
grams to perform this task.10 But as this preprocessing step di-
rectly influences the quality of the results obtained during the

assembly, defining the scope of the expected data is desirable.
Moreover, it can explain strategies implemented to eventually
handle incorrectly preprocessed data.

The most important part in the sequenced fragments (apart
from the target sequence itself) is the sequencing vector data,
which will invariably be found at the start of each read, and
sometimes, for short inserts, at the end. These parts of any cloned
sequence must be marked or removed from the assembly. In
analogy to the terms used in the GAP4 package, we will refer to
marked or removed parts as hidden data (Staden et al. 1997),
other terms frequently used are masked out or clipped data.

Errors occurring during the base-calling step or simply qual-
ity problems with a clone can lead to more or less spurious errors
occurring in the gained sequences. These, in turn, sometimes
interfere with the ability of preprocessing programs to correctly
recognize and clip the offending sequence parts. Therefore, the
miraEST assembler incorporates a number of routines across all
steps of the assembly that saves sequences that were incorrectly

10For example, quality clipping, sequencing vector, and cosmid vector re-
moval can be controlled by the PREGAP4 environment provided with the GAP4
package (Bonfield et al. 1995; Bonfield and Staden 1996; Staden 1996) or the
LUCY program from Chou and Holmes (2001); parts of these tasks can also be
done with cross-match provided by the PHRAP package or other packages
such as, for example, PFP from Paracel (Paracel 2002a).

Figure 3 The multipass and iterative nature of the assembler becomes clear as in this schematic diagram of the phases of a miraEST assembly.
Previously unknown information (like possible SNP sites) can be discovered and taken into account throughout all of the assembly stages. Solid arrows
show imperative pathways, dashed arrows denote optional pathways that may or may be not taken, depending on assembly parameter values and the
actual data.

Chevreux et al.

1152 Genome Research
www.genome.org



preprocessed. Although we give a brief algorithmical overview of
implemented methods within the scope of this section, please
refer to the documentation available on the project homepage
(http://www.chevreux.org/projects_mira.html) for a full descrip-
tion of all available options. The routines that we implemented
and that can be used by the assembler are:

1. Standard quality clipping routines: Clipping is done with a
modified sliding-window approach known from literature as
in Staden et al. (1997) and Chou and Holmes (2001), where a
window of a defined length l is slided across the sequence
until the average of the quality values attains a threshold t.
Usual values for this procedure are l = 30 and t = 20 when
using quality values in phred style. An additional backtracking
step is implemented to search for the optimal cutoff point
within the window once the stop criterion has been reached,
discarding bases with quality values below the threshold. This
is performed from both sides of the sequences.

2. Pooling masked areas at sequence tails: Parts of sequences that
were masked (X’ed out) by other preprocessing programs
sometimes contain small areas between 1 and 30 nucleotides
of nonmasked characters within the masked area due to, for
example, low-quality data or the usage of slightly differing
sequencing vectors. If requested, the assembler will unify the
masked areas into more homogeneous masking when the
nonmasked sections do not exceed a given length.

3. Clipping of sequencing vector relicts (while differentiating
them from possible splice variants): This is done by generating
hit/miss histograms of all sequence alignments. Whereas the
good-quality middle parts will have a high hit/miss ratio
within a sequence histogram, vector leftovers at the ends will
have a reversed ratio. The beginning/end of such vector frac-
tions is marked by a relatively sharp change, a cliff, which can
easily be detected. Unfortunately, different splice variants of
eukaryotic genes present the same effects within histograms,
so that hit/miss ratio changes are searched for only within a
given window at the start and end of the good sequence parts
(usually between 1 and 20 bases) to only catch such vector
relicts present there.

4. Uncovering and tagging of poly(A) and poly(T) bases at se-
quence ends: Unlike other specialized transcript assemblers
like pta (Paracel 2002b), our algorithms differentiate between
different splice variants present in an assembly and must in-
clude poly(A)/poly(T) bases when aligning sequences. The as-
sembler will recover those areas by comparing masked se-
quences with the original counterpart and uncover exactly the
poly(A/T) stretches present at the end of the sequences by a
simple base-by-base comparison algorithm. These stretches
will furthermore be tagged with assembly internal meta infor-
mation to help the algorithms in the splice detection task.

A HCR of bases within every read is selected through quality
clipping as an anchor point for the next phase. Existing base
callers (ABI, PHRED, TraceTuner, and others) detect bases and
rate their quality quite accurately and keep increasing in their
performance, but bases in a called sequence always remain af-
flicted by increasing uncertainty toward the ends of a read. This
additional information, potentially worthful, can nevertheless
constitute an impeding moment in the early phases of an assem-
bly process, bringing in too much noise. It is therefore marked as
LCR for cautious use in the assembly process.

The following shows the information the assembler will
work with, any of which can be left out (except sequence and
vector clippings), but will reduce the efficiency of the assembler:
(1) the initial trace data, representing the gel electrophoresis sig-
nal; (2) the called nucleic acid sequence; (3) position-specific
confidence values for the called bases of the nucleic acid se-
quence; (4) a stretch in each sequence marked as HCR; (5) general
properties such as direction of the clone read and name of the
sequencing template, etc.; (6) special sequence properties in dif-
ferent regions of a read (such as sequencing vector, known stan-
dard repeat sequence, and known SNP sites, etc.) that have been
tagged or marked.

Read Scanning
A common start for an assembly is to compare every read with
every other read (and its reversed complement) using a fast and
fault-tolerant algorithm to detect potential overlaps. We devel-
oped and tested several different algorithms to perform this task,
retaining a combination of two, SKIM and DNASAND.

The extremely fast SKIM algorithm develops ideas used by
Grillo et al. (1996) to find equal subsequences by hashing and
allowing for errors. More specifically, SKIM computes the relative
distances for every oligo of 8 nucleotides by creating distance
histograms where high peaks represent long common subse-
quences containing equal oligos at the same relative distance,
which makes this algorithm have both a high sensitivity and
specificity. The DNASAND algorithm is a modified Shift-AND
text search algorithm introduced by Wu and Manber (1992),
which extended the ideas of Baeza-Yates and Gonnet (1992). It is
particularly useful for finding short overlaps at read ends that are
riddled with errors caused by low-quality traces and problems in
the base-calling process. See also Gusfield (1997) for more infor-
mation on these.

Both fast-scanning algorithms do not only specify the over-
all type of global relationship of two sequences (total correspon-
dence, containment, and overlapping; see Huang 1994) and the
approximate degree of similarity, but they also return the ap-
proximate offset of the alignment. As a result of this first scan, a
table containing information on potential overlaps of all of the
fragments is generated. The direction of the potential overlap
(forward-forward or forward-complement) and the approximate
offset is also stored.

Systematic Match Inspection
In the next step, potential overlaps found during the scanning
phase are examined with a banded Smith-Waterman-based algo-
rithm for local alignment of overlaps. Our Smith-Waterman
algorithm implementation, which runs in almost linear time
and space, takes into account that, regarding the fact that to-
day’s base callers have a low error rate, the block-indel model
(Giegerich and Wheeler 1996) does not apply to the alignment of
EST-sequencing data (although the block-indel model can be a
great help when detecting different splice forms of genes, but this
is not the task of an assembler). This means that long stretches of
mismatches or gaps in the alignment are less probable than
small, punctual errors. We also assume a mismatch of a base
against an N (symbol for an Ny base) to have no penalty, as in
many cases the base caller rightfully set N for a real existing base
(and not an erroneous extra one) that could not be further re-
solved.

Scoring
Two different scores can be computed using different Smith-
Waterman weight matrices and some alignment score post-
processing; the expected score Se and the computed score Sc of
the overlap are calculated for each overlap of two sequences, with
Sc always � Se. A score is computed as follows: assume two
aligned sequences to be s1 and s2 in an alignment A with the
length � A�, so that A(s1(i)) and A(s2(i)) give the bases b1 and b2 of
the sequences s1 and s2, respectively, at the position i of the
alignment. Furthermore, assume a comparison matrix W to con-
tain all comparison scores for two bases, so that W(b1, b2) gives
the comparison score of the two bases b1 and b2. The score com-
puting function now summarizes the comparison scores given in
a matrix W of the bases at each position of the alignment:

Sc,e = �
i=1

�A�

Wc,e�A�s1�i��, A�s2�i���

The difference for Sc and Se lies in the usage of different matrices;
whereas the matrix for Sc uses a scoring scheme similar to (1, �1,
�2) for match, mismatch, and gap, Se uses a matrix with a
scheme similar to (1, 1, 1), as in a perfect alignment, all the bases
of the overlap of two sequences are expected to be equal. It is now
trivial to make a rough guess of the alignment quality of the

miraEST for Assembly and SNP Detection

Genome Research 1153
www.genome.org



overlap by calculating the score ratio Rs of the computed score
compared with the expected score:

Rs =
Sc

Se
with Rs = 0 for �Sc < 0

Se = 0

and therefore 0 � Rs � 1.
A score ratio of 0 shows that the two sequences do not form

a valid alignment, whereas a ratio of 1 means a perfect alignment
without gaps or base mismatches (but perhaps one or several
aligns of a base against an N). Every candidate pair whose score
ratio is within a configurable threshold (normally upward of
from 70% to 80%) and where the length of the overlap is not too
small, is accepted as true overlap; candidate pairs not matching
these criteria, often due to spurious hits in the scanning phase or
extremely short common motifs in the sequence, are identified
and rejected from further assembly.

The sequence alignments, along with complementary data
(like orientation of the aligned reads, overlap region, etc.), that
passed the Smith-Waterman test are stored to facilitate and speed
up the next phases. Good alternatives are also stored to enable
alternative alignments to be found later on in the assembly.

Graph Building
All of the passed alignments that are above a certain alignment-
score threshold, and whose edge weight (see below) is above an-
other threshold, form one or several weighted graphs. By setting
cutoffs with the thresholds mentioned, overlap alignments that
are too short or too disparate are sorted out from the weighted
graphs, easing the algorithmical strain on computer memory and
CPU. The graph(s) nevertheless represent almost the totality of
all of the valid assembly layout possibilities of a given set of
sequencing data.

The nodes of a graph are represented by the reads. An edge
between two nodes indicates that these two reads are overlap-
ping. The weight of the edges themselves are computed from a
combination of the alignment score and the length of the over-
lap to take into account both the quality aspect and length of an
alignment, a process which is called normalization.

The simplest method for a weight would be to multiply the
length of the alignment with the score ratio to get the weighted
length of the overlap wo = leno*Rs. The most important problem
with this approach is the fact that it attributes far too much
weight to the length than it does to the score ratio, which is, after
all, the predominant measure for the quality in this early stage of
an assembly. A simple and elegant solution to this problem is
squaring the score ratio, giving it more importance in the calcu-
lation: wo = leno*Rs

2. We found this simple and fast function to
be as effective for the needs of an assembler than other, more
complicated, and slower calculations. Among these were meth-
ods proposed by Shpaer et al. (1996) and Pearson (1995, 1998),
who used different kinds of ln/ln normalization, whereas Arslan
et al. (2001) devised special, but even slower, iterated Smith-
Waterman computational algorithms with fractional program-
ming.

Building Contigs
The overlaps found and verified in the previous phases must then
be assembled into contigs. This is the most fundamental and
intricate part of the process, especially in projects containing
many common protein motifs and/or SNPs. Several basic ap-
proaches to the multiple alignment problem have been devised
to tackle this problem. Although algorithms for aligning multiple
sequences at once have been used with increasing success for up
to ∼10–15 sequences (Stoye 1998), the amount of time needed to
perform this alignment is still too unpredictable (ranging from a
few seconds to several hours) to be used in regular EST sequence
assembly, especially taking into account the fact that first-
iteration assembly coverages with several hundreds, or even
thousands of sequences are not uncommon for some non-
normalized EST clone libraries.

We decided to use an iterative pairwise sequence alignment
and devise new methods for searching overlap candidates and for

empowering contigs to accept or reject reads presented to them
during the contig-assembling process. The algorithm consists
mainly of two objects that interact with each other, a pathfinder
object and a contig object.

Pathfinder and Contig Interaction
Because we use an iterative approach to the multiple alignment
problem—this means we always successively align the next read
against an existing consensus—the result of the alignment sen-
sitively depends on the order of pairwise alignments (Morgen-
stern et al. 1996). We have to make sure that we start at the
position in the mRNA transcript contig where there are many
reads with almost no errors. The pathfinder will thus, in the
beginning, search for a node in the weighted graph having a
maximum number of highly weighted edges to neighbors. The
idea behind this behavior is to take the read with the longest and
qualitatively best overlaps with as many other reads as possible.
This ensures a good starting point, the anchor for this contig.

We first tried a simple greedy algorithm to determine the
next overlap candidate to a contig, but occasionally, especially in
high-coverage mRNAs, this algorithm produces substandard re-
sults. With our current algorithm, which is a width-first-depth-
last n, m-recursive look-ahead algorithm with a cutoff value of
normally four or five recursions, the number of misalignments
could be substantially reduced. The pathfinder designates the
next read to add to an existing contig by making an in-depth
analysis of the weights and clone template orientations of neigh-
boring reads. Again, non-normalized EST libraries with extremely
high-coverage contigs made adapted algorithms necessary. An
internal test in the development phase showed that a combina-
tion of graph pruning and a time based cutoff strategy proved to
be the most successful in terms of result quality and time con-
sumption. In the end, the pathfinder takes the edge leading to
the first node that is contained in the best partial path found so
far, and then presents the corresponding read (and its approxi-
mate position) to the contig object as a potential candidate for
inclusion into the existing consensus.

The contig will then accept or reject the read from its align-
ment. The pathfinder will eventually try to add the same read to
the same contig at an alternative position or, skipping it, try
other reads. Once the pathfinder has no possibilities left to add
unused reads to the actual contig, it will again search for a new
anchor point and use this as starting point for a new EST contig.
This loop continues until all of the reads have been put into
contigs or, if some reads could not be assembled anywhere, form
single-read contigs11 called singlets.

Contig Approval Methods: Discovering and Using
Additional Information
A contig is represented by a collection of reads that have been
arranged in a certain order with given offsets to form an align-
ment that is as optimal as possible, that is, an alignment in which
the reads forming it have as few unexplained errors as possible,
but still form the shortest possible alignment. To serve this pur-
pose, a contig object has been provided with algorithms that
analyze the impact of every newly added read on the existing
consensus. Our assumption is now that, as the assembly started
with the best overlapping reads available, the bases in the con-
sensus will be correct at almost every position. Should the newly
added read integrate well into the consensus, perhaps extending
it, then the contig object will accept this read as part of the
consensus. In cases representing a chance alignment, the read
differs in too many places from the actual consensus, thus dif-
fering in many aspects from reads that have been introduced to
the consensus before. The contig will reject such cases without
further tests.

11Of course, a single read itself cannot be called a contig. However, putting it
into the same data structure (a contig object) like the other, assembled reads
is a convenient way to keep unassembled reads in the internal assembly da-
tabase.

Chevreux et al.

1154 Genome Research
www.genome.org



The simplest behavior of a contig could be to accept every
new read that is being presented as part of the consensus without
further checks. In this case, the assembler would thus rely, as
layout algorithm only, on the weighted graph, the method with
which the weighted edges were calculated and the algorithm that
traverses this graph.

However, using additional information that is available be-
fore or even becomes available during the assembly proves use-
ful. For example, newly discovered SNP sites may have been
tagged in an earlier iteration of the assembly. It is therefore pos-
sible for the contig to apply much stricter control mechanisms in
those sites of a sequence then known to be a possible SNP. The
method is learned from a study by Bonfield et al. (1998), which
described how to use traces and their signal values to detect mu-
tations in ESTs.

Figure 4 shows how the miraEST assembler extracts previ-
ously unknown information from the data itself. In this example,
the algorithms failed to find a valid explanation for the read
discrepancies at these base positions in this contig object. The
signal analysis function of the automatic editor that was called
onto these disagreements also failed to resolve discrepancies by
investigating probable alternatives at the fault site. A previous
suggestion on incorporating electrophoresis data into the assem-
bly process promoted the idea of capturing intensity and char-
acteristic trace shape information and provide these as additional
data to the assembly algorithm (Allex et al. 1996). We decided
against such an approach, as essentially all the assembler, and
with it the consensus-finding algorithm of a contig, needs to
know is whether, yes or no, the signal analysis reveals enough
evidence for resolving a conflict within reads by changing the
bases incriminated. Signal analysis is therefore treated as a black-
box decision formed by an expert system, called during the as-
sembly when conflicts arise. Nevertheless, it provides more in-
formation than the one contained in quality values extracted
from the signal of one read only (cf. with Durbin and Dear 1998;
Walther et al. 2001); there is a reasonable suspicion deduced
from other aligned reads on the place and the type of error where
the base caller could have made a mistake in a single read.

In Figure 4, there is not enough evidence found in the con-
flicting reads to allow one or several base changes to resolve each
of the shown discrepancies. Consequently, the assembler will
recognize that sequences from several different ESTs were as-
sembled, and tag the bases involved as potential SNPs. The contig
will be dismantled at once, and the reads will be reassembled in
a different fashion, this time with the additional information of
which bases have a possible SNP.

Another example for useful additional assembly informa-
tion is the clone template insert size for projects using sequenc-
ing techniques that analyze the nucleic acid from both strands of
a template. Knowing the approximate size allows the contig ob-
ject to check whether a newly inserted read has the correct dis-
tance from the affiliated read possibly present. If the distance
does not match approximately the template insert size, the newly
inserted read will be rejected. Although this information is rarely
useful in EST projects because mRNAs longer than 2000 bases are
quite infrequent, it still can be used in those few cases.

Automatic Editing
As already stated, the assembler makes use of different available
base-quality or base-probability values. This induces the possibil-
ity of using other methods for dealing with possible base-call
errors that might be present in reads, and which introduce dis-
crepancies or misassemblies in the assembly. This is entirely done
by an incorporated version of the automatic editor.

The automatic editor has to meet four stringent stipulations
to be of any use to the assembler: (1) it must not edit toward the
consensus, because possible misassemblies would cause wrongly
assembled reads to be wrongly edited; (2) the editor must be able
to establish relatively complex error hypotheses, spanning sev-
eral columns in the assembly to resolve conflicts due to reads
containing only low quality data; (3) the editor must be able to
check alternative hypotheses for error correction and pick the

one with the highest probability; and (4) every edit operation
made in a read must be supported by its trace signal to interdict
complaisant edits.

Automatic editing is treated, like signal analysis, as a black-
box expert system called during the assembly process to resolve
conflicts present in contigs on the basis of trace evidence only.
How the automatic editor proceeds is not of any interest to the
assembler as long as the conditions described above are met. The
exact methods and algorithms are described in T. Pfisterer, B.
Chevreux, M. Platzer, T. Wetter, and S. Sushai, in prep.

Differentiating mRNA Transcripts by SNPs
The mira genome assembler we presented in Chevreux et al.
(1999) used a method that searches for patterns on a symbolic
level12 in an alignment to detect differences in repetitive se-
quences in a genome assembly and subsequently tag the bases,
allowing discrimination of repeats. Exactly the same approach
and algorithms can be used to detect SNPs in EST sequences, the
only difference is the fact that the sequences assembled are not
genomic, but gene transcripts, and therefore, the bases in ques-
tion get other tag names. The algorithms were thoroughly re-
vised and enhanced since, but still, the most important factor
remains the same, the observable circumstance that, normally,
errors in reads that cause a drop in the alignment quality do not
accumulate at specific column positions. Sequences from repeats
in genome projects or from different mRNAs in EST projects,
however, may show column discrepancies between bases of dif-
ferent reads that have very low base-calling error probabilities, so
that the discrepancies simply cannot be edited away; these are
the potential SNP sites.

On the basis of this approach, the enhanced method uses a
combined approach of sequence redundancy, base-error prob-
abilities and column-discrepancy distribution in alignments to
recognize SNPs. The better the trace signal values are, the less
coverage redundancy and number of discrepancy columns is
needed to locate a SNP. In the end, bases with good signal traces
allow even a single differing base in a column to be seen as a hint
for a SNP site. Once potential SNP positions have been detected
in an alignment, the bases allowing discrimination of reads be-
longing to different mRNA transcripts are then marked as pos-
sible SNP marker bases by the assembler as shown exemplarily in
Figure 4. Contigs containing such misassemblies are immediately
dismantled and, during the subsequent reassembly, no discrep-
ancy in alignments implicating these bases will be allowed, and
hence, misassemblies of ESTs with different SNP bases are pre-
vented.

The operations necessary for reassembly and realignment
are unpredictable and depend heavily on the type of data to be
assembled. The simplest assumption could be that the falsely
integrated reads could be simply removed from the contig, but
unfortunately, in quite a number of cases, misaligned reads
change the whole EST contig structure. To make the best possible
use of the improved sequences, the assembler therefore restarts
the whole assembly process of the affected mRNA transcript from
the beginning. This ensures an optimal new assembly without
risking errors introduced by unpredictable or wrongly predicted
reordering operations.

Read Extension
As the initial assembly used only high-quality parts of the reads,
further information can be extracted from the alignments by
examining the end of the reads that were previously unused.
Although the signal-to-noise ratio quickly degrades in read traces
toward the end, the data is not generally useless. These hidden
parts of the reads can now be used by uncovering parts of the
reads that align to the already existing consensus of the tran-
script and even for extending the actual consensus over the ends.

12Based mainly on redundancy information in suspicious sequence stretches,
using base-call error probabilities and signal analysis capabilities of the auto-
matic editor very sparsely.

miraEST for Assembly and SNP Detection

Genome Research 1155
www.genome.org



Figure 4 Snapshot of a contig in the sequence assembly after the first iteration (visual representation by means of the gap4 program). All sequences were assembled together. After the assembly,
miraEST searched for unresolved mismatches with good signal qualities, tagging entire columns as dangerous potential SNP sites for the next iteration. miraEST tagged strong SNP sites bright red,
weak sites in blue; bases differing from the consensus are shown in green by the gap4 program. Some bases were not tagged, although they cover a possible SNP site; these bases generally have
trace signals of bad quality that the assembler deemed to be too dangerous to be taken as differentiation criterion. miraEST will dismantle that contig and reassemble the sequences immediately,
this time using the information gained about the potential SNP sites in the previous assembly to correctly discern between different mRNA transcripts having different SNP variants.The black rectangle
amidst the sequences depicts the three trace signal extracts that have been exemplarily shown below; the smaller black boxes within the rectangle depict the discrepancy bases that have also been
surrounded by black boxes in the traces. All sequences have indisputable trace curves and quality values (shown as a blue bar above the traces). One can clearly see that there will be at least three
different mRNA transcripts to be built, on the basis of the double-base mutation in the middle of the box, one reading CC, the next CT, and the last TC.

C
h
evreu

x
et

al.

1156
G

enom
e

R
esearch

w
w

w
.genom

e.org



Figure 5 The last (optional) step of the EST assembly consists of the input sequences being given strain information to show the effect when two different organism strains (named sponge1 and
sponge2) are sequenced and analyzed. In this example, miraEST classified the SNPs into two categories: PROS (shown in light blue) for SNPs that occur only between strains/organisms (e.g., column
661) and PIOS (shown in light green) for SNPs that occur both within a strain as between different strains (e.g., column 662). Interestingly enough, most of the SNPs shown in this example will not
cause a change in the amino acids of the resulting protein, with one notable exception, the SNP of sponge1_singlet4 at base position 662 causes a TAA codon to be expressed, which is a stop codon.
The SNPs of the same sequence at position 686 and 707 would cause mutations in the amino acid sequence, but are, because of the TAA mutation earlier, in the 3� UTR of this particular mRNA transcript.

m
iraEST

fo
r

A
ssem

b
ly

an
d

SN
P

D
etectio

n

G
enom

e
R

esearch
1157

w
w

w
.genom

e.org



Especially the last case may provide the extra bases needed to link
different partial transcripts to one complete transcript.

This extension is computed concurrently by analyzing the
overlap relationships characterized in the alignments computed
in the earlier phase of the assembly. For every aligned sequence
pair whose score ratio surpasses a defined threshold, the exten-
sion algorithm tries to realign longer subsequences, including
parts of the previously unused LCR present at the ends of each
read.

Performing the extension operation at this stage of the as-
sembly process incorporates the inestimable surplus value that
the reads previously assembled into contigs will have been cau-
tiously edited at least once by the automatic editor in their actual
high-confidence regions. Additionally, the sequences edited in
each contig do not include sequences with contradicting SNPs, as
these would have been recognized and fixed in an earlier step.
The presumably few errors present in these parts of the read have
thus been edited away where the trace signals and the alignment
with other reads showed enough evidence to support the error
hypothesis. Less errors present in a sequence help the alignment
algorithm to build more accurate alignments, and thus, will in-
crease the score ratio of aligned sequences even with parts of the
LCR data included.

A window search is then performed across the new align-
ment to compute the optimal extension length of the new HCR
up to the point where the called sequence gets too bad to be
correctly aligned. The chances for a long extension are increased,
because each read is present in many alignments, giving it many
occasions to be extended.

The iterative enlargement procedure enables the assembler
to redefine step-by-step the HCR of each read by comparing it
with supporting sequences from aligned reads. This usage of in-
formation in collateral reads is the major advantage our assem-
bler has over a simple base caller, which has only the trace in-
formation of one read to call bases and estimate their probability.

Merging Pristine Transcripts for SNP Classification
During an optional last assembly pass, the miraEST assembler
will merge almost identical, strain and SNP separated, transcrip-
tome sequences from the previous passes for a last alignment.
Such an alignment shows SNP differences between the mRNA
sequence transcripts. The transcript sequences used for this final
assembly stage will be precisely classified and assembled at least
by SNP types and, if the information was present, by organism/
strain/cell type in the previous passes. Consequently, it is reason-
able to assume that the transcript sequences used at this stage are
pristine, that is, they code existing proteins.

It is important to note that this step, like the whole process
performed by miraEST, is still an assembly and not a clustering
step. That is, sequences composed by different exon structures, or
which contain large indels, will not be assembled. The results
obtained here are nevertheless important in the sense that they
allow analysis and classification of the SNP types of nearly iden-
tical mRNA sequences that occur in one or several sequencing
assembly projects.

We differentiate between three distinct types of SNPs when
analyzing transcripts from one or several organisms, strains or
cell types.

1. PAOS Polymorphisms that occur within a single organism or
cell transcriptome are tagged as Possible intrAOrganism Snp.

2. PROS Polymorphisms that occur between different organ-
isms or cells are tagged Possible inteR Organism Snp.

3. PIOS Polymorphisms that occur both within and between
organisms (respectively, cell types) are tagged as Possible
Intra- and inter Organism Snp.

According to the classification above, each SNP will be tagged
either as PROS, PAOS, or PIOS, depending on which sequence has
strain information that can contribute to the exact polymor-
phism. Sequences without strain information will also have the
bases tagged, but only as PAOS, as they will be assigned to a

default strain. Figure 5 illustrates the assembly of two strains.
SNPs are classified into all three categories, the example figure
showing two of them (PAOS and PIOS).

ACKNOWLEDGMENTS
Intensive and helpful discussions with Dr. Jacqueline Weber and
Dr. Andrea Hörster on the subtleties occurring in the transcrip-
tome helped greatly in the writing of this paper. We thank the
coworkers of the former Staden group at the MRC LMB Cam-
bridge, and especially James Bonfield for providing support for
the integration of mira and miraEST within GAP4. We thank Dr.
John Perkins for a thorough review of this paper and Prof. Dr.
Jörn Bullerdiek for providing data for this research.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Allex, C.F., Baldwin, S.F., Shavlik, J.W., and Blattner, F.R. 1996.

Improving the quality of automatic DNA sequence assembly using
fluorescent trace-data classifications. Intell. Systems Mol. Biol. 4: 3–14.

Arslan, A.N., Egecioglu, O., and Pevzner, P.A. 2001. A new approach to
sequence comparison: Normalized sequence alignment.
Bioinformatics 17: 327–337.

Baeza-Yates, R.A. and Gonnet, G.H. 1992. A new approach to text
searching. Commun. of the Assoc. for Comp. Mach. 35: 74–82.

Barker, G., Batley, J., O’Sullivan, H., Edwards, K.J., and Edwards, D.
2003. Redundancy based detection of sequence polymorphisms in
expressed sequence tag data using autoSNP. Bioinformatics
19: 421–422.

Bonfield, J.K. and Staden, R. 1996. Experiment files and their
application during large-scale sequencing projects. DNA Seq.
6: 109–117.

Bonfield, J.K., Smith, K.F., and Staden, R. 1995. A new DNA sequence
assembly program. Nucleic Acids Res. 23: 4992–4999.

Bonfield, J.K., Rada, C., and Staden, R. 1998. Automated detection of
point mutations using fluorescent sequence trace subtraction. Nucleic
Acids Res. 26: 3404–3409.

Camargo, A.A., Samaia, H.P., Dias-Neto, E., Simao, D.F., Migotto, I.A.,
Briones, M.R., Costa, F.F., Nagai, M.A., Verjovski-Almeida, S., Zago,
M.A., et al. 2001. The contribution of 700,000 ORF sequence tags to
the definition of the human transcriptome. Proc. Natl. Acad. Sci.
98: 12103–12108.

Chan, S.C., Wong, A.K.C., and Chiu, D.K.Y. 1992. A survey of multiple
sequence comparison methods. Bull. Mathem. Biol. 54: 563–598.

Chevreux, B., Wetter, T., and Suhai, S. 1999. Genome sequence
assembly using trace signals and additional sequence information.
Comput. Sci. Biol.: Proc. German Conference on Bioinformatics GCB ’99
GCB, pp. 45–56.

Chevreux, B., Pfisterer, T., and Suhai, S. 2000. Automatic assembly and
editing of genomic sequences. In Genomics and proteomics—functional
and computational aspects (ed. S. Suhai), Chap. 5, pp. 51–65. Kluwer
Academic/Plenum Publishers, New York.

Chou, H.-H. and Holmes, M.H. 2001. DNA sequence quality trimming
and vector removal. Bioinformatics 17: 1093–1104.

Dear, S., Durbin, R., Hilloier, L., Marth, G., Thierry-Mieg, J., and Mott,
R. 1998. Sequence assembly with CAFTOOLS. Genome Res.
8: 260–267.

Durbin, R. and Dear, S. 1998. Base qualities help sequencing software.
Genome Res. 8: 161–162.

Giegerich, R. and Wheeler, D. 1996. Pairwise sequence alignment.
http://www.techfak.uni-bielefeld.de/bcd/Curric/PrwAli/prwali.html.

Grillo, G., Attimonelli, M., Luici, S., and Pesole, G. 1996. CLEANUP: A
fast computer program for removing redundancies from nucleotide
sequence databases. Comput. Appl. Biosci. 12: 1–8.

Gusfield, D. 1997. Algorithms on strings, trees and sequences: Computer
science and computational biology. Cambridge University Press,
Cambridge, London.

Huang, X. 1994. On global sequence alignment. Comput. Appl. Biosci.
10: 227–235.

———. 1996. An improved sequence assembly program. Genomics
33: 21–31.

Kececioglu, J.D. and Myers, E.W. 1992. Combinatorial algorithms for
DNA sequence assembly. Tech. Rep. TR 92–37, University of
California at Davis, University of Arizona, Davis, AZ.

Kumar, S. and Rzhetsky, A. 1996. Evolutionary relationships of
eukaryotic kingdoms. J. Mol. Evol. 42: 183–193.

Chevreux et al.

1158 Genome Research
www.genome.org



Morgenstern, B., Dress, A., and Werner, T. 1996. Multiple DNA and
protein sequence alignment based on segment-to-segment
comparison. Proc. Natl. Acad. Sci. 93: 12098–12103.

Müller, W.E. 2001. How was metazoan threshold crossed: The
hypothetical Urmetazoa (part A). Compar. Biochem. Physiol.
129: 433–460.

Myers, E.W. 1995. Toward simplifying and accurately formulating
fragment assembly. J. Computat. Biol. 2: 275–290.

Nickerson, D.A., Taylor, S.L., and Rieder, M.J. 2000. Identifying single
nucleotide polymorphisms (SNPs) in human candidate genes. In
Research abstracts from the DOE human genome program
Contractor-Grantee Workshop VIII. Feb. 27 to Mar. 2, 2000. Santa Fe,
NM.

Notredame, C. and Higgins, D.G. 1996. SAGA: Sequence alignment by
genetic algorithm. Nucleic Acids Res. 24: 1515–1524.

Paracel 2002a. Paracel filtering package user manual. Paracel, Inc.,
Pasadena, CA.

———. 2002b. PTA: Paracel transcript assembler user manual. Paracel, Inc.,
Pasadena, CA.

Parsons, R., Forrest, S., and Burks, C. 1993. Genetic algorithms for DNA
sequence assembly. In Proc. of the 1st International Conference on
Intelligent Systems for Molecular Biology (eds. L. Hunter et al.). AAAI,
Bethesda, MD.

Pearson, W.R. 1995. Comparison of methods for searching protein
sequence databases. Protein Sci. 4: 1145–1160.

———. 1998. Empirical statistical estimates for sequence similarity
searches. J. Mol. Biol. 276: 71–84.

Peltola, H., Söderlund, H., and Ukkonen, E. 1984. SEQAID: A DNA
sequence assembling program based on a mathematical model.
Nucleic Acids Res. 12: 307–321.

Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R.,
Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., et al.
2003. TIGR gene indices clustering tools (TGICL): A software system
for fast clustering of large EST datasets. Bioinformatics 19: 651–652.

Pfisterer, T. and Wetter, T. 1999. Computer assisted editing of genomic
sequences—why and how we evaluated a prototype, Lecture Notes in
Artificial Intelligence; Subseries of Lecture Notes in Computer
Science, pp. 201–209. Springer-Verlag, Berlin, Heidelberg, New York.

Shpaer, E.G., Robinson, M., Yee, D., Candlin, J.D., Mines, R., and
Hunkapiller, T. 1996. Sensitivity and selectivity in protein similarity
searches: Comparison of Smith-Waterman in hardware. Genomics
38: 179–191.

Staden, R. 1996. The Staden sequence analysis package. Mol. Biotechnol.
5: 233–241.

Staden, R., Bonfield, J., and Beal, K. 1997. The new Staden package
manual—3Part 1. Medical Research Council, Laboratory of Molecular
Biology, http://staden.sourceforge.net/.

Stoye, J. 1998. Multiple sequence alignment with the
divide-and-conquer method. Gene/GC 211: 45–56.

Tammi, M.T., Arner, E., Britton, T., and Andersson, B. 2002. Separation
of nearly identical repeats in shotgun assemblies using defined
nucleotide positions, DNPs. Bioinformatics 18: 379–388.

Walther, D., Bartha, G., and Morris, M. 2001. Basecalling with LifeTrace.
Genome Res. 11: 875–888.

Wu, S. and Manber, U. 1992. Fast text searching allowing errors.
Commun. ACM 35: 83–91.

Zhang, C. and Wong, A.K. 1997. A genetic algorithm for multiple
molecular sequence alignment. Comput. Appl. Biosci. 13: 565–581.

WEB SITE REFERENCES
http://www.chevreux.org/projects_mira.html; homepage of the MIRA V2

assembly system.
http://www.dkfz.de/mbp-ased/; homepage of the MIRA V1 assembly

system and EdIt automatic editor.

Received August 27, 2003; accepted in revised form January 28, 2004.

miraEST for Assembly and SNP Detection

Genome Research 1159
www.genome.org


