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Abstract 19 

Antimicrobial resistance (AMR) is a major public health problem that requires publicly 20 

available tools for rapid analysis.  To identify acquired AMR genes in whole genome sequences, 21 

the National Center for Biotechnology Information (NCBI) has produced a high-quality, curated, 22 

AMR gene reference database consisting of up-to-date protein and gene nomenclature, a set of 23 

hidden Markov models (HMMs), and a curated protein family hierarchy.  Currently, the 24 

Bacterial Antimicrobial Resistance Reference Gene Database contains 4,579  antimicrobial 25 

resistance gene proteins and more than 560 HMMs. 26 

Here, we describe AMRFinder, a tool that uses this reference dataset to identify AMR genes.  27 

To assess the predictive ability of AMRFinder, we measured the consistency between predicted 28 

AMR genotypes from AMRFinder against resistance phenotypes of 6,242 isolates from the 29 

National Antimicrobial Resistance Monitoring System (NARMS). This included 5,425 30 

Salmonella enterica, 770 Campylobacter spp., and 47 Escherichia coli phenotypically tested 31 

against various antimicrobial agents. Of 87,679 susceptibility tests performed, 98.4% were 32 

consistent with predictions.  33 

To assess the accuracy of AMRFinder, we compared its gene symbol output with that of a 34 

2017 version of ResFinder, another publicly available resistance gene database. Most gene calls 35 

were identical, but there were 1,229 gene symbol differences between them, with differences due 36 

to both algorithmic differences and database composition.  AMRFinder missed 16 loci that 37 

Resfinder found, while Resfinder missed 1,147 loci AMRFinder identified. Two missing drug 38 

classes from the 2017 version of ResFinder contributed 81% of missed loci. Based on these 39 

results, AMRFinder appears to be a highly accurate AMR gene detection system. 40 
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 41 

Importance 42 

Antimicrobial resistance is a major public health problem. Traditionally, antimicrobial 43 

resistance has been identified using phenotypic assays. With the advent of genome sequencing, 44 

we now can identify resistance genes and deduce if an isolate could be resistant to antibiotics. 45 

We describe a database of 4,579 acquired antimicrobial resistance genes, the largest publicly 46 

available, and a software tool to identify genes in bacterial genomes, AMRFinder. Unlike other 47 

tools, AMRFinder uses a gene hierarchy to prevent overpredicting what the correct gene call 48 

should be, enabling more accurate assessment. To assess these resources, we determined the 49 

resistance gene content of over 6,200 bacterial isolates from the National Antimicrobial 50 

Resistance Monitoring System that have been assayed using traditional methods and that also 51 

have had their genomes sequenced. We also compared our gene assessments to those of a 52 

popularly used tool.  We found that AMRFinder has a high overall consistency between 53 

genotypes and phenotypes. 54 

Introduction 55 

Antimicrobial resistance (AMR) is a major public health problem, with an estimated 23,000 56 

deaths annually in the U.S. attributable to antimicrobial resistant infections 57 

(https://www.cdc.gov/drugresistance/threat-report-2013/index.html). The continued evolution of 58 

multi-drug resistance ensures that AMR will continue to be a health challenge for years to come. 59 

As described in the National Strategy on Combating Antibiotic Resistant Bacteria report 60 

(https://www.cdc.gov/drugresistance/pdf/national_action_plan_for_combating_antibotic-61 

resistant_bacteria.pdf), there is a critical need to understand how AMR is related to bacterial 62 
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genotype, both to enhance AMR mechanism discovery and to enable AMR diagnostics.  One key 63 

method to establish this link is genome sequencing, which can also be used for surveillance 64 

purposes. 65 

Traditionally, AMR has been identified using phenotypic assays.  The gold standard for 66 

measuring antimicrobial susceptibility is based on standardized dilution- or diffusion-based in 67 

vitro antimicrobial susceptibility testing (AST) methods, where extensive research and testing 68 

have been performed to correlate AST measurements with clinical outcomes (1) Increasingly, 69 

molecular methods are being used in resistance surveillance and in some cases also to guide 70 

clinical therapy. These range from PCR detection of known resistance elements (2) to mass 71 

spectrometry-based methods (3-7).  Whole genome shotgun sequencing (WGS) has been 72 

integrated into the clinical and public health settings, though the use of WGS has focused 73 

primarily on outbreak identification and tracking (8, 9).  Along with epidemiological uses, there 74 

is great potential for the use of WGS to aid and guide AMR detection (10-15).  Accurate 75 

assessment of AMR gene content enables the discovery of novel resistance variants and can 76 

serve as the basis for predicting resistance phenotypes without the need for time consuming 77 

phenotypic tests (11, 16, 17). 78 

An in-silico approach to assessing AMR content requires comprehensive and accurate AMR 79 

gene databases as well as tools that can reliably identify AMR genes.   There are many databases 80 

and tools using a variety of approaches and data sources as described in a recent review (18).  81 

While some tools exclusively use BLAST-based approaches (19), others incorporate Hidden 82 

Markov Model (HMM) approaches (20). BLAST-based approaches are able to identify specific 83 

alleles and closely-related genes.  However, BLAST-based methods use arbitrary cutoffs that can 84 

miscall AMR genes or even misattribute resistance to non-AMR genes (e.g., misidentification of 85 
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metallo-beta-hydrolases as metallo-beta-lactamases(21)).  HMM approaches facilitate a 86 

hierarchical classification of AMR proteins, from alleles to gene families, but curation and 87 

validation of HMM libraries are required. Tools also differ based on whether they analyze 88 

nucleotide or protein sequence.  Additionally, some tools are only available through a web-89 

interface, while others can be operated on local servers providing more flexibility to users.  90 

Researchers attempting to use currently available AMR databases must choose between these 91 

different database resources.  Some contain collections of alignments of resistance genes for use 92 

in HMMs (20).  Others consist of collections of nucleotide or protein sequences of either 93 

individual resistance genes or resistance-related mobile elements (22, 23).  Some databases are 94 

actively curated such as the CARD (23, 24), ResFinder (22), and the Lahey Clinic database 95 

(https://www.lahey.org/Studies/ ; the latter is now hosted and maintained by NCBI, as part of the 96 

NCBI’s Bacterial Antimicrobial Resistance Reference Gene Database), while others are not 97 

actively updated.  Separate groups curate different classes of genes, and even a single class of 98 

genes can be curated by multiple groups (e.g., beta-lactamases).  In addition, some data resources 99 

include allelic variation of housekeeping genes that can confer or contribute to resistance, while 100 

others focus exclusively on acquired resistance mechanisms.  Assessing and comparing these 101 

resources and tools is also challenging as there are few high-quality strain collections that have 102 

been extensively genotyped and phenotyped, and that are also publicly available.  103 

Here, we describe the development of a comprehensive AMR gene database, the Bacterial 104 

Antimicrobial Resistance Reference Gene Database, and the development of AMRFinder, an 105 

AMR gene identification tool, along with publicly available datasets to test AMR gene detection 106 

methods. To identify AMR genes from sequence data, we created over 560 AMR HMMs (21) 107 

and curated over 4,579 AMR protein sequences, placing both in a hierarchical framework of 108 

gene families, symbols, and names in collaboration with multiple groups including CARD (21). 109 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550707doi: bioRxiv preprint 

https://doi.org/10.1101/550707


 6 

We then developed AMRFinder to leverage both the content and structure of this database to 110 

accurately identify and name AMR gene sequences. To validate this system, we used a collection 111 

of isolates from the NARMS program that have undergone extensive susceptibility testing and 112 

whole genome shotgun assembly, and we also compared AMRFinder performance with a 113 

version of ResFinder 2.0 released in 2017. 114 

Methods 115 

AMR gene database 116 

The Bacterial Antimicrobial Resistance Reference Gene Database contains a hierarchy of AMR 117 

protein families and is stored in NCBI’s RefSeq database (21).  Each protein, and each protein 118 

family, has a curated name and gene symbol where appropriate. Gene symbols can point to more 119 

than one protein sequence, while alleles point to one unique amino acid sequence. For many 120 

families, we have constructed protein HMMs that identify these protein families. When 121 

necessary, the protein sequence has been manually verified to be full-length and to have the 122 

appropriate start site. The proteins are arranged in protein family hierarchies based on protein 123 

homology and function.  124 

Our collection of AMR proteins is derived from multiple sources, including the compilation 125 

of beta-lactamase alleles and Qnr family quinolone resistance protein alleles compiled by the 126 

Lahey Clinic team (http://www.lahey.org/studies/ (25),  ResFinder (22), and the Comprehensive 127 

Antimicrobial Resistance Database [CARD; (24)].  At the request of the Lahey Clinic team of 128 

Drs. Karen Bush, George Jacoby, and Timothy Palzkill (https://www.lahey.org/Studies/), NCBI 129 

has assumed responsibility for assigning and curating beta-lactamase alleles 130 

(https://www.ncbi.nlm.nih.gov/pathogens/submit-beta-lactamase/). The assignment process uses 131 

many beta-lactamase subfamily HMMs that are also used by AMRFinder. Families covered 132 
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include the 27 previously covered by Lahey, the ADC and PDC families, as well as the newly 133 

assigned families CMH, CRH, and FRI. Since January 2016, NCBI has assigned 676 new beta-134 

lactamase alleles.  These newly assigned alleles as well as those previously curated are 135 

incorporated into our AMR gene database. We obtained compilations of resistance genes for 136 

several classes of ribosome-targeting antibiotics from Dr. Marilyn Roberts [(26) and personal 137 

communication]. We obtained collections of AMR proteins encoded in integron regions from 138 

both RAC (27) and INTEGRALL (28).  Additional sources included compilations provided by 139 

collaborating groups such as the FDA Center for Veterinary Medicine, University of Oxford (Dr. 140 

Derrick Crook), and the Klebsiella Sequence Typing Database at the Pasteur Institute 141 

(http://bigsdb.pasteur.fr/klebsiella/klebsiella.html). These sources were supplemented by 142 

continuous examination of review articles and new reports of resistance proteins.  143 

The 4,528 resistance proteins in our database as of this writing confer resistance to 34 classes 144 

of antimicrobials and disinfectants, and are encoded by over 800 gene families.  All underlying 145 

nucleotide records contain complete coding sequence and are not derived from synthetic 146 

constructs.  Nucleotide sequences were oriented with the AMR protein coding region on the 147 

positive strand, and records were constructed, where possible, to include an additional 100bp on 148 

either side of the coding region to assist in the design of primers.  Protein records were created as 149 

described previously (21).  This collection has a standardized nomenclature to provide maximal 150 

functional information as well as ease of bioinformatic use, and is found under in our Reference 151 

Gene Browser (https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/) as well as RefSeq 152 

BioProject PRJNA313047 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047). 153 
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AMR HMM construction 154 

Groups of related AMR proteins with similar sequences and similar gene symbols as taken 155 

from our various sources were aligned using MUSCLE (29) or Clustal W (30), then viewed, 156 

trimmed, and culled of mis-assigned, redundant, frameshifted, or fragmentary sequences, using 157 

Belvu (31). The resulting curated multiple sequence “seed” alignments were used to construct 158 

protein profile HMMs, using the HMMER3 package (http://hmmer.org/). In some cases, BLAST 159 

or HMM searches recruited additional sequences that were judged valid to add to the seed 160 

alignments so that the scores obtained in HMM search results could more clearly separate true 161 

family members from outgroup sequences.  The ResFams (20) library of HMMs, based on 162 

sequences taken from CARD sequences and clustered by their CARD antibiotic resistance 163 

ontology assignments, provided important early assistance in recognizing putative AMR proteins 164 

and grouping them into homology families. However, to create a hierarchical classification 165 

system for AMR proteins, with sufficiently fine divisions of recognized families and cutoffs 166 

values that could prove trustworthy while searching very large data sets, we created, calibrated, 167 

and annotated an entirely new HMM library, available at  168 

https://ftp.ncbi.nlm.nih.gov/hmm/NCBIfam-AMRFinder/. The literature was reviewed, 169 

molecular phylogenetic trees and search results were examined, and an informative protein name 170 

was selected for each HMM built to represent a family of AMR proteins. These HMMs support 171 

correct functional annotation of AMR proteins for RefSeq prokaryotic genomes (21). 172 
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Identifying acquired AMR genes  173 

Protein searches: AMRFinder-prot uses the database of AMR gene sequences, HMMs, the 174 

hierarchical tree of AMR protein designations, and a custom rule-set to generate names and 175 

coordinates for AMR genes, along with descriptions of the evidence used to identify the 176 

sequence. Software and documentation are available at https://github.com/ncbi/amr and 177 

https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/.  Genes are 178 

reported with the following procedure after both HMMER and BLASTP searches are run. 179 

BLASTP matches: In AMRFinder, BLASTP (32, 33) is run with the -task blastp-fast -180 

word_size 6 -threshold 21 -evalue 1e-20 -comp_based_stats 0 options against the AMR gene 181 

database described above.  Exact BLAST matches over the full length of the reference protein 182 

are reported. If there is no exact match, then the following rules are applied: Matches with < 90% 183 

identity or with < 50% coverage of the protein are dropped. If the hit is to a fusion protein then at 184 

least 90% of the protein must be covered. A BLAST match to a reference protein is removed if it 185 

is covered by another BLAST match which has more identical residues or the same number of 186 

identical residues, but to a longer reference protein. A single match is chosen as the best of what 187 

remains sorting by the following criteria in order (1) if it is exact; (2) has more identical residues; 188 

(3) hits a shorter protein; or (4) the gene symbol comes first in alphabetical order. 189 

HMM matches: HMMER version 3.1b2 (http://hmmer.org/) is run using the --cut_tc -Z 190 

10000 options with the HMM database described above. HMM matches with full_score < TC1 191 

or domain_score < TC2 are dropped. All HMM matches to HMMs for parent nodes of other 192 

HMM matches in the hierarchy are removed. The match(es) with the highest full score are kept. 193 

If there is an exact BLAST match or the family of the BLAST match reference protein is 194 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550707doi: bioRxiv preprint 

https://doi.org/10.1101/550707


 10 

descendant of the family of the HMM then the information for the nearest HMM node to the 195 

BLAST match are returned. 196 

Translated DNA searches: Translated alignments using BLASTX of the assembly against the 197 

AMR protein database were used to help identify partial, split, or unannotated AMR proteins 198 

using the -task tblastn-fast -word_size 3 -evalue 1e-20 -seg no -comp_based_stats 0 options. The 199 

algorithm for selecting hits is as described above for proteins, but note that HMM searches are 200 

not performed against the unannotated assembly. 201 

Nucleotide searches: Nucleotide-nucleotide BLAST searches were also performed for evaluation 202 

purposes, although this is not built into AMRFinder. We collected the nucleotide sequences for 203 

all proteins in GenBank with sequences identical to those in the AMR database. The genome 204 

assembly for each isolate was masked at locations identified as AMR genes by AMRFinder 205 

before aligning the remainder against the nucleotide sequences we collected above. Hits were 206 

combined to determine coverage of the reference protein and all 7 hits with > 50% length and > 207 

90% sequence similarity to a reference sequence were selected for analysis. 208 

Samples 209 

The 6,242 isolates used in this study are from various NARMS projects (34)  including 294 210 

Campylobacter coli, 476 Campylobacter jejuni, 47 Escherichia coli, and 5,425 Salmonella 211 

enterica. Sources for these isolates include human clinical S. enterica isolates resistant to at least 212 

one antibiotic from 2014, NARMS food animal cecal testing projects, food adulterant isolates 213 

including Shiga-toxin producing E. coli, and routine NARMS retail meat surveillance. Isolates 214 

are listed in Table S1 and are deposited in the Sequence Read Archive, or were independently 215 

assembled and submitted to GenBank prior to the start of the analysis. 216 
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There were a small number of isolates whose excessive differences between MIC tests and 217 

predictions of resistance suggested artifacts from resistance gene loss, sample swaps, testing 218 

errors, mixed cultures, or other confounding factors. We eliminated isolates where resistance 219 

calls differed from the gene-based prediction for all tested members of three or more drug classes 220 

defined as aminoglycosides, beta-lactams, lincosamides, ketolides, macrolides, phenicols, 221 

quinolones, sulfonamides, tetracyclines, and trimethoprim-sulfamethoxazole. This filter removed 222 

38 isolates from the analyses (0.6%, Figure 1). 223 

Genome assembly and annotation 224 

Illumina whole-genome shotgun reads were assembled using SPAdes v.3.5.0 using the 225 

default parameters (35). To be included in the study we required the isolate assemblies to meet 226 

the following criteria: (1) one and only one species-appropriate, full-length, gyrA gene; (2) < 227 

100-Kb of the assembly in contigs covered by < 10% the genome-wide average coverage; (3) < 228 

8-Mb in size; (4) sufficient sequence for > 20-fold genome coverage; (5) NCBI species average 229 

nucleotide identity (ANI) matched [(36) Figure 1]. To calculate coverage, reads for each isolate 230 

were aligned back to the assembly with BWA version 0.7.10-r789 using the MEM algorithm and 231 

default parameters (37). SAMtools version 1.3.1 was then used to convert alignments to read-232 

depths for each base (38). Genomes were annotated using NCBI’s PGAP 2.0 pipeline (21, 39).  233 

For 540 isolates, we used genome assemblies already deposited in GenBank (Table S1). 234 

Combining results 235 

First, redundant equal-scoring hits to the same protein or identical location on the assembly 236 

were removed. Next, translated BLAST hits that overlapped over more than 75% of their length 237 

with AMRFinder-prot hits were removed as duplicates.  Finally, nucleotide BLAST hits that 238 

overlapped over more than 75% of their length with either AMRFinder-prot or translated 239 
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BLAST hits were removed as duplicates. 14,984 (98.19%) AMR genes were identified by the 240 

annotation-based protein AMRFinder, while 268 (1.77%) were identified by translated DNA 241 

BLAST. The remaining 7 hits (0.046%) were partial proteins identified only by nucleotide 242 

BLAST. 243 

Contig filtering 244 

Reads for each isolate were aligned back to the assembly using BWA version 0.7.10-r789 245 

using the MEM algorithm and default parameters (40). SAMtools version 1.3.1 was then used to 246 

convert alignments to read-depths for each base (38). Using this data genome-wide and per-247 

contig average read-depths were calculated for filtering. AMR genes identified above were 248 

filtered and removed from analysis if its read-depth of the contig containing a given AMR gene 249 

was < 1/10th of the average per-base read-depth for the entire assembly. 250 

Identifying point mutations 251 

Point mutations in three structural genes that confer resistance in C. coli and C. jejuni were. 252 

examined: gyrA, 50S ribosomal protein L22, and 23S rRNA (11). We identified putative 253 

resistance mutations by blasting the protein or nucleotide sequences against the listed accessions 254 

and predicted resistance based on the presence of the listed known resistance alleles at any of the 255 

listed offsets. The gene gyrA was screened (AJW58405.1 and YP_002344422.1) for the 256 

mutations T86I, T86K, T86V, D90N, D90Y, P104S, and C257T, which predict resistance to 257 

quinolones.  For the 50S ribosomal protein L22 (AJW59082.1 and YP_002345068.1) we 258 

predicted resistance to macrolides due to changes at positions A84D, G86E, G86V, A88E, and 259 

A103V. The 23S rRNA (CP01115.1) was screened for those C. jejuni 23S mutations, A2074C, 260 

A2074G, A2074T, A2075G, and C2627A, which were expected to confer resistance to 261 

macrolides(41-43).  To assess if ciprofloxacin resistance in S. enterica could be attributed to 262 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550707doi: bioRxiv preprint 

https://doi.org/10.1101/550707


 13 

point mutations, we screened gyrA (WP_001281271.1;  A67P, D72G, V73I, G81C/S/H/D, 263 

D82G/N, S83Y/F/A, D87N/G/Y/K, S97P, L98V, A119S/E/V, A131G, E139A), gyrB 264 

(WP_000072047.1; Y421C, R438L, S464Y/F, E466D), parC (WP_001281910.1; T66I, G78D, 265 

S80R/I, E84K/G), and parE (WP_000195318.1; M438I, E454G, S458P, V461G, H462Y, 266 

A499T, V514G, V521F) for mutations expected to confer resistance (44-47). 267 

Correlation of antimicrobial susceptibility phenotypes with resistance gene content  268 

After all resistance genes were identified, isolates exhibiting phenotypic resistance were 269 

correlated with the predicted phenotype based on presence or absence of resistance genes or 270 

point mutations for each antibiotic (see Table S4 for predictions).  Predicted phenotypes were 271 

scored as either resistant (R) or susceptible (S), with the presence of one or more resistance-272 

conferring genes yielding a prediction of “R”.  These were compared to the gold standard 273 

observed phenotypic results, with observed susceptibility results of intermediate (I) treated as 274 

“S”, with the exception of ciprofloxacin in S. enterica, for which I values were treated as 275 

resistant, since previous work has indicated that one or more resistance genes or point mutations 276 

are associated with an intermediate susceptibility phenotype (48, 49). 277 

AMRFinder-ResFinder comparisons 278 

AMRFinder blasts resistance gene protein sequences, either against a set of annotated 279 

proteins or a nucleotide sequence, while Resfinder uses a nucleotide database, and blasts that 280 

database against a nucleotide sequence (e.g., a bacterial genome).  In addition, Resfinder reports 281 

the ‘highest-scoring’ hit, even if the underlying sequence does not support such a precise claim 282 

(e.g., calling a novel OXA allele “OXA-61”), while the hierarchical gene structure of 283 

AMRFinder will attempt to identify the appropriate gene name that does not provide an incorrect 284 

or overly precise name. To compare the output of AMRFinder to ResFinder, we first determined 285 
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if these two methods called AMR genes at nearly identical coordinates on the same genome (the 286 

absolute difference in lengths could be no more than 40 bp).  We used Resfinder 2.0, with the 287 

database downloaded on Nov. 15, 2017 and compared it with AMRFinder with the database 288 

locked on Feb. 2, 2017.  For Resfinder, the default settings of 90% nucleotide similarity and a 289 

60% minimum length were used. The particular version of the AMRFinder gene database used in 290 

this study can be found at 291 

ftp://ftp.ncbi.nlm.nih.gov/pathogen/Technical/AMRFinder_technical/feldgard_et_al_2018_amrd292 

b.tar.gz.  AMRFinder parameters used include a 90% nucleotide similarity and 50% minimum 293 

length for matching, and 40 disinfectant and other resistance genes were included in AMRFinder 294 

that were not in ResFinder 2.0.  This allowed us to identify instances when the same gene 295 

occurred multiple times in a genome in instances where one copy was missed or misidentified by 296 

either method.  We then compared gene symbols produced by each method.  Where gene 297 

symbols did not agree, we assigned them to one of four categories: (1) Synonyms were cases 298 

where the identical protein was called by both methods, but the name differed (e.g., many 299 

aminoglycoside modifying enzymes, such as strA and aph(3’’)-Ib).  (2) Underspecified calls 300 

occurred when the protein was 100% identical to a known, named protein, but one method did 301 

not describe it with sufficient resolution (e.g., blaTEM-1 is miscalled as blaTEM).  (3) Overspecified 302 

calls were cases where the correct name was a less specific gene symbol, when the method 303 

provided an overspecified symbol (e.g., a novel blaTEM family allele is miscalled as blaTEM-1). (4) 304 

Incorrect calls occurred when an incorrect gene symbol was ascribed to a protein (e.g., blaOXA-193 305 

is miscalled as blaOXA-61).  306 

Antimicrobial susceptibility testing 307 

Minimum inhibitory concentrations were measured using the Sensitire™ system and 308 

susceptibility panels designed specifically for NARMS surveillance (50).  E. coli and S. enterica 309 
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were tested for susceptibility to amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, 310 

ceftriaxone, chloramphenicol, ciprofloxacin, trimethoprim-sulfamethoxazole, gentamicin, 311 

nalidixic acid, streptomycin, sulfisoxazole, and tetracycline; some Salmonella isolates were 312 

screened against amikacin, ceftiofur, kanamycin, and meropenem depending on the composition 313 

of the NARMS panel at the time of testing. Campylobacter spp. were screened for susceptibility 314 

to azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic 315 

acid, telithromycin, and tetracycline.  316 

The breakpoints used for susceptibility testing were CLSI standard breakpoints. For 317 

antibiotics that lack CLSI breakpoints, breakpoints established by the NARMS Working Group 318 

were used (Table S2, S3). 319 

Results 320 

We compiled, curated, and publicly released a hierarchical database of AMR gene families, 321 

names, sequences, and HMMs with a consistent naming scheme and hierarchical structure called 322 

the Bacterial Antimicrobial Resistance Reference Gene Database 323 

(https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/). We also developed AMRFinder to 324 

use the AMR protein sequences, HMMs, the hierarchy of gene families and a custom rule-set to 325 

generate a report of the names, symbols, and coordinates of acquired AMR genes along with 326 

descriptions of the evidence used to identify the sequence 327 

(https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/ ).  328 

To verify and validate the results of the AMRFinder system, we analyzed a collection of 329 

isolates, sequenced, and susceptibility tested as part of the NARMS program. We then compared 330 

the resistance patterns predicted by AMR genes identified in the genome sequence to the results 331 
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of the phenotypic susceptibility tests. We further compared the resistance gene calls made by 332 

AMRFinder to calls from the commonly used resistance gene finding tool ResFinder (22). 333 

 A total of 6,301 NARMS isolates with both phenotypes and whole-genome shotgun 334 

sequences were compiled, 59 were removed for quality reasons described above, leaving 6,242 335 

isolates for this analysis (Figure 1). After assembly and annotation, AMRFinder was used to 336 

generate a list of 16,003 AMR gene calls, yielding 132 unique genes and alleles. Resistance 337 

predictions for the 132 genes and alleles observed in the set of 6,242 isolates were compiled 338 

from the literature (Table S4) and used to predict resistance.  339 

Overall consistency 340 

For the entire set, there were 87,679 susceptibility tests performed, 98.4% (86,276) were 341 

consistent with predictions based on the resistance genotypes (acquired resistance genes, and, 342 

when tested, point mutations. Of the 13,903 tests that were predicted to be resistant, 95.5% were 343 

observed to be resistant (PPV = 0.955), while of the 73,776 tests expected to be susceptible, 344 

99.2% were observed to be susceptible (NPV = 0.992; Table 1). 2,136 of the 6,242 isolates 345 

(34.2%) were pan-susceptible.  E. coli isolates had the highest consistency with 99.7% (656/658) 346 

of susceptibility tests predicted by the resistance genotype.  Within S. enterica, 98.0% of 347 

susceptibility tests were consistent with the resistance genotype, with PPV = 0.94 and NPV = 348 

0.992 (Table 2).  No resistance among E. coli and S. enterica isolates to amikacin or meropenem 349 

was observed or predicted.  C. coli had the lowest consistency, with 96.7% of susceptibility tests 350 

consistent with the resistance genotype, with a PPV of 0.904 and an NPV of 0.982 (Table 3).  351 

98.9% of phenotypes were accurately predicted for C. jejuni, with PPV = 0.971 and NPV = 352 

0.992 (Table 4).   Gentamicin and streptomycin susceptibility calls in S. enterica were the most 353 
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common incorrect predictions, accounting for 38% of inconsistent calls (532/1,403).  17% of all 354 

isolates (1,053) had one or more inconsistent calls between genotype and phenotype. 355 

Quinolone resistance 356 

None of the 47 E. coli isolates were resistant to either nalidixic acid or ciprofloxacin, nor 357 

were they predicted to be.  S. enterica displayed high consistency for both ciprofloxacin and 358 

nalidixic acid (Table 2).  When decreased susceptibility (R or I) is used as the breakpoint for 359 

ciprofloxacin (51), S. enterica isolates had high positive predictive values (PPV = 0.891) and 360 

high negative predictive values (NPV = 0.997).  For nalidixic acid, the positive predictive value 361 

was quite low (PPV = 0.3).  Thirty-five qnr+ isolates (71.4%) were susceptible to nalidixic acid, 362 

but they had an MIC of one doubling dilution below the nalidixic acid breakpoint of 32 µg/ml; 363 

thirteen qnr+ isolates were resistant to nalidixic acid; previous work indicates that qnr loci might 364 

not be very effective at conferring resistance to nalidixic acid (52).  Point mutations in gyrA and 365 

other genes associated with ciprofloxacin were not used for the determination of nalidixic acid 366 

susceptibility, as it was unclear from some previous studies if these mutations also confer 367 

resistance to nalixidic acid (48, 49).  However, of the 80 isolates that had ciprofloxacin resistance 368 

mutations, 79 were resistant to nalidixic acid. 369 

In C. coli and C. jejuni, fluoroquinolone resistance was associated with point mutations, 370 

not acquired genes (Tables 3, 4).  Based on previous reports (11), we examined the relationship 371 

between gyrA mutations previously determined to confer fluoroquinolone resistance and 372 

fluoroquinolone resistant isolates among these Campylobacter spp. isolates.  All but two 373 

fluoroquinolone resistant and no fluoroquinolone susceptible C. coli isolates possessed a GyrA 374 

T86I mutation (Table S5).  In C. jejuni, 84/85 isolates with GyrA T86I mutations were resistant 375 

to ciprofloxacin, and 83/85 were resistant to nalidixic acid; three C. jejuni isolates without 376 
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known fluoroquinolone resistance mutations were resistant to both fluoroquinolones; no unique 377 

mutations were correlated with these three isolates.  378 

Thus in S. enterica, presence of qnr genes or QRDR mutations conferred either resistance 379 

or decreased susceptibility to ciprofloxacin, while in Campylobacter spp. gyrA mutations 380 

conferred resistance. 381 

Macrolides and lincosamides 382 

Only six of eleven S. enterica isolates predicted to be azithromycin resistant were resistant.  383 

These six resistant isolates carried mph(A); however, one azithromycin susceptible isolate also 384 

carried mph(A).  The other four susceptible isolates carried either the ere(A) or abc-f resistance 385 

genes; these isolates did not have elevated MICs near the top end of the susceptible range.   386 

All C. jejuni were susceptible to azithromycin, erythromycin, and telithromycin, with only 387 

six C. jejuni displaying resistance to clindamycin (Table 4).  None of the clindamycin resistant 388 

C. jejuni isolates had any known resistance mutations or unique mutations suggesting novel 389 

resistance mutations in either 23S or the 50S/L22 subunit (Table S5). Macrolide resistance was 390 

far more common in C. coli (Table 3), with most resistant isolates possessing a A2075G 391 

mutation in 23S (Table S6), as has been observed previously (11). 392 

Decreased amoxicillin-clavulanic acid susceptibility in S. enterica 393 

As expected, we observed that 718 out of 725 S. enterica isolates (99.0%) with one or more 394 

blaCMY-family genes were resistant to amoxicillin-clavulanic acid.  As observed previously (51), 395 

other beta-lactamases conferred decreased or intermediate susceptibility to amoxicillin-396 

clavulanic acid (Fig. 3).  92.6% of isolates that carried a blaPSE/blaCARB family beta-lactamase (a 397 

novel blaCARB allele or blaCARB-2) displayed intermediate susceptibility to amoxicillin-clavulanic 398 
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acid, while over half of those isolates with a blaHER family beta-lactamase displayed intermediate 399 

susceptibility to amoxicillin-clavulanic acid, with the remainder having a MIC of 8 µg/ml, which 400 

is the highest MIC categorized as susceptible. blaTEM isolates had a similar pattern, with nearly 401 

half displaying intermediate susceptibility.  402 

Aminoglycoside susceptibility in Salmonella 403 

Overall, the presence or absence of acquired gentamicin and kanamycin resistance genes was 404 

a good predictor of susceptibility phenotypes (Table 2).  Of the 2,820 Salmonella that were 405 

tested for susceptibility to amikacin, none were resistant, nor were they predicted to be resistant.  406 

However, we noticed that several reported gentamicin and kanamycin resistance genes conferred 407 

decreased susceptibility to gentamicin and kanamycin even if the MICs were not high enough to 408 

qualify as resistant (Fig 4a, b).  The majority of aac(3)-IV+ isolates (36/47) and 26% of ant(2'')-409 

Ia+ isolates displayed intermediate susceptibility to gentamicin. Many aac(6’)-Ib+ isolates were 410 

susceptible to gentamicin, but the MICs of these isolates were higher than isolates lacking known 411 

resistance genes. While aac(6’)-Ib family enzymes, other than aac(6’)-Ib4, do not confer 412 

resistance to gentamicin, they are known to confer resistance to some of the individual 413 

components of gentamicin, such as gentamicin C1a and C2, and thus these genes might decrease 414 

susceptibility to gentamicin (53). While most kanamycin resistance genes were associated with 415 

phenotypic resistance, 13% of ant(2'')-Ia+ isolates had intermediate susceptibility. 416 

As noted previously, streptomycin susceptibility calls accounted for a large fraction of the 417 

inconsistent calls, with many such isolates containing putative streptomycin genes.  There were 418 

no obvious direct relationships between particular resistance genes and streptomycin 419 

susceptibility (see Table S7).  We examined whether partial genes (defined as 50%-90% of the 420 

closest reference protein length) affected susceptibility calls.  Partial genes only accounted for 421 
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6.4% of streptomycin discrepancies, suggesting this observation is not due to potential non-422 

functional genes. While the mechanism of discordance between streptomycin resistance genes 423 

and susceptibility is unclear, this relationship has been observed in multiple surveys of 424 

Enterobacteriaceae (14, 16, 51, 54, 55). [also see S. 8] 425 

AMRFinder-ResFinder comparison  426 

ResFinder is a widely used AMR determinant detection program(22).  To assess the relative 427 

accuracy of AMRFinder we compared the gene symbol calls at similar positions in the two tools.  428 

As described in Methods, discrepant gene symbol calls were classified into four different 429 

categories: synonyms, overspecification (e.g., calling a novel or partial blaTEM allele as blaTEM-1), 430 

underspecification (e.g., calling an actual blaTEM-1 allele a blaTEM -family allele), and miscalls 431 

(e.g., mislabeling a full-length, 100% identical sequence as a different, known full-length 432 

sequence).   433 

Overall, out of 14,023 AMR genes identified by both AMRFinder and ResFinder there were 434 

1,229 gene symbol discrepancies (Tables 5, S8).  These discrepancies could be mapped to 42 435 

gene symbols, out of a total of 132 unique AMRFinder gene symbol calls.  ResFinder 436 

misidentified 247 genes with an exact match to a known AMR gene or allele (e.g., 437 

misidentifying blaOXA-193 as blaOXA-61), and over-specified the gene symbol in 977 cases, 438 

representing 18 misidentified gene symbols and 21 overspecified gene symbols out of the set of 439 

132 unique AMR gene symbols.  In five cases, AMRFinder underspecified the gene symbol, 440 

representing three underspecifications out of the set of 132 unique AMR protein symbols.  441 

The ResFinder misclassifications resulted from either the absence of the matching sequence 442 

in the ResFinder database used in this study or a lack of correspondence between the closest 443 

nucleotide hit and actual observed sequence.  For example, 32 aac(6’)-Ib family genes, including 444 
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22 known, 100% identity aac(6’)-Ib4 sequences, were miscalled as aac(6’)-Ib-cr. The gene 445 

aac(6’)-Ib-cr contributes to decreased fluoroquinolone susceptibility and confers amikacin and 446 

tobramycin resistance, while aac(6’)-Ib4 does not confer resistance or decreased susceptibility to 447 

amikacin, ciprofloxacin, or tobramycin. We would note that none of the sixteen S. enterica 448 

aac(6’)-Ib4+ isolates that also were tested for susceptibility to amikacin were resistant to 449 

amikacin, supporting the AMRFinder call of aac(6’)-Ib4. In 977 instances, ResFinder 450 

overspecified the gene symbol as it calls the closest hit as the correct gene symbol.  Many of 451 

these were novel, unnamed allelic variants of beta-lactamase families (n = 699; Table S8), and 452 

Resfinder reported the closest hit (e.g., blaOXA-61 when a novel blaOXA sequence was 453 

observed).  454 

We also examined the loci that were missed by either ResFinder or AMRFinder.  ResFinder 455 

did not find 1,147 AMR loci that AMRFinder identified (Table 6). Most of the missed loci 456 

(81.2%) belonged to drug or disinfectant classes that ResFinder does not cover, bleomycin and 457 

quarternary ammonium compounds. Bleomycin resistance is included in the AMRFinder 458 

database and is highly associated with the clinically relevant NDM family carbapenemases (56), 459 

although both databases do look directly for NDM genes, while qac enzymes can be linked to 460 

multiple resistance genes (57). The next largest class belonged to AMR genes that were not 461 

represented in the ResFinder database (8.8%). The default setting length of 60% of the reference 462 

sequence also resulted in 111 missed calls.  Of 66 genes not found by ResFinder that could be 463 

assessed by susceptibility data (out of the total of 111), 53 genes were consistent with the 464 

susceptibility data (associated with a resistant phenotype), while thirteen were not.   465 

AMRFinder missed 16 loci that ResFinder found. In all 16 cases, these were frameshifts or 466 

in-frame stop codons that resulted in a translated protein that either was not identified at all or 467 
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had a stop codon position that differed from the ResFinder stop position by more than 40 bp.  Of 468 

the three loci that AMRFinder missed that were assessed phenotypically, all of which were 469 

frameshifts, two were resistant in spite of the apparent frameshift, while one was susceptible.  470 

There were also 21 instances of an aph(6)-I like gene that was divergent from AMR genes in 471 

either the ResFinder or the AMRFinder protein database.  Due to this divergence, the two 472 

systems identified proteins that differed in length and thus had divergent start and stop sites, and 473 

were therefore called as misses. 474 

Discussion 475 

We developed and populated a highly curated database with hierarchical structure for AMR 476 

proteins, with tuned cutoffs and associated hierarchical names. AMRFinder uses this AMR 477 

protein database, HMMs, a hierarchy of AMR protein families, and a custom rule-set to identify 478 

AMR genes. In addition, AMRFinder reports the evidence used to make the determination users 479 

can evaluate its strength and their confidence in the calls. 480 

We observed high consistency between the presence of acquired AMR determinants and 481 

resistance phenotypes. We would note, however, that, as part of our sample consisted of isolates 482 

that were resistant to one or more antibiotics, our choice of isolates might overestimate the 483 

overall PPV, while underestimating the NPV. Incorporating mutational resistance also increased 484 

PPV and decreased NPV for certain drugs, especially fluoroquinolones and macrolides, as 485 

resistance to these drugs was predominantly mutational and not due to acquired AMR genes. The 486 

E. coli sample was small (n = 47), and most E. coli isolates were susceptible to most antibiotics, 487 

leading to very high consistency. In S. enterica, discrepancies in aminoglycoside resistance and 488 

fluoroquinolone resistance typically arose from acquired resistance genes conferring 489 

intermediate MICs or MICs at the high end of the susceptible range.  As other studies in 490 
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foodborne pathogens have demonstrated (51, 54), clinical breakpoints, while obviously critical 491 

for appropriate treatment, do not always correspond to the presence or absence of resistance 492 

genes.   493 

Beta-lactam resistance in S. enterica showed high correlation between resistance phenotypes 494 

and genotypes overall.  Elevated MICs and intermediate susceptibility amoxicillin-clavulanic 495 

acid phenotypes in S. enterica were associated with the presence of beta-lactamases other than 496 

blaCMY.  NCBI’s Pathogen Detection system (http://ncbi.nlm.nih.gov/pathogens), as part of a 497 

collaboration with the FDA GenomeTrakr (58), CDC PulseNet (59), and USDA-FSIS, routinely 498 

clusters genomes by sequence similarity, including the isolates described in this report, to 499 

support outbreak and traceback investigations of clonal isolates.  We determined that these 500 

isolates belong to different SNP clusters, and so it does not appear that this pattern stems from 501 

chance sampling of a single clone with an unknown resistance mechanism, though we cannot 502 

rule out an unknown, common mechanism of decreased susceptibility. One possible explanation 503 

why blaPSE family, blaHER, and blaTEM beta-lactamase carrying isolates would display this 504 

phenotypic difference could be that these beta-lactamases are overproduced in the presence of 505 

amoxicillin-clavulanic acid; overexpression of blaTEM-1 in E. coli confers amoxicillin-clavulanic 506 

acid resistance(60).  Alternatively, changes in permeability or efflux could lower the intracellular 507 

concentration of either the drug or the inhibitor, conferring intermediate or decreased 508 

susceptibility. 509 

As found in previous studies, resistance to macrolides and quinolones in these C. coli and C. 510 

jejuni (11) is largely due to point mutations.  When we screened for point mutations in gyrA and 511 

23S, we were able to predict phenotypes with extremely high accuracy.  This highlights the 512 

importance of point mutations in determining resistance phenotypes.  Future editions of 513 
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AMRFinder will incorporate point mutation information for Campylobacter, E. coli, and S. 514 

enterica. 515 

Comparing AMRFinder to ResFinder revealed the importance of annotation and of a 516 

comprehensive AMR reference gene database.  Protein length variation, when working with 517 

AMR proteins, can yield false conclusions.  For any AMR gene detection system, incomplete or 518 

incorrect databases can lead to AMR gene identification errors. 519 

We also found that there were instances where the highest scoring ResFinder hit was either 520 

incorrect due to absence of a sequence specific enough to make the correct call or to a reference 521 

nucleotide sequence that was divergent from the correct sequence.  One case was the aac(6’) 522 

family aminoglycoside modifying enzyme. Slight nucleotide changes that result in protein 523 

differences can result in the gain or loss of fluoroquinolone and aminoglycoside resistance (61).  524 

We also observed miscalls of QnrB alleles (quinolone resistance) and OXA-61 family beta-525 

lactamases due to the closest nucleotide hit not corresponding to the correct protein hit.  526 

AMRFinder, by having a nested hierarchical classification of AMR proteins into families, is able 527 

to appropriately name novel AMR genes, which can avoid imputing incorrect function by 528 

overspecifing the gene name. Without a clear interpretation of what similarity, but not complete 529 

identity, to known AMR genes means, using a ‘highest scoring hit’ approach can lead to false 530 

conclusions regarding AMR gene content. 531 

Although allele miscalls might appear to be minor, and in many cases might not affect 532 

susceptibility patterns, there are cases where these differences have profound effects on the 533 

predicted resistance phenotype.  As mentioned above, very minor differences in aminoglycoside 534 

modifying enzymes can result in significant differences in susceptibility.  Recent work with KPC 535 

family beta-lactamases has revealed that a subset of alleles, including blaKPC-8, are not only 536 
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resistant to carbapenemases, but also ceftazidime-tazobactam (62). blaKPC-8 was first described in 537 

2008 before ceftazidime-tazobactam existed as a treatment option. In some circumstances, 538 

accurate identification down to the allele level is crucial to characterizing the relationship 539 

between resistance genotype and phenotype. Comparisons in this study used older versions of 540 

both the AMRFinder and Resfinder databases out of necessity, as both systems are continuously 541 

improving their databases.  Since we locked down the databases for both systems, as of Sept. 1, 542 

2018, the Resfinder database has grown from 2,254 nucleotide sequences to 3,307 (a 35% 543 

increase), and the AMRFinder database has increased by 17%, from 3,921 protein sequences to 544 

4,579. These improvements should increase the accuracy of both systems.  545 

Note that reliability of WGS-based methods is dependent on the accuracy of the underlying 546 

WGS data.  Low-level contamination or poor-quality sequence data can lead to inaccurate 547 

assessments; this is a particular problem with ‘greedy’ assemblers that will assemble very low 548 

coverage regions.  Consensus assemblers run the risk that nearly identical orthologous genes or 549 

low-level sequencing contamination might yield an incorrect sequence.  Low-quality assemblies 550 

can also result in partial genes, making assessment of resistance genes challenging.  To increase 551 

the accuracy and reliability of AMR gene identification, NCBI is developing an assembler that 552 

emphasizes base accuracy, increasing the reliability of allele identification (63). 553 

In analyzing these data, we also encountered several issues.  There are two competing, 554 

partially overlapping aminoglycoside modifying enzyme nomenclature systems.  This makes 555 

constructing reference gene databases, as well as validating them, extremely difficult.  We also 556 

discovered that, in developing the genotype-phenotype matrix, there are many alleles and genes 557 

that either have not been characterized phenotypically at all, or only against a subset of 558 

antibiotics. This was a particular problem with the beta-lactamases, where in some cases alleles 559 
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were characterized phenotypically before the advent of currently used drugs.  In addition, some 560 

genes are described very broadly.  Terms such as ‘cephalosporin-hydrolyzing’ or 561 

‘aminoglycoside-modifying’ do not aid accurate prediction.  While these terms can be useful 562 

when confronted with a novel allele or gene, in that they avoid making unwarranted statements 563 

about phenotype, we would encourage more phenotypic assessment of novel and existing genes 564 

using well-standardized methods and quality control, such as the CLSI or EUCAST standards, to 565 

guide WGS-based methods and increase our basic understanding of AMR. It would also help to 566 

have more phenotypic data publicly available and linked to existing genome sequences 567 

(https://www.ncbi.nlm.nih.gov/biosample/docs/antibiogram/). 568 

In AMRFinder, we have adopted a protein-focused approach, as opposed to a nucleotide-569 

oriented approach, for several reasons.  First, protein annotation and similarity comparisons 570 

against both reference proteins and using HMMs with appropriate cutoffs can aid in determining 571 

if the gene is functional, whereas a nucleotide approach can miss nonsense mutations. Second, 572 

the protein sequence encodes the AMR function.  Even single amino acid changes can 573 

significantly alter resistance phenotypes, and this variation should be explicitly captured.  Third, 574 

there can be discordance between nucleotide and protein sequences, leading to the mis-575 

assignment of alleles, and thus potentially to incorrect prediction of AMR phenotypes.  Note, 576 

however, that there can be upstream mutations that interfere with gene expression, and that these 577 

types of mutations are not being reported by AMRFinder.  For example, blaKPC alleles in the 578 

context of different Tn4401 variants are expressed at different levels (64, 65).  Even when we 579 

used both nucleotide and protein approaches, and removed isolates that had genotype-phenotype 580 

discrepancies among three or more drug classes, we still observed that 17% of isolates had one 581 

or more discrepancies between the resistance genotype and the observed antibiogram. Even with 582 

high consistency for individual tests, isolates tested on multiple drugs will likely have one or 583 
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more discrepancies as a simple statistical property. For example, 21% of isolates tested against 584 

twelve antibiotics with a consistency of 98% would have one or more errors (assuming an equal 585 

consistency rate for each antibiotic).  Further technical refinements will be needed to lower the 586 

per-isolate discrepancy further, if clinical prediction is a primary goal.  587 

The tool we have described, AMRFinder, uses a combined protein BLAST and HMM 588 

approach.  BLAST can identify complete or near matches to known genes.  HMMs based on 589 

curated data, on the other hand, can identify putative resistance genes that fall below arbitrary 590 

BLAST thresholds, enabling the recognition of novel resistance genes.  By integrating both of 591 

these methods, we are able to assign the most specific functional name possible to the AMR 592 

protein (66). 593 

While AMRFinder is a powerful tool for identifying acquired resistance genes, our 594 

Campylobacter results highlight the importance of assessing the role of point mutations. To 595 

better understand the context in which AMR genes occur, NCBI is also developing a biocide and 596 

metal resistance database to screen for genes linked to resistance to those compounds. The latest 597 

AMRFinder software, source code, and databases are publicly available at 598 

https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/. While this study 599 

examined foodborne pathogens, NCBI’s Pathogen Detection system, which facilitates the 600 

analysis of food-borne and clinical isolates to aid outbreak and traceback investigations, uses 601 

AMRFinder to identify AMR genes from over 200,000 clinical and environmental bacterial 602 

isolates (https://www.ncbi.nlm.nih.gov/pathogens/), enabling the rapid identification of isolates 603 

with important AMR-related genotypes.   604 
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 832 

Fig. 1: Data processing and analysis flow.  Processing steps and isolate inclusion and 833 

exclusion criteria are indicated by arrows, with the number of isolates retained in each phase 834 

indicated in the colored boxes. Thirty-eight isolates were excluded if their AST phenotypes in 835 

three or more drug classes differed from predictions based on acquired AMR genes.  836 

Fig. 2a, b: Qnr loci affect ciprofloxacin (a) and nalidixic acid (b) MICs in S. enterica. 837 

Columns on the x-axis correspond to observed MIC values; brackets below indicate the SIR 838 

values for those MICs. On the y-axis, colored bars indicate the percentage of isolates sharing the 839 

same genotype with a given MIC value. Numbers above each column indicate the number of 840 

isolates observed with that MIC and genotypes.   In the side legend, the number in parentheses is 841 

the number of isolates with the corresponding genotype. “No genes” are those isolates lacking 842 

any predicted fluoroquinolone resistance genes.  oqxAB indicates the presence of these 843 

fluorquinolone resistance genes in an isolate. “qnr” indicates the presence of one of the following 844 

Qnr family genes: QnrB2, QnrB19, QnrB77, QnrS1, QnrS2, or an unassigned QnrB family 845 

allele. “oqxAB, qnr” indicates an OqxAB, QnrB19 genotype. Point mutations are indicated by 846 

the gene in which they occurred, followed by the site and changed residues. 847 

Fig. 3: Unexpected beta-lactamases confer decreased susceptibility to amoxicillin-clavulanic 848 

acid in S. enterica.  X- and y-axis as above. Allelic variants within a beta-lactamase family are 849 

grouped together under the family name; an isolate can have multiple alleles belonging to the 850 

same family. “blaPSE” family beta-lactamases are either CARB-2 or unassigned CARB alleles.  851 

“blaCMY” family beta-lactamases were either novel blaCMY alleles or the CMY-2 allele. 852 
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“blaHER” indicates either the HER-3 allele or a novel HER-family allele.  “blaTEM” indicates 853 

either a novel TEM allele, or TEM-1 “No genes” indicates those isolates lacking beta-854 

lactamases. 855 

Fig. 4 a, b: Gentamicin and kanamycin resistance in S. enterica. Format as described for 856 

Figure 2 except aminoglycoside modifying genes are grouped together by family.  “No genes” 857 

are those isolates lacking any predicted gentamicin and kanamycin resistance genes respectively.   858 
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Table 1: Consistencya between antibiotic susceptibility phenotypes and genotype-based 

predictions for all NARMS isolates 

 # resistant observations # susceptible observations 
# predicted resistant 13,122 781 
# predicted sensitive 622 73,154 

a Overall consistency was 98.4% of susceptibility tests performed, with a PPV = 0.955 and   

NPV = 0.992.
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Table 2: S. enterica susceptibility and consistencya with AMRFinder genotypic prediction.  
 

Antibiotic # isolates susceptibleb # isolates resistantb % consistentc % resistant PPVd NPV 

amikacin 2820  0 100.0% 0.0% NC 1 

AMC 4622 (7) 718 (38) 99.2% 14.0% 0.99 0.992 

ampicillin 3734 (27) 1620 (44) 98.7% 30.7% 0.984 0.988 

azithromycin 2592 (5) 6 (1) 99.8% 0.3% 0.545 0.999 

cefoxitin 4686 (67) 658 (14) 98.5% 12.4% 0.908 0.997 

ceftiofur 4093 (13) 697 (13) 99.5% 14.7% 0.982 0.997 

ceftriaxone 4652 (8) 744 (21) 99.5% 14.7% 0.989 0.996 

CHL 5214 (5) 202 (4) 99.8% 3.8% 0.976 0.999 

ciprofloxacine 5283 (14) 114 (14) 99.5% 2.4% 0.891 0.997 

cotrimoxazole 5343 (8) 69 (5) 99.8% 1.4% 0.896 0.999 

gentamicin 4692 (109) 571 (53) 97.0% 11.5% 0.84 0.989 

kanamycin 3382 (23) 412 (67) 97.7% 12.3% 0.947 0.981 

meropenem 609 0 100.0% 0.0% NC 1 

nalidixic acid 5294 (35) 15 (81) 97.9% 1.8% 0.3 0.985 

streptomycin 3291 (254) 1756 (76) 93.9% 33.7% 0.877 0.977 

sulfonamide 3763 (35) 1572 (55) 98.3% 30.0% 0.978 0.986 

tetracycline 2558 (42) 2776 (49) 98.3% 52.1% 0.985 0.981 
aOverall consistency is 98.0% of, with PPV = 0.94 and NPV = 0.992. 
bThe number of isolates with genotypes consistent with either phenotypic susceptibility or 
resistance to a given antibiotic is shown, with number of isolates with genotypes inconsistent 
with either susceptibility or resistance to a given antibiotic displayed in parentheses; values of 
zero in parentheses have been dropped for clarity.  
c“% consistent” describes the percentage of isolates with a phenotype consistent with genotype. 
dNC means the value cannot be calculated as there are no expected resistant isolates. 
eFor ciprofloxacin, # resistant included isolates with intermediate and resistant MIC results. 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550707doi: bioRxiv preprint 

https://doi.org/10.1101/550707


 39 

Table 3: C. coli susceptibility and consistency.  
 

Antibiotic # isolates susceptibleb # isolates resistantb 

% 

consistentc % resistant 

PPVd NPV 

azithromycin 265  29  100.0% 9.9% 0.763 1 

ciprofloxacin 207  87  100.0% 29.6% 1 1 

clindamycin 248  29 (17) 94.2% 15.6% NC 0.844 

erythromycin 265  29  100.0% 9.9% 0.763 1 

florfenicol 294  0 100.0% 0.0% NC 1 

gentamicin 288  6  100.0% 2.0% 1 1 

nalidixic acid 201 (3) 87 (3) 98.0% 30.6% 1 0.986 

telithromycin 257 (16) 21  94.6% 7.1% 0.553 1 

tetracycline 80 (3) 210 (1) 98.6% 71.8% 0.989 0.988 
 

 
 

aOverall consistency was 96.7% with PPV = 0.904 and NPV = 0.982. 
bThe number of isolates with genotypes consistent with either susceptibility or resistance to a 
given antibiotic is shown, with number of isolates with genotypes inconsistent with either 
susceptibility or resistance to a given antibiotic displayed in parentheses. Values of zero in 
parentheses have been dropped for clarity. 
c“% consistent” describes the percentage of isolates with a consistent phenotype. For macrolides 
and fluoroquinolones, consistency estimates include point mutation data. 
dNC means the value can not be calculated as there are no expected resistant isolates. 
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Table 4: C. jejuni susceptibility and consistencya. 
 
 

Antibiotic # isolates susceptible # isolates resistant % consistent % resistant PPVb NPV 

azithromycin 476  0 100.0% 0.0% 0 1 

ciprofloxacin 386 (1) 86 (3) 99.2% 18.7% 0.989 0.992 

clindamycin 470  0 (6) 98.7% 1.3% NC 0.987 

erythromycin 476  0 100.0% 0.0% 0 1 

florfenicol 476  0 100.0% 0.0% NC 1 

gentamicin 475  0 (1) 99.8% 0.2% NC 0.998 

nalidixic acid 385 (3) 86 (2) 98.9% 18.7% 0.977 0.992 

telithromycin 476  0 100.0% 0.0% 0 1 

tetracycline 145 (4) 325 (2) 98.7% 68.9%              0.988 0.986 
 
aOverall consistency was 98.9% with PPV = 0.971 and NPV = 0.992.  
bThe number of isolates with genotypes consistent with either susceptibility or resistance to a 
given antibiotic is shown, with number of isolates with genotypes inconsistent with either 
susceptibility or resistance to a given antibiotic displayed in parentheses. Values of zero in 
parentheses have been dropped for clarity. 
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Table 5: Discrepancies by category observed in gene symbol calls by AMRFinder and ResFinder 

2.0 from 2017. 

Error typea AMRFinder ResFinder 
Misclassification 0 247 
Underspecification 5 0 
Overspecification 0 977 

aSynonyms are not included in this table as they do not represent miscalls by either system. 
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Table 6:  Unique proteins found by AMRFinder 

 

Explanation N (tot=1,147) % 
Drug class not in ResFinder 931 81.2 
Proteins below thresholdsa 111 9.7 
Gene not found in ResFinder 101 8.8 
Translation/frameshift errorsb 4 0.3 

aIn ten cases, ResFinder was unable to detect these as the nucleotide sequence was too divergent 

from any sequence found in the database. In 101 instances, there was no gene in the ResFinder 

database with >90% DNA sequence similarity to the predicted genes. 

bFrameshifts led to early stop codons, resulting in stop codon positions that differed by more than 

40bp between the two methods. 
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Fig. 1: Data processing and analysis flow.  Processing steps and isolate inclusion and exclusion 

criteria are indicated by arrows, with the number of isolates retained in each phase indicated in 

the colored boxes. Thirty-eight isolates were excluded if their AST phenotypes in three or more 

drug classes differed from predictions based on acquired AMR genes. 
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Fig. 3: Unexpected beta-lactamases confer decreased susceptibility to amoxicillin-clavulanic 

acid in S. enterica.  Format as described for Figure 2 except allelic variants within a beta-

lactamase family are grouped together under the family name; an isolate can have multiple 

alleles belonging to the same family. “blaPSE” family beta-lactamases are either CARB-2 or 

unassigned CARB alleles.  “blaCMY” family beta-lactamases were either novel blaCMY alleles or 

the CMY-2 allele. “blaHER” indicates either the HER-3 allele or a novel HER-family allele.  

“blaTEM” indicates either a novel TEM allele, or TEM-1 “No genes” indicates those isolates 

lacking beta-lactamases.
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